0% found this document useful (0 votes)
317 views13 pages

Piston Engine Book

Module 16 of the Aviation Maintenance Technician Certification Series focuses on piston engines, providing essential knowledge and experience required for EASA certification. It includes a revision log, content overview, and detailed sub-modules covering fundamentals, engine performance, and construction. The document serves as a comprehensive guide for candidates preparing for licensure in aviation maintenance.

Uploaded by

ak4347722
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
317 views13 pages

Piston Engine Book

Module 16 of the Aviation Maintenance Technician Certification Series focuses on piston engines, providing essential knowledge and experience required for EASA certification. It includes a revision log, content overview, and detailed sub-modules covering fundamentals, engine performance, and construction. The document serves as a comprehensive guide for candidates preparing for licensure in aviation maintenance.

Uploaded by

ak4347722
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

MODULE 16

FOR B1 CERTIFICATION

PISTON ENGINE

Aviation Maintenance Technician


Certification Series

72413 U.S. Hwy 40


Tabernash, CO 80478-0270 USA

www.actechbooks.com

+1 970 726-5111
WELCOME
The publishers of this Aviation Maintenance Technician Certification Series welcome you to the world of
aviation maintenance. As you move towards EASA certification, you are required to gain suitable knowledge and
experience in your chosen area. Qualification on basic subjects for each aircraft maintenance license category or
subcategory is accomplished in accordance with the following matrix. Where applicable, subjects are indicated by
an "X" in the column below the license heading.

For other educational tools created to prepare candidates for licensure, contact Aircraft Technical Book Company.

We wish you good luck and success in your studies and in your aviation career!

REVISION LOG
VERSION EFFECTIVE DATE DESCRIPTION OF CHANGE
001 2016 01 Module Creation and Release
002 2017 02 Format Update
003 2020 06 Realignment to Part-66 Appendices. Enhanced figures throughout entire textbook.

Module 16 B1 - Piston Engine iii


CONTENTS

PISTON ENGINE SUB-MODULE 02


Welcome‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ iii ENGINE PERFORMANCE
Revision Log‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ iii Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.1
Forward‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ iv 16.2 ‑ Engine Performance‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.2
EASA License Category Chart‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ v Power Calculation And Measurment‥‥‥‥‥‥‥‥‥‥‥‥ 2.2
General Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ v Work‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.2
Contents‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ ix Horsepower‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.2
Indicated Horsepower‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.2
SUB-MODULE 01 Brake Horsepower‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.3
FUNDAMENTALS Thrust Horsepower‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.5
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.1 Factors Affecting Engine Power‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.6
16.1 ‑ Fundamentals‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.2 Nature's Variables To Engine Performance‥‥‥‥‥ 2.6
Efficiencies‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.2 Ambient Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.6
Mechanical Efficiency‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.2 Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.6
Thermal Efficiency‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.2 Humidity‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.7
Volumetric Efficiency‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.3 Mechanical Issues Affecting Performance‥‥‥‥‥‥ 2.7
Propulsive Efficiency‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.4 Ignition Problems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.7
Fundamental Reciprocating Engine Operating Fuel Metering Issues‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.8
Principles‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.4 Exhaust System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.9
Four‑Stroke Cycle‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.5 Compression‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.9
Intake Stroke‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.5 Mixtures/Leaning; Preignition‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.10
Compression Stroke‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.6 Mixtures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.10
Power Stroke‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.6 Fuel/Air Mixtures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.10
Exhaust Stroke‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.7 Detonation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.12
Two‑Stroke Cycle‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.7 Preignition‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.12
Rotary Cycle‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.7 Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.13
Diesel Cycle‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.8 Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2.14
Piston Displacement And Compression Ration‥‥‥‥ 1.8
Piston Displacement‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.8 SUB-MODULE 03
Area of a Circle‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.8 ENGINE CONSTRUCTION
Compression Ratio‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.9 Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.1
Engine Configuration And Firing Order‥‥‥‥‥‥‥‥‥ 1.11 16.3 ‑ Engine Construction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.2
Engine Configuration‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.11 Crankcase, Crankshaft, Camshaft, And Sump‥‥‥‥ 3.2
Inline Engines‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.11 Crankcase Sections‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.2
Opposed Or O‑Type Engines‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.11 Crankshafts‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.4
V‑Type Engines‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.12 Camshaft‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.6
Radial Engines‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.12 Sumps‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.6
Firing Order‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.12 Accessory Section‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.8
Single‑Row Radial Engines‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.13 Accessory Gear Trains‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.8
Double‑Row Radial Engines‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.13 Cylinder And Piston Assemblies‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.8
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.15 Cylinders‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.8
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1.16 Cylinder Heads‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.9
Cylinder Barrels‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.9
Pistons‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.10
Piston Construction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.10
Piston Pins‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.11
Connecting Rods‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.12

