∞
X ( z )=   ∑      x [ n ] z−n
           n=−∞
Where, z=r e is a complex exponential
                           jΩ
z=r e j Ω =r cos Ω+ jsin Ω
Magnitude |z|=r & angle                                     ∠ z=Ω
This can be represented by a z-plane
Find the z-transform of a finite sequence given below
x [ n ] ={ 5 ,3 ,−2 , 0 , 4 ,−3 }
Sol: From formula of ZT
            ∞
X ( z )=   ∑      x [ n ] z−n
           n=−∞
x [n ]   is finite sequence from n=−2 to n=−3
                  3
∴ X ( z) = ∑ x [n ] z
                                −n
                n=−2
X ( z )=x [−2 ] z 2+ x [ −1 ] z 1+ x [ 0 ] z 0 + x [ 1 ] z−1+ x [ 2 ] z−2 + x [ 3 ] z−3
X ( z )=5 z 2+ 3 z 1−2 z 0+ 0 z−1+ 4 z−2 +3 z−3
X ( z )=5 z 2+ 3 z 1−2+ 4 z−2 +3 z−3
Ex:
x [ n ] ={ 1 ,0 , 3 , 4 ,−1 }
X ( z )=1+3 z−2 +4 z −3 −z−4
CLASS 2:
Prob1: Find the z-transform of the sequence x [ n ] =an u[n]
Sol: Formula for ZT
             ∞
X ( z )=    ∑     x [ n ] z−n
           n=−∞
             ∞
X ( z )=    ∑     an u [ n ] z−n
           n=−∞
We know that
u [ n ] = 1 n≥ 0
        { 0 n< 0
             −1                    ∞
X ( z )=    ∑     an ( 0 ) z−n +∑ a n( 1) z−n
           n=−∞                    n=0
            ∞
                        n
X ( z )=∑ ( a z−1)
           n=0
 ∞
            1
∑ ( a )k = 1−a for∨a∨¿ 1
k=0
             1
X ( z )=        −1
                   for∨a z−1∨¿ 1
           1−a z
Using the formula
          1
a<      −1
      ¿ z ∨¿ ¿
a< ¿ z ∨¿
¿ z∨¿ a
             1
X ( z )=           for∨z∨¿ a
           1−a z−1
             1
X ( z )=          for∨z∨¿ a
           1−a /z
               z
X ( z )=          for∨z∨¿ a
              z−a
Region of Convergence:
“The range of values of variable |z|for which the z-transform converges is
called the region of convergence.”
          ∞
i. e ,   ∑       ¿ x [ n ] z−n∨¿< ∞ ¿
         n =−∞
Hence for the previous problem which we saw
               z
X ( z )=          ROC |z|>a
              z−a
Region of convergence can be drawn on z-plane as
|z|=r=a
                                   ROC
                                            Re{z}
                                        a
Since |z|>a , ROC is outside the circle of radius a
Poles and Zeros:-
                b0 +b 1 z−1 +…+b M z−M
If   X ( z )=
                a0 +a1 z−1+ …+a N z−N
                                             is some function.
Then, Pole is the root of the Denominator polynomial.
           Zero is the root of the Numerator polynomial.
Prob 2:
Determine the z-transform of the signal x [ n ] =−α n u [ −n−1 ]depict the ROC &
location of poles and zeros.
Sol:
Formula of ZT:
          ∞
X ( z )= ∑ x [ n ] z −n
         n−∞
          ∞
X ( z )= ∑ −α n u [ −n−1 ] z−n
         n−∞
Where
                          u[-n-1]
                          1
        -4 -3 -2 -1      0 1 2 3       4 5
u [ −n−1 ] = 1 n<0
             0n≥0{
              −1                   ∞
X ( z )=−     ∑      α n ( 1 ) z−n−∑ α n (0) z−n
            n=−∞                 n=0
              −1
X ( z )=−     ∑      α n z−n
            n=−∞
             1
X ( z )=− ∑ α −n z n
            n=∞
             ∞
X ( z )=−∑ α −n z n
            n =1
             ∞
X ( z )=−∑ (α ¿¿−1 z )n ¿
            n =1
Replace ‘n’ as ‘-n’
 ∞
            a
∑ ( a )k = 1−a for∨a∨¿ 1
k =1
           −α −1 z      −1
X ( z )=       −1
                   for∨α z∨¿1
           1−α z
           −z /α          1
X ( z )=          for∨z∨¿ −1
           1−z /α        α
           −z
X ( z )=        for |z|<α
           α −z
            z
X ( z )=       for |z|<α
           z−α
Pole: z = α
Zero: z = 0
                                Im{z}
                                    ROC
                                            Re{z}
                                        α
Prob 3:
                                                                                1 n
Determine z-transform of x [ n ] =−u [ −n−1 ] +                                 ()
                                                                                2
                                                                                    u [ n]   depict ROC and the location
of Poles and Zeros in z-plane.
