0% found this document useful (0 votes)
25 views29 pages

Z Transform 1

The document provides an overview of the z transform, which is analogous to the Laplace transform for discrete-time signals. It includes definitions, properties, examples, and the relationship between z transform and the discrete-time Fourier transform, as well as the region of convergence for various sequences. Key concepts such as the z transform of the Kronecker delta function, unit step function, and properties like linearity and time shifting are also discussed.

Uploaded by

serget1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
25 views29 pages

Z Transform 1

The document provides an overview of the z transform, which is analogous to the Laplace transform for discrete-time signals. It includes definitions, properties, examples, and the relationship between z transform and the discrete-time Fourier transform, as well as the region of convergence for various sequences. Key concepts such as the z transform of the Kronecker delta function, unit step function, and properties like linearity and time shifting are also discussed.

Uploaded by

serget1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 29

Z Transform 1

©Dr. James S. Kang


Professor
ECE Department
Cal Poly Pomona

1
Definition
• The z transform of a discrete-time signal has the same role as the
Laplace has on a continuous time signal.
• The z transform is defined as

𝑋𝑋 𝑧𝑧 = � 𝑥𝑥 𝑘𝑘 𝑧𝑧 −𝑘𝑘
𝑘𝑘=−∞
• z is a complex variable. z is represented in polar coordinates as
𝑧𝑧 = 𝑟𝑟𝑒𝑒 𝑗𝑗𝜃𝜃

2
Relation to Discrete-Time Fourier Transform
• If 𝑧𝑧 = 𝑟𝑟𝑒𝑒 𝑗𝑗𝜃𝜃 is substituted to the definition of z transform, we get
∞ ∞

𝑋𝑋 𝑧𝑧 = � 𝑥𝑥 𝑘𝑘 (𝑟𝑟𝑒𝑒 𝑗𝑗𝜃𝜃 )−𝑘𝑘 = � 𝑥𝑥 𝑘𝑘 𝑟𝑟 −𝑘𝑘 𝑒𝑒 −𝑗𝑗𝑗𝑗𝜃𝜃


𝑘𝑘=−∞ 𝑘𝑘=−∞
• The z transform is the discrete-time Fourier transform (DTFT) of
𝑥𝑥 𝑘𝑘 𝑟𝑟 −𝑘𝑘 .
• Multiplying x(k) by 𝑟𝑟 −𝑘𝑘 may make the summation to converge.

3
Z transform of Kronecker Delta Function
• The z transform of Kronecker delta function δ(k) is given by

𝑍𝑍 𝛿𝛿(𝑘𝑘) = � 𝛿𝛿 𝑘𝑘 𝑧𝑧 −𝑘𝑘 = 𝛿𝛿 0 𝑧𝑧 −0 = 1
𝑘𝑘=−∞
• Notice that 𝛿𝛿 𝑘𝑘 is 1 for k = 0 and zero for k ≠ 0.
• Compare with the Laplace transform of Dirac delta function:
L[𝛿𝛿 𝑡𝑡 ] = 1.

4
Z transform of Unit Step Function
• The z transform of unit step

function u(k) is given by
𝑍𝑍 𝑢𝑢(𝑘𝑘) = � 𝑢𝑢 𝑘𝑘 𝑧𝑧 −𝑘𝑘 = 1 + 𝑧𝑧 −1 + 𝑧𝑧 −2 + ⋯
𝑘𝑘=−∞
1 𝑧𝑧 2
Region of Convergence

= −1
=
1 − 𝑧𝑧 𝑧𝑧 − 1 1
if |z-1|< 1 or |z| > 1 or r > 1. r > 1 represents

Imaginary
outside the unit circle in the complex z plane. 0

In this region, the z transform is finite. This -1

region is called region of convergence (ROC). -2


-2 -1 0 1 2
• A pole at z = 1 and a zero at z = 0. Real

5
EXAMPLE
• Find the z transform of u(-k)

and specify ROC.
𝑍𝑍 𝑢𝑢(−𝑘𝑘) = � 𝑢𝑢 −𝑘𝑘 𝑧𝑧 −𝑘𝑘 = 1 + 𝑧𝑧1 + 𝑧𝑧 2 + ⋯
𝑘𝑘=−∞
1
=
1 − 𝑧𝑧
if |z|< 1 or r < 1. r < 1 represents inside the unit circle in the complex z
plane.
• If the sequence is right-handed, ROC is outside of a circle of certain
radius. If the sequence is left-handed, ROC is inside of a circle of
certain radius.