Module 16 B1 - Piston Engine ix


CONTENTS

Plain‑Type Connecting Rods‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.12 Accelerating Pump‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.18


Fork‑and‑Blade Rod Assembly‥‥‥‥‥‥‥‥‥‥‥‥ 3.13 Manual Mixture Control‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.19
Master, Articulated, And Split‑Type Carburetor Icing‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.19
Rod Assemblies‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.13 Carburetor Maintenance‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.20
Inlet And Exhaust Manifolds‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.14 Carburetor Removal‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.20
Induction Systems ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.14 Installation of Carburetor‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.20
Reciprocating Engine Exhaust Systems‥‥‥‥‥‥‥‥ 3.15 Rigging Carburetor Controls‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.20
Radial Engine Exhaust Collector Ring System 3.15 Adjusting Idle Mixtures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.21
Valve Mechanisms‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.16 4.2 – Fuel Injection Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.22
Valve Construction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.16 Fuel Injection Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.22
Valve Operating Mechanism‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.17 Bendix/Precision Fuel Injection System‥‥‥‥‥‥‥ 4.22
Cam Rings‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.17 Fuel Injector‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.22
Tappet Assembly‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.19 Airflow Section‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.22
Solid Lifter Tappets ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.19 Regulator Section‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.22
Hydraulic Valve Tappets/Lifters‥‥‥‥‥‥‥‥‥‥‥ 3.19 Fuel Metering Section‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.23
Push Rod‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.19 Flow Divider‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.23
Rocker Arms ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.19 Fuel Discharge Nozzles‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.24
Valve Springs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.20 Continental/TCM Fuel Injection System‥‥‥‥‥‥ 4.25
Propeller Reduction Gear‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.20 Fuel Injection Pump‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.25
Propeller Shafts‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.22 Fuel/Air Control Unit‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.27
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.23 Fuel Control Assembly‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.27
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3.24 Fuel Manifold Valve‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.28
Fuel Discharge Nozzle‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.28
SUB-MODULE 04 Fuel Injection Maintenance‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.28
ENGINE FUEL SYSTEMS 4.3 ‑ E
 lectronic Engine Control‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.30
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.1 Systems Layout and Components‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.30
16.4 – Engine Fuel Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.2 Low‑Voltage Harness‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.30
Fuel Metering Devices for Reciprocating Engines‥‥ 4.2 Electronic Control Unit (ECU)‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.32
Fuel/Air Mixtures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.3 Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.33
4.1 – Carburetors‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.4 Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.34
Venturi Principles‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.4
Application of Venturi Principle to Carburetor‥‥ 4.5 SUB-MODULE 05
Metering And Discharge Of Fuel‥‥‥‥‥‥‥‥‥‥‥‥ 4.5 STARTING AND IGNITION SYSTEMS
Carburetor Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.6 Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.1
Float‑Type Carburetors‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.8 16.5 ‑ Starting And Ignition Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.2
Float Chamber Mechanism System‥‥‥‥‥‥‥‥ 4.9 Starting Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.2
Main Metering System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.9 Inertia Starters‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.2
Idling System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.11 Direct Cranking Electric Starters‥‥‥‥‥‥‥‥‥‥‥‥ 5.3
Mixture Control Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.11 Direct Cranking for Large Reciprocating
Accelerating System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.12 Engines‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.4
Economizer System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.13 Direct Crank Starters for Small Aircraft‥‥‥‥ 5.6
Pressure Injection Carburetors‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.14 Preheat Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.8
Typical Injection Carburetor‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.14 Starting System Maintenance Practices‥‥‥‥‥‥‥‥ 5.9
Throttle Body‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.14 Magneto Systems And Operation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.10
Fuel Control Unit‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.15 Operating Principles‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.11
Automatic Mixture Control (AMC)‥‥‥‥‥‥‥‥‥‥ 4.16 Theory Of Operation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.11
Stromberg PS Carburetor‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4.17 The Magnetic Circuit‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.11