Sol: Formula for ZT
            ∞
X ( z )=   ∑         x [ n ] z−n
           n=−∞
            ∞
                                                1 n
X ( z )=   ∑
           n=−∞
                    {−u [−n−1 ] +           () }2
                                                    u [ n ] z−n
            ∞                                         ∞
                                                            1 n
X ( z )=   ∑ −u [ −n−1 ] z
           n=−∞
                                           −n
                                                +¿   ∑
                                                     n=−∞
                                                            ()
                                                            2
                                                                u [ n ] z−n ¿
                                     ∞
                                           1 n −n
                −1
X ( z )=−
            n=−∞
                ∑       z−n +¿ ∑
                                    n=0
                                          ()
                                           2
                                              z ¿
                1               ∞
                                         1 −1 n
X ( z )=− ∑ z n+ ¿ ∑
            n=∞                n=0
                                     ( ) 2
                                           z    ¿
            z     z
X ( z )=       +
           z−1      1
                 z−
                    2
           1
z <1 z >
           2
                           3
X ( z )=
                (
            z 2 z−
                           2
                           1   )
                        ROC <|z|<1
                      1    2
           ( z−1 ) z−
                      2 ( )
                          1
Poles:          z=1 ,
                          2
                           3
Zeros:          z=0 ,
                           4
                                   Im{z}
                                               ROC
                                         3/4           Re{z}
                                         1/2    1
|z|<1
|12 z |<1
     −1
       1
|z|<
       2
                  z
a n u [ n ] ZT       , ROC |z|>a
           ↔     z−a
Right sided problem
                             z
−a n u [ −n−1 ] ZT              , ROC|z|< a
                    ↔       z−a
Left sided problem
                                               3
                    1   n            (
                                    z 2 z−
                                               2   )
                                                   1
−u [ −n−1 ] +      ()
                    2
                      u [ n ] ZT
                               ↔              1
                                                ROC <|z|<1
                                                   2
                                           ( )
                                   ( z−1 ) z−
                                              2
Properties of ROC
Property 1: The ROC does not contain any poles.
Property 2: ROC for finite duration signal include the entire z-plane except
z=0 or |z|=∞ or both
Note: For x [ n ] =cδ [ n ] ROC has entire z-plane.
Property 3: If x[n] is a Right-Sided sequence (i.e. x [ n ] =0 for n¿ 0) Then for X ( z )
, ROC is of the form |z|>r maxor ∞ >|z|>r max .
ROC is outside the circle.
Property 4: If x[n] is a Left-Sided sequence (i.e. x [ n ] =0 for n≥ 0) Then for X ( z ),
ROC is of the form |z|<r minor 0<|z|< r min .
ROC is inside the circle.
Property 5: If x[n] is a two-sided sequence. Then for X ( z ), ROC is of the form
r min <|z|<r max . (where r min ∧r max are two poles)
ROC is an angular ring in the z-plane.