6
EXAMPLE
• Find the z transform of aku(k) and specify Region of Convergence
ROC. 2

𝑍𝑍 𝑎𝑎𝑘𝑘 𝑢𝑢(𝑘𝑘) = � 𝑎𝑎𝑘𝑘 𝑢𝑢 𝑘𝑘 𝑧𝑧 −𝑘𝑘 1


𝑘𝑘=−∞
=1+ 𝑎𝑎𝑎𝑎 −1 + 𝑎𝑎2 𝑧𝑧 −2
+⋯

Imaginary
1 𝑧𝑧 0
= =
1 − 𝑎𝑎𝑧𝑧 −1 𝑧𝑧 − 𝑎𝑎
if |az-1|< 1 or |z| > |a| or r > |a|. r > |a| -1
represents outside the circle of radius |a| in the
complex z plane.
-2
• A pole at z = a and a zero at z = 0. -2 -1 0 1 2
Real

7
EXAMPLE
• Find the z transform of x(k)=a∞
-ku(-k) and specify ROC.

𝑋𝑋 𝑧𝑧 = 𝑍𝑍 𝑎𝑎−𝑘𝑘 𝑢𝑢(−𝑘𝑘) = � 𝑎𝑎−𝑘𝑘 𝑢𝑢 −𝑘𝑘 𝑧𝑧 −𝑘𝑘 = 1 + 𝑎𝑎𝑎𝑎1 + 𝑎𝑎2 𝑧𝑧 2 + ⋯


𝑘𝑘=−∞
1
=
1 − 𝑎𝑎𝑎𝑎
if |az|< 1 or |z| < 1/|a| or r < 1/|a|. r < 1/|a| represents inside the circle of
radius 1/|a| in the complex z plane.
• A pole at z = 1/a and a zero at z = ∞.
1 1
• If z is replaced by z-1 in 𝑍𝑍 𝑎𝑎𝑘𝑘 𝑢𝑢(𝑘𝑘) = , we get . This is called time
1−𝑎𝑎𝑧𝑧 −1 1−𝑎𝑎𝑎𝑎
reversal property.

8
Region of Convergence (ROC)
• Finite length sequence: X(z) converges everywhere except at z = 0
and/or z = ∞.
• EXAMPLE (a) x(k) = δ(k) + 2δ(k-1) + δ(k-2), X(z) = 1 + 2z-1 + z-2
ROC: entire z plane except z = 0.
(b) x(k) = 2δ(k+1) + δ(k) + 2δ(k-1), X(z) = 2z + 1 + 2z-1
ROC: entire z plane except z = 0 and z = ∞.
(c) x(k) = δ(k+2) + 4δ(k+1) + 3δ(k), X(z) = z2 + 4z + 3
ROC: entire z plane except z = ∞.

9
Region of Convergence (ROC)
• Right-handed sequence: The right-handed sequences converge
outside of a circle centered at the origin with certain radius with
possible exception at z = ∞.
EXAMPLE Z[aku(k)] = 1/(1-az-1), ROC is|z| > |a|.
• Left-handed sequence: The left-handed sequences converge inside of
a circle centered at the origin with certain radius with possible
exception at z = 0.
EXAMPLE Z[a-ku(-k)] = 1/(1-az), ROC is|z| < 1/|a|.

10
Region of Convergence (ROC)
• Two-sided sequences: The two-sided sequences converge between two
concentric circles.
• EXAMPLE Find the z transform, ROC, and poles and zeros of
x(k) = (0.5)ku(k) + (0.8)-ku(-k)
1 1 𝑧𝑧 1
𝑋𝑋 𝑧𝑧 = + = +
1 − 0.5𝑧𝑧 −1 1 − 0.8𝑧𝑧 𝑧𝑧 − 0.5 −0.8 𝑧𝑧 − 1
0.8
𝑧𝑧 1.25 𝑧𝑧 2 − 2.5𝑧𝑧 + 0.625 (𝑧𝑧 − 0.2818)(𝑧𝑧 − 2.2182) 1 − 2.5𝑧𝑧 −1 + 0.625𝑧𝑧 −2
= − = = =
𝑧𝑧 − 0.5 𝑧𝑧 − 1.25 𝑧𝑧 2 − 1.75𝑧𝑧 + 0.625 (𝑧𝑧 − 0.5)(𝑧𝑧 − 1.25) 1 − 1.75𝑧𝑧 −1 + 0.625𝑧𝑧 −2
• ROC: 0.5 < |z| < 1.25
• Poles: z = 0.5, z = 1.25, zeros: z = 0.2818, z = 2.2182