x [ n ] ={ 1 ,2 , 3 , 4 } ZT X ( z ) =z 1+2+3 z−1 +4 z−2
                        ↔
X ( z)   is not valid (infinite) if |z|=0∨∞
                  z
a n u [ n ] ZT       ROC |z|>a
           ↔     z−a
                         z
−a n u [ −n−1 ] ZT          ROC| z|< a
                    ↔   z−a
                                   z   z
−a n u [ −n−1 ] + bn u [ n ] ZT      +    ROC b<|z|<a
                            ↔     z−a z−b
                                      Properties of the z-transform
1. Linearity
If x 1 [ n ] ↔z X 1 ( z ) with ROC R1
& x 2 [ n ] ↔z X 2 ( z ) with ROC                        R2
Then a x 1 [ n ] +bx 2 [ n ] ↔z a X 1 ( z )+ bX 2 ( z ) with ROC    R1 ∩ R2
Proof: From the definition of z-transform
                                  ∞
ZT { x [ n ] } =X (z )= ∑ x [ n ] z −n
                                n=−∞
                                          ∞
ZT {a x 1 [ n ] +bx 2 [ n ] } = ∑ {a x 1 [ n ] + bx 2 [ n ] } z−n
                                      n=−∞
     ∞                           ∞
¿   ∑        a x1 [ n ] z −n+   ∑         bx 2 [ n ] z−n
    n=−∞                        n =−∞
         ∞                            ∞
                        −n
¿a    ∑        x1 [ n ] z + b     ∑           x 2 [ n ] z−n
     n=−∞                        n=−∞
¿ a X 1 ( z )+ b X 2 (z)
a x 1 [ n ] +bx 2 [ n ] z a X 1 ( z )+ b X 2 (z)
                        ↔
with ROC                R1 ∩ R2
2. Time Reversal
If x [ n ] ↔z X ( z ) with ROC R
Then x [−n ] ↔z X               ( 1z ) with ROC R1
Proof: Let us consider the definition of z-transform
                                   ∞
ZT {x [ n ] }=X ( z)=          ∑       x [ n ] z−n
                               n =−∞
                          ∞
ZT { x [ −n ] } = ∑ x [ −n ] z −n
                      n=−∞
Replace n by –n in the expression we get
    −∞
¿ ∑ x [ n ] zn
    n=∞
     ∞
                          −n
¿   ∑      x [ n ] ( z−1 )
    n=−∞
¿ X ( z −1)
x [−n ] z X
           ↔
                 ( 1z )
                               1
with ROC                       R
3. Time Shift
If x [ n ] ↔z X ( z ) with ROC R
                     −n
Then x [ n−n 0 ] ↔z z X ( z ) with ROC R, except possibly
                                          0
                                                            ¿ z∨¿ 0∨¿ z∨¿ ∞
Proof: Let us consider the definition of z-transform
                                      ∞
ZT {x [ n ] }=X ( z )=                ∑       x [ n ] z−n
                                  n=−∞
                                 ∞
ZT {x [ n−n 0 ] }=               ∑ x [ n−n0 ] z−n
                             n=−∞
Replace n−n0 by min the expression we get n=m+ n0
The Limits n=−∞ becomes m=−∞ and n=∞becomes m=∞
    −∞
¿ ∑ x [ m ] z−(m +n )        0
    m=∞
     ∞
¿   ∑         x [ m ] z−m z−n     0
    m=−∞
              ∞
    −n0
¿z           ∑        x [ m ] z−m
             m=−∞
¿ z−n X ( z )
         0
x [ n−n 0 ] z z−n X ( z )0
with ROC R, except possibly ¿ z∨¿ 0∨¿ z∨¿ ∞
4. Multiplication by Exponential Sequence
Let α be a complex number
If x [ n ] ↔z X ( z ) with ROC R
      n
Then α x [ n ] ↔z X             ( αz ) with ROC¿ α ∨R
Proof: Let us consider the definition of z-transform
                                    ∞
ZT {x [ n ] }=X ( z )=             ∑     x [ n ] z−n
                                n=−∞
                          ∞
ZT {α n x [ n ] }=      ∑       {α n x [ n ] }z−n
                       n=−∞
     ∞
¿   ∑      x [ n ] α n z−n
    n=−∞
     ∞
                              −n
¿   ∑      x [ n ] ( α −1 z )
    n=−∞
¿X   ( αz )
α n x [ n] z X
           ↔
                  ( αz ) with ROC ¿ α ∨R
5. Differentiation in z-domain
If x [ n ] ↔z X ( z ) with ROC R
                                   d
Then nx [ n ] ↔z −z dz X ( z ) with ROC R
Proof: Let us consider the definition of z-transform
              ∞
X ( z )=      ∑     x [ n ] z−n
           n=−∞
Differentiating w.r.t ‘z’ on both sides we get
                          ∞
d           d
dz
   X ( z )=
            dz         (∑
                        n=−∞
                                   x [ n ] z−n   )
                   ∞
d                    d
   X ( z )= ∑ x [ n ] ( z−n )
dz         n=−∞      dz
                   ∞
d
   X ( z )= ∑ x [ n ] (−n z−n−1 )
dz         n=−∞
                        ∞
d
   X ( z )=− ∑ x [ n ] n z−n z−1
dz          n=−∞
                                ∞
d
   X ( z )=−z−1 ∑ { n x [ n ] } z −n
dz             n=−∞
                            ∞
      d
−z       X ( z )= ∑ { n x [ n ] } z−n
      dz         n=−∞
      d
−z       X ( z )=ZT {n x [ n ] }
      dz
                   d
nx [ n ] z −z         X( z)
         ↔         dz
6. Convolution
If x [ n ] ↔z X ( z ) with ROC R x
& y [ n ] ↔z Y ( z ) with ROC               Ry
Then x [ n ]∗y [ n ] ↔z X ( z ) Y ( z ) with ROC R x ∩ R y
Proof: Let us consider the LHS
                                    ∞
ZT { x [ n ]∗y [ n ] } = ∑ { x [ n ]∗y [n ] } z −n
                                n=−∞
     ∞         ∞
¿   ∑ ∑    {
    n=−∞ k=−∞
                                        }
                    x [ k ] y [n−k ] z −n
     ∞              ∞
¿   ∑      x[k ]   ∑        y [n−k ] z−n
    k=−∞           n=−∞
                                                     −k
We know from time shift property that: y [ n−k ] ↔z z Y (z )
     ∞
¿   ∑      x [ k ] z−k Y ( z)
    k=−∞
¿ X ( z )Y (z)
Hence,
x [ n ]∗y [ n ] z X ( z ) Y ( z )
                ↔
                                    Common z-transform Formulas