11
Linearity Property
• If Z[x1(k)] = X1(z) and Z[x2(k)] = X2(z), then
Z[a1x1(k) + a2x2(k)] = a1X1(z) + a2X2(z).
• The ROC is the intersection of the two ROCs.

12
Time Shifting Property
• If Z[x(k)] = X(z), then
𝑍𝑍 𝑥𝑥(𝑘𝑘 − 𝑘𝑘𝑑𝑑 ) = 𝑧𝑧 −𝑘𝑘𝑑𝑑 𝑋𝑋(𝑧𝑧)
• Proof Let m = k – kd. Then, k = m + kd, When k→∞, m→∞, When k→-
∞, m→-∞ ∞ ∞

𝑍𝑍 𝑥𝑥(𝑘𝑘 − 𝑘𝑘𝑑𝑑 ) = � 𝑥𝑥 𝑘𝑘 − 𝑘𝑘𝑑𝑑 𝑧𝑧 −𝑘𝑘 = � 𝑥𝑥 𝑚𝑚 𝑧𝑧 −𝑚𝑚−𝑘𝑘𝑑𝑑


𝑘𝑘=−∞ 𝑚𝑚=−∞

= 𝑧𝑧 −𝑘𝑘𝑑𝑑 � 𝑥𝑥 𝑚𝑚 𝑧𝑧 −𝑚𝑚 = 𝑧𝑧 −𝑘𝑘𝑑𝑑 𝑋𝑋(𝑧𝑧)


𝑚𝑚=−∞

13
EXAMPLE
• Find the z-transform of the following signals.
(a) x(k) = u(-k+3) (b) x(k) = (0.6)k-3u(k-4) (c) x(k) = (0.8)k+2u(k+3)
1 𝑧𝑧 −3
• (a) x(k) = u(-(k-3)), Z[u(-k)] = , X(z) =
1−𝑧𝑧 1−𝑧𝑧
𝑧𝑧 −4
• (b) x(k) = (0.6)k-4+1u(k-4) = (0.6)(0.6)k-4u(k-4) = 0.6
1−0.6𝑧𝑧 −1
𝑧𝑧 3
• (c) x(k) = (0.8) k+3-1u(k+3) = (0.8) (0.8) u(k+3) = 1.25
-1 k+3
1−0.8𝑧𝑧 −1

14
EXAMPLE
syms k
x=(0.6)^(k-3)*heaviside(k-4)
X=ztrans(x)
X=simplify(X)
X=vpa(X,8)

X = (3*(1/((5*z)/3 - 1) + 1))/(5*z^4)
X = 3/(z^3*(5*z - 3))
X = 3.0/(z^3*(5.0*z - 3.0))
X=3.0/(5*z^4*(1-0.6*z^(-1)))=0.6*z^(-4)/(1-0.6*z^(-1))

15
Exponential Multiplication Property
𝑧𝑧
• If Z[x(k)] = X(z), then Z[akx(k)] = 𝑋𝑋 = 𝑋𝑋 𝑎𝑎−1 𝑧𝑧 .
𝑎𝑎
• Replace 𝑧𝑧 by 𝑎𝑎−1 𝑧𝑧
• Replace 𝑧𝑧 −1 by 𝑎𝑎𝑧𝑧 −1
• Proof ∞ ∞

𝑋𝑋 𝑧𝑧 = � 𝑥𝑥 𝑘𝑘 𝑎𝑎𝑘𝑘 𝑧𝑧 −𝑘𝑘 = � 𝑥𝑥 𝑘𝑘 𝑎𝑎−1 𝑧𝑧 −𝑘𝑘 = 𝑋𝑋 𝑎𝑎−1 𝑧𝑧


𝑘𝑘=−∞ 𝑘𝑘=−∞

1
• 𝑍𝑍 𝑢𝑢 𝑘𝑘 =
1−𝑧𝑧 −1

16
EXAMPLE
𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜𝑘𝑘 +𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑘𝑘 1 1
• Z[cos(θok)u(k)] = 𝑍𝑍 𝑢𝑢(𝑘𝑘) = 𝑍𝑍 𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜𝑘𝑘 𝑢𝑢 𝑘𝑘 + 𝑍𝑍 𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜𝑘𝑘 𝑢𝑢 𝑘𝑘
2 2 2
1 1
•= 2 � + 2 �
1−𝑧𝑧 −1 𝑧𝑧 −1 =𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑧𝑧 −1 𝑧𝑧 −1 =𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1

1 1 1 1 0.5 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 +0.5 1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1


= + =
2 1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 2 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1

𝑒𝑒𝑗𝑗𝜃𝜃𝑜𝑜 +𝑒𝑒−𝑗𝑗𝜃𝜃𝑜𝑜 −1
1− 2
𝑧𝑧
• =
1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1

1−𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧 −1


• = =
1− 𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 +𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 +𝑧𝑧 −2 1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧 −1 +𝑧𝑧 −2

17
Z Transform of sin(θok)u(k)
𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑘𝑘 −𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑘𝑘 1 1
• Z[sin(θok)u(k)] = 𝑍𝑍 2𝑗𝑗
𝑢𝑢(𝑘𝑘) =
2𝑗𝑗
𝑍𝑍 𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑘𝑘 𝑢𝑢(𝑘𝑘) − 𝑍𝑍
2𝑗𝑗
𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑘𝑘 𝑢𝑢(𝑘𝑘)
1 1 1 1 −0.5𝑗𝑗 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 +0.5𝑗𝑗 1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1
•= − =
2𝑗𝑗 1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 2𝑗𝑗 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1−𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1

−0.5𝑗𝑗 + 0.5𝑗𝑗𝑗𝑗 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 + 0.5𝑗𝑗 − 0.5𝑗𝑗𝑗𝑗 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 −0.5𝑗𝑗 𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 − 𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1


= 𝑗𝑗𝜃𝜃 −1 −𝑗𝑗𝜃𝜃 −1
=
1 − 𝑒𝑒 𝑧𝑧 𝑜𝑜 1 − 𝑒𝑒 𝑜𝑜 𝑧𝑧 1 − 𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1 − 𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1

𝑒𝑒 𝑗𝑗𝜃𝜃𝑜𝑜 − 𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 −1
𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑧𝑧 −1
2𝑗𝑗
= =
𝑗𝑗𝜃𝜃
1 − 𝑒𝑒 𝑧𝑧 𝑜𝑜 −1 1 − 𝑒𝑒 −𝑗𝑗𝜃𝜃𝑜𝑜 𝑧𝑧 −1 1 − 2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧 −1 + 𝑧𝑧 −2

18
EXAMPLE
𝑘𝑘 1−𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑎𝑎𝑧𝑧 −1
• 𝑍𝑍 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑘𝑘 𝑢𝑢(𝑘𝑘) =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑎𝑎𝑧𝑧 −1 +𝑎𝑎2 𝑧𝑧 −2
𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑎𝑎𝑎𝑎 −1
• 𝑍𝑍 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑘𝑘 𝑢𝑢(𝑘𝑘) =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑎𝑎𝑎𝑎 −1 +𝑎𝑎2 𝑧𝑧 −2
𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 −𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 −𝜙𝜙 𝑧𝑧 −1
• 𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑘𝑘 + 𝜙𝜙 𝑢𝑢(𝑘𝑘) =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧 −1 +𝑧𝑧 −2
𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 +𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 −𝜙𝜙 𝑧𝑧 −1
• 𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑘𝑘 + 𝜙𝜙 𝑢𝑢(𝑘𝑘) =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧 −1 +𝑧𝑧 −2
𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 −𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 −𝜙𝜙 𝑎𝑎𝑎𝑎 −1
• 𝑍𝑍 𝑎𝑎𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑘𝑘 + 𝜙𝜙 𝑢𝑢(𝑘𝑘) =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑎𝑎𝑎𝑎 −1 +𝑎𝑎2 𝑧𝑧 −2
𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 +𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 −𝜙𝜙 𝑎𝑎𝑎𝑎 −1
• 𝑍𝑍 𝑎𝑎𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑘𝑘 + 𝜙𝜙 𝑢𝑢(𝑘𝑘) =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑎𝑎𝑎𝑎 −1 +𝑎𝑎2 𝑧𝑧 −2