                     x [n]                     X ( z)            ROC
                     δ [n]                         1          All z-plane
                                                    z
                     u[n]                                         |z|>1
                                                  z−1
                                                    z
                    a n u [n]                                     |z|>a
                                                  z−a
                                                    z
              −a n u [−n−1]                                       |z|<a
                                                  z−a
                                              2
                                             z −cos Ω0 z
              cos (Ω0 n)u [n]             2                      |z|>1
                                          z −2cos Ω 0 z +1
                                                sin Ω0 z
              sin (Ω0 n)u[n]                                     |z|>1
                                         z2 −2cos Ω0 z +1
                                            z 2−rcos Ω 0 z
             rcos (Ω0 n)u[n]                                     |z|>r
                                         z2 −2rcos Ω 0 z +1
                                               rsin Ω0 z
             rsin ( Ω0 n) u[ n]                                  |z|>r
                                         z2 −2rcos Ω0 z +1
Find the transform X ( z) and sketch the pole-zero plots, with ROC for each of
the following sequence
                 1 n         −1 n
1.   x [n ]=  () 2
                     u [ n]+
                              3
                                  u[n]( )
Sol:
x [ n ] =x1 [ n ] + x 2 [n ]
X ( z )=X 1 ( z )+ X 2 (z)
ROC              R1 ∩ R2
                                             z    |z|>a
                     a n u [n]
                                            z−a
 1 n                  z
()
 2
     u [n ] z
           ↔
                     z−
                          1
                          2
                                      1
With ROC |z|> 2
 −1 n           z
( )
  3
      u [n ] z
            ↔
               z+
                  1
                  3
                                      1
With ROC |z|> 3
             z                z
X ( z )=             +
                 1                1
           z−             z+
                 2                3
              1
With ROC |z|> 2
                              1
X ( z )=
                 (
             z 2 z−
                              6   )
           ( z− 12 )( z+ 13 )
                          0∧1
Zeros:               z=
                           12
                  1
                    ∧1
Poles:         z=
                  2
                    3
                                   Im{z}
                                                 Re{z}
                   -1/3        0 1/12      1/2
                1 n         1 n
2. x [ n ] =  ()3
                    u [ n]+
                            2  ()
                                u[−n−1]
Sol:
x [ n ] =x1 [ n ] + x 2 [n ]
X ( z )=X 1 ( z )+ X 2 (z)
ROC            R1 ∩ R2
 1 n               z
()
 3
     u [ n] z
           ↔
                z−
                       1
                       3
                               1
With ROC |z|> 3
                  n                                       z    |z|<a
             −a u [−n−1]
                                                         z−a
 1 n                z
()
 2
     u [−n−1 ] z −
              ↔
                   z−
                      1
                      2
                                 1
With ROC |z|< 2
            z            z
X ( z )=            −
                1            1
           z−           z−
                3            2
                        1        1
With ROC                3
                          <| z|<
                                 2
                 −1
X ( z )=
               (z
                  6 )
         ( z− 13 )( z− 12 )
                                              1
                                                ∧1
Zeros:          z=0      Poles:            z=
                                              3
                                                2
                                     Im{z}
                                     ROC
                                                     Re{z}
                             0         1/3    1/2
                1 n         1 n
3. x [ n ] =()  2
                    u [ n]+
                            3    ()
                                u[−n−1]
Sol:
 1 n                z
()
 2
     u [n ] z
           ↔
                z−
                        1
                        2
                                    1
With ROC |z|> 2
                    n                          z                    |z|<a
            −a u [−n−1]
                                              z−a
 1 n                z
()
 3
     u [−n−1 ] z −
              ↔
                   z−
                      1
                      3
                                    1
With ROC |z|< 3
            z               z
X ( z )=            −
                1               1
           z−           z−
                3               2
              1       1
With ROC |z|> 2 ∧|z|< 3
There is no intersection between two ROCs. It means there is no common
ROC. Hence given signal x [ n ]will not have X ( z ).