19
Time Reversal Property
• If Z[x(k)] = X(z), then Z[x(-k)] = X(z-1). Replace z by z-1. Replace z-1 by z.
• EXAMPLE
1−𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧
• Z[cos(θok)u(-k)] =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧+𝑧𝑧 2
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑧𝑧
• Z[sin(−θok)u(−k)] =
1−2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑜𝑜 𝑧𝑧+𝑧𝑧 2
• Conjugate property
• If Z[x(k)] = X(z), then Z[x*(k)] = X*(z*).

20
Differentiation in the Z Domain
𝑑𝑑𝑑𝑑(𝑧𝑧)
• If Z[x(k)] = X(z), then 𝑍𝑍 𝑘𝑘𝑘𝑘(𝑘𝑘) = −𝑧𝑧 . In general,
𝑑𝑑𝑑𝑑
𝑑𝑑 𝑚𝑚 𝑋𝑋(𝑧𝑧)
• 𝑍𝑍 𝑘𝑘 𝑚𝑚 𝑥𝑥(𝑘𝑘) = (−𝑧𝑧)𝑚𝑚
𝑑𝑑𝑧𝑧 𝑚𝑚
• Proof Taking the derivative on both sides of 𝑋𝑋 𝑧𝑧 = ∑∞
𝑘𝑘=−∞ 𝑥𝑥 𝑘𝑘 𝑧𝑧 −𝑘𝑘 ,

𝑑𝑑𝑋𝑋 𝑧𝑧 1 ∞
• = ∑∞
𝑘𝑘=−∞ −𝑘𝑘𝑘𝑘 𝑘𝑘 𝑧𝑧 −𝑘𝑘−1
= − ∑𝑘𝑘=−∞ 𝑘𝑘𝑥𝑥 𝑘𝑘 𝑧𝑧 −𝑘𝑘
𝑑𝑑𝑑𝑑 𝑧𝑧
𝑑𝑑𝑑𝑑(𝑧𝑧)
• Thus, 𝑍𝑍 𝑘𝑘𝑘𝑘(𝑘𝑘) = −𝑧𝑧
𝑑𝑑𝑑𝑑

21
EXAMPLE
• Find z transform of (a) kaku(k) (b) k2aku(k) (d) k3aku(k)
𝑑𝑑 1 𝑑𝑑
• 𝑍𝑍 𝑘𝑘𝑎𝑎𝑘𝑘 𝑢𝑢(𝑘𝑘) = −𝑧𝑧 = −𝑧𝑧 1 − 𝑎𝑎𝑧𝑧 −1 −1
𝑑𝑑𝑑𝑑 1−𝑎𝑎𝑎𝑎 −1 𝑑𝑑𝑑𝑑
𝑎𝑎𝑧𝑧 −1
• = −𝑧𝑧 −1 1 − 𝑎𝑎𝑧𝑧 −1 −2 −1 −1 𝑎𝑎𝑧𝑧 −2 =
1−𝑎𝑎𝑧𝑧 −1 2
𝑑𝑑 𝑎𝑎𝑧𝑧 −1 𝑎𝑎𝑧𝑧 −1 +𝑎𝑎2 𝑧𝑧 −2
• 𝑍𝑍 𝑘𝑘 2 𝑎𝑎𝑘𝑘 𝑢𝑢(𝑘𝑘) = −𝑧𝑧 =
𝑑𝑑𝑑𝑑 1−𝑎𝑎𝑎𝑎 −1 2 1−𝑎𝑎𝑎𝑎 −1 3
𝑑𝑑 𝑎𝑎𝑧𝑧 −1 +𝑎𝑎2 𝑧𝑧 −2 𝑎𝑎𝑧𝑧 −1 +4𝑎𝑎2 𝑧𝑧 −2 +𝑎𝑎3 𝑧𝑧 −3
• 𝑍𝑍 𝑘𝑘 3 𝑎𝑎𝑘𝑘 𝑢𝑢(𝑘𝑘) = −𝑧𝑧 =
𝑑𝑑𝑑𝑑 1−𝑎𝑎𝑎𝑎 −1 3 1−𝑎𝑎𝑎𝑎 −1 4

22
EXAMPLE
• Find z transform of (a) ku(k) (b) k2u(k) (d) k3u(k)
𝑑𝑑 1 𝑑𝑑
• 𝑍𝑍 𝑘𝑘𝑢𝑢(𝑘𝑘) = −𝑧𝑧 = −𝑧𝑧 1 − 𝑧𝑧 −1 −1
𝑑𝑑𝑑𝑑 1−𝑧𝑧 −1 𝑑𝑑𝑑𝑑
𝑧𝑧 −1
• = −𝑧𝑧 −1 1 − 𝑧𝑧 −1 −2 −1 −1 𝑧𝑧 −2 =
1−𝑧𝑧 −1 2
𝑑𝑑 𝑧𝑧 −1 𝑧𝑧 −1 +𝑧𝑧 −2
• 𝑍𝑍 𝑘𝑘 2 𝑢𝑢(𝑘𝑘) = −𝑧𝑧 =
𝑑𝑑𝑑𝑑 1−𝑧𝑧 −1 2 1−𝑧𝑧 −1 3
𝑑𝑑 𝑧𝑧 −1 +𝑧𝑧 −2 𝑧𝑧 −1 +4𝑧𝑧 −2 +𝑧𝑧 −3
• 𝑍𝑍 𝑘𝑘 3 𝑢𝑢(𝑘𝑘) = −𝑧𝑧 =
𝑑𝑑𝑑𝑑 1−𝑧𝑧 −1 3 1−𝑧𝑧 −1 4

23
EXAMPLE
• Find the z transform of x(k) = kak-2u(k-3).
• X(z) = Z[kak-2u(k-3)] = Z[(k-3+3)ak-3+1u(k-3)]
• X(z) = a Z[(k-3)ak-3u(k-3)] + 3a Z[ak-3u(k-3)]
𝑎𝑎𝑧𝑧 −1 𝑧𝑧 −3 𝑧𝑧 −3 𝑎𝑎2 𝑧𝑧 −4 3𝑎𝑎𝑎𝑎 −3
• 𝑋𝑋 𝑧𝑧 = 𝑎𝑎 + 3𝑎𝑎 = +
1−𝑎𝑎𝑎𝑎 −1 2 1−𝑎𝑎𝑎𝑎 −1 1−𝑎𝑎𝑎𝑎 −1 2 1−𝑎𝑎𝑎𝑎 −1
syms k z a
x=k*a^(k-2)*heaviside(k-3)
X=ztrans(x)

X = -(a*(2*a - 3*z))/(z^2*(a - z)^2)

24
Convolution Property
• If Z[x1(k)] = X1(z) and Z[x2(k)] = X2(z), then Z[x1(k)*x2(k)] = X1(z)X2(z).
• Convolution in the time domain results in multiplication in the z
domain.
• Proof 𝑦𝑦 𝑘𝑘 = ∑∞ 𝑚𝑚=−∞ ℎ 𝑘𝑘 − 𝑚𝑚 𝑥𝑥(𝑚𝑚)
• 𝑌𝑌 𝑧𝑧 = 𝑍𝑍 𝑦𝑦(𝑘𝑘) = ∑∞ ∑ ∞
𝑘𝑘=−∞ 𝑚𝑚=−∞ ℎ 𝑘𝑘 − 𝑚𝑚 𝑥𝑥(𝑚𝑚) 𝑧𝑧 −𝑘𝑘