Using properties of z-transform compute                  X ( z)of   the following:
1. x [ n ] =n sin       ( nπ2 ) u[−n ]
Sol:
                                             sin Ω 0 z
            sin (Ω0 n)u[n]              2                                   |z|>1
                                         z −2cos Ω 0 z +1
                     π
                       z        sin
    nπ               2
sin( )
     2
       u[n] z
           ↔ 2         π
              z −2 cos z +1
                       2
sin   ( nπ2 )u [ n ] z z z+1
                    ↔
                            2
ROC |z|>1
Property differentiation in z-domain
                  d
nx [ n ] z −z        X( z)
         ↔        dz
n sin   ( nπ2 )u [ n ] z −z dzd ( z z+ 1 )
                        ↔
                                   2
ROC |z|>1
       du     dv
          −u  v
d u    dx     dx
dx v
     =()  v 2
d     z     ( z 2+ 1 ) 1−z( 2 z )
      ( )
dz z 2 +1
          =
                   ( z 2+ 1 )
                              2
d     z     1− z2
      ( )=
dz z 2 +1 ( z 2+ 1 )2
         nπ               1−z 2
n sin   ( )
          2
            u [ n ] z −z 2 2
                   ↔    ( z +1 )
ROC |z|>1
To find reflection, replace n by –n on the Left Hand Side
To find the z-transform of reflection we use time-reversal property
x [−n ] z X
          ↔
               ( 1z )
                               1
With ROC                       R
We get,
              −nπ                     1−(1/ z)2
−n sin       ( )
               2
                  u [−n ] z −(1 /z )
                         ↔           (( 1/z )2+ 1 )
                                                   2
                                                         2
              −nπ                    (z ¿¿ 2−1)/ z
−n sin       ( )
               2
                  u [−n ] z −(1 /z )
                         ↔
                                                 2
                                       ( 1+ z 2 ) / z 4
                                                        ¿
−n sin       ( −nπ2 )u [−n ] z −z ( z(¿¿1+2−1)
                               ↔           z)
                                               ¿   2 2
                                           2
      nπ            z(1−z )
n sin  ( )
       2
         u [ −n ] z
                 ↔ ( 1+ z 2 )
                              2
ROC |z|>1
                             1 n
2. x [ n ] =( n−4 )      ()  4
                                 u( n−4)
Sol:
    1 n ( )          z
()  4
       un z
            ↔
                  z−
                         1
                         4
              1
With ROC |z|> 4
     1 n              d            z
n   ()
     4
         u ( n ) z −z
                 ↔    dz
                              ( )
                               z−
                                       1
                                       4
                         1
   1     n
n ( ) u ( n ) z −z
                   ( z− ) 1−z ( 1 )
                         4
                                               2
   4             ↔
                       ( z− 14 )
                  −1
       n
  1                4
n()
  4
    u ( n ) z −z
            ↔        1                   2
                 z−
                     4     ( )
              1
       n        z
  1           4
n()
  4
    u ( n) z
           ↔    1                2
             z−
                4   ( )
Time Shift Property
x [ n−n 0 ] z z−n X ( z )
                      0
With ROC R, except possibly ¿ z∨¿ 0∨¿ z∨¿ ∞
To make time shift replace n by n−4 in RHS of above equation.
To find z-transform we multiply                         z−4 on   LHS
                                              1
                n−4                             z
( n−4 )    ( 14 )     u ( n−4 ) z z−4
                                     ↔
                                              4
                                                1   2
                                             ( )
                                             z−
                                                4
                                           1 −3
                n         −4                 z
( n−4 )    ( 14 ) ( 14 )       u ( n−4 ) z
                                        ↔
                                           4
                                              1 2
                                           z−( )
                                              4
                        1 5 −3
        1 n             4
                           z         ()
( n−4 )
        4  ()
            u ( n−4 ) z
                      ↔    1 2
                        z−
                           4         ( )
             1 n          1 n
3.   x [n ]=
             2 ()u [ n ]∗
                          3      ()
                              u [n ]
Here we use Convolution property.