• = ∑∞ 𝑚𝑚=−∞ 𝑥𝑥(𝑚𝑚) ∑ 𝑘𝑘=−∞ ℎ 𝑘𝑘 − 𝑚𝑚 𝑧𝑧 −𝑘𝑘

• From time shifting property, ∑∞ 𝑘𝑘=−∞ ℎ 𝑘𝑘 − 𝑚𝑚 𝑧𝑧 −𝑘𝑘 = 𝐻𝐻(𝑧𝑧)𝑧𝑧 −𝑚𝑚

• 𝑌𝑌 𝑧𝑧 = ∑∞ 𝑚𝑚=−∞ 𝑥𝑥(𝑚𝑚)𝐻𝐻(𝑧𝑧)𝑧𝑧 −𝑚𝑚 = 𝐻𝐻 𝑧𝑧 ∑∞


𝑚𝑚=−∞ 𝑥𝑥 𝑚𝑚 𝑧𝑧 −𝑚𝑚

• 𝑌𝑌 𝑧𝑧 = 𝐻𝐻 𝑧𝑧 𝑋𝑋 𝑧𝑧
25
Convolution Property
• Since the output y(k) of a linear, time-invariant (LTI) system is given by
the convolution of the impulse response h(k) of the system and the
input signal x(k), y(k) = h(k)*x(k), the z transform Y(z) of the output of
a linear, time-invariant system is given by the product of the transfer
function H(z), which is the z transform of the impulse response h(k),
and the z-transform X(z) of the input Y(z) = H(z)X(z). H(z) = Y(z)/X(z).
LTI System

x(k) h(k) y(k) = h(k)∗x(k)

X(z) H(z) Y(z) = H(z)X(z)

26
Multiplication Property
• If Z[x1(k)] = X1(z) and Z[x2(k)] = X2(z), then
1 𝑧𝑧 1
𝑍𝑍 𝑥𝑥1 𝑘𝑘 𝑥𝑥2 (𝑘𝑘) = � 𝑋𝑋1 (𝑣𝑣)𝑋𝑋2 𝑑𝑑𝑑𝑑
2𝜋𝜋𝜋𝜋 𝐶𝐶 𝑣𝑣 𝑣𝑣
• Correlation Property: If Z[x1(k)] = X1(z) and Z[x2(k)] = X2(z), then

𝑍𝑍 � 𝑥𝑥1 (𝑚𝑚)𝑥𝑥2 (𝑚𝑚 − 𝑘𝑘) = 𝑋𝑋1 (𝑧𝑧)𝑋𝑋2 𝑧𝑧 −1


𝑚𝑚=−∞
• Partial Sum: If Z[x(k)] = X(z), then
𝑘𝑘
𝑋𝑋(𝑧𝑧)
𝑍𝑍 � 𝑥𝑥(𝑚𝑚) =
1 − 𝑧𝑧 −1
𝑚𝑚=−∞

27
Initial Value Theorem
• 𝑥𝑥 𝑘𝑘𝑜𝑜 = lim 𝑧𝑧 𝑘𝑘𝑜𝑜 𝑋𝑋 𝑧𝑧
𝑧𝑧⟶∞
• If ko = 0, 𝑥𝑥 0 = lim 𝑋𝑋 𝑧𝑧
𝑧𝑧⟶∞
• Examples
1 1 1
• Z[u(k)] = , 𝑥𝑥 0 = lim −1 = lim 1 = 1, u(0) = 1
1−𝑧𝑧 −1 𝑧𝑧⟶∞ 1−𝑧𝑧 𝑧𝑧⟶∞ 1−𝑧𝑧
1 1 1
• Z[aku(k)] = , 𝑥𝑥 0 = lim = lim 𝑎𝑎 = 1, a0u(0) = 1
1−𝑎𝑎𝑧𝑧 −1 𝑧𝑧⟶∞ 1−𝑎𝑎𝑧𝑧 −1 𝑧𝑧⟶∞ 1− 𝑧𝑧

28
Final Value Theorem
• 𝑥𝑥 ∞ = lim 𝑧𝑧 − 1 𝑋𝑋(𝑧𝑧)
𝑧𝑧→1
• Examples
𝑧𝑧 𝑧𝑧
• Z[u(k)] = , 𝑥𝑥 ∞ = lim (𝑧𝑧 − 1) = lim 𝑧𝑧 = 1, u(∞) =1
𝑧𝑧−1 𝑧𝑧⟶1 𝑧𝑧−1 𝑧𝑧⟶1
𝑧𝑧 𝑧𝑧
• Z[a u(k)] =
k , 𝑥𝑥 ∞ = lim (𝑧𝑧 − 1) = 0, a∞u(∞) = 0, a < 1.
𝑧𝑧−𝑎𝑎 𝑧𝑧⟶1 𝑧𝑧−𝑎𝑎

29

You might also like