x [ n ]∗y [ n ] =X ( z ) Y ( z )
With ROC                   Rx ∩ R y
 1 n ( )          z
()
 2
    un z
         ↔
              z−
                      1
                      2
                              1
With ROC |z|> 2
 1 n ( )          z
()
 3
    un z
         ↔
              z−
                      1
                      3
                              1
With ROC |z|> 3
Then
 1 n ( ) 1 n ( )                    z       z
()
 2
    u n∗
         3   ()
            un z
                 ↔
                                  z−
                                        1
                                          z−
                                             1
                                        2    3
              1
With ROC |z|> 2
 1 n ( ) 1 n ( )                          z2
()
 2
    u n∗
         3   ()
            un z
                 ↔
                                  ( z− 12 )( z− 13 )
              1
With ROC |z|> 2
Prob: Using properties of z-transform compute                              X ( z)of   the following:
4. x [ n ] =a cos Ω ( n−2 ) u [n−2]
              n
                          0
Sol: We know the formula-
                                                          z 2−cos Ω0 z
           cos (Ω0 n)u [n]                                                    |z|>1
                                                       z2 −2cos Ω 0 z +1
Hence we get
                       z 2−cos Ω0 z
cos Ω0 n u [ n ] z   2
                  ↔ z −2 cos Ω z +1
                                0
                                                                                              With ROC |z|>1
Next step: we perform shift, we replace n by n−2 in LHS
To find z-transform of shifted signal we multiply                               z−2to   RHS
                                 −2      z 2−cos Ω0 z
cos Ω 0 (n−2)u [ n−2 ] z z             2
                             ↔        z −2cos Ω0 z +1
                                                                                              With ROC |z|>1
Last step: multiply by a n on LHS
                                                                   z
To find its z-transform we replace                            z→
                                                                   a   on RHS
 n                                       −2      ( z /a)2−cos Ω0 ( z /a)
a cos Ω 0 (n−2)u [ n−2 ] z ( z /a)
                                 ↔            ( z /a)2 −2cos Ω 0 ( z /a)+ 1
                                                                                          With ROC |z|>a (1)
Simplifying above equation we get,
 n                                   z 2−acos Ω0 z
                                         −2
a cos Ω0 (n−2) u [ n−2 ] z ( z /a) 2                 2
                        ↔          z −2 acos Ω0 z +a
                                                                                              With ROC |z|>a
5. x [n ] =n ( n+1 ) a u[n]
                         n
Sol: The given question itself we can simplify as follows:
n ( n+1 ) an u [ n ] =n n a n u [ n ] +n an u[n]
Now this question can be considered as two parts ( n n a n u [ n ] ) & n a n u [n]
First step: consider the formula
           z
anu [ n] z
        ↔ z−a
                                                       With ROC |z|>a
Second step: use differentiation in z-domain property (multiply n to LHS)
                     d   z
n a n u [ n ] z −z
           ↔
                        ( )
                     dz z−a
Simplifying we get z-transform for one of the terms,
                     ( z−a ) 1−z ( 1 )
n a n u [ n ] z −z
           ↔             ( z−a )2
                        −a
n a n u [ n ] z −z
           ↔         ( z−a )2
                az
n anu [ n] z         2
           ↔ ( z−a )
                                                              With ROC |z|>a
Third step: We need another term withn2. Hence multiply another n to LHS.
We get,
                       d     az
n n a n u [ n ] z −z
               ↔          (
                       dz ( z−a )2       )
                       ( z−a )2 ( a )−az 2 ( z −a )
n n a n u [ n ] z −z                      4
               ↔                  ( z−a )
                       { ( z −a ) a−2az }
n n a n u [ n ] z −z
               ↔              ( z−a )3
      n                { za−a2−2 az }
n n a u [ n ] z −z
               ↔           ( z−a )3
                       −a2−az
n n a n u [ n ] z −z
               ↔        ( z−a )3
      n         a 2 z−a z 2
n n a u [ n] z           3
               ↔ ( z−a )
                                                              With ROC |z|>a
Fourth step: Combining the two terms using Linearity property,
                              a2 z−a z 2      az
n n a n u [ n ] +n an u [ n ] z        3
                                         +
                             ↔ ( z−a )     ( z−a )2
Hence we get the final result as,
                      a 2 z−a z 2      az
n(n+1)a n u [ n ] z            3
                                  +
                     ↔ ( z−a )      ( z−a )2
                                                          With ROC |z|>a