x Module 16 B1 - Piston Engine


CONTENTS

The Primary Electrical Circuit‥‥‥‥‥‥‥‥‥‥‥‥ 5.13 Spark Plug Installation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.46


The Secondary Electrical Circuit‥‥‥‥‥‥‥‥‥‥‥ 5.16 Spark Plug Lead Installation‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.46
Magneto And Distributor Venting‥‥‥‥‥‥‥‥‥‥‥‥ 5.17 Breaker Point Inspection‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.46
Ignition Harnesses, Spark Plugs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.17 Dielectric Inspection‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.49
Ignition Harnesses‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.17 Ignition Harness Maintenance‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.49
Ignition Switches‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.19 High‑Tension Ignition Harness Faults‥‥‥‥‥‥ 5.49
Spark Plugs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.20 Harness Testing‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.50
Low And High Tension Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.22 Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.53
Single And Dual High‑Tension System Magnetos 5.22 Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.54
Magneto Mounting Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.22
Low‑Tension Magneto System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.23 SUB-MODULE 06
Limited Authority Spark Advance Regulator INDUCTION, EXHAUST AND COOLING
(LASAR)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.23 SYSTEMS
FADEC System Description‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.24 Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.1
Low‑Voltage Harness‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.25 16.6 ‑ Induction, Exhaust And Cooling Systems‥‥‥‥‥ 6.2
Electronic Control Unit (ECU)‥‥‥‥‥‥‥‥‥‥‥ 5.26 Induction Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.2
PowerLink Ignition System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.26 Basic Carburetor Induction System‥‥‥‥‥‥‥‥‥‥‥ 6.3
Auxiliary Ignition Units‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.27 Induction System Filtering‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.4
Booster Coil‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.27 Carburetor Heat Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.5
High‑Tension Retard Breaker Vibrator‥‥‥‥‥‥ 5.29 Induction System Icing‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.5
Low‑Tension Retard Breaker Vibrator‥‥‥‥‥‥ 5.30 Carburetor Heat System Operational Check‥ 6.6
Impulse Coupling‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.30 Induction System Inspection And Maintenance‥ 6.6
Ignition System Maintenance And Inspection‥‥‥‥‥ 5.32 Induction System Troubleshooting‥‥‥‥‥‥‥‥‥ 6.6
Magneto‑Ignition Timing Devices‥‥‥‥‥‥‥‥‥‥‥ 5.33 Exhaust Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.6
Built‑In Engine Timing Reference Marks‥‥‥ 5.33 Radial Engine Exhaust Collector Ring System‥‥ 6.8
Timing Disks‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.34 Manifold And Augmentor Exhaust Assembly‥‥ 6.8
Piston Position Indicators‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.34 Exhaust System Maintenance Practices‥‥‥‥‥‥‥‥ 6.9
Timing Lights‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.35 Exhaust System Inspection‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.9
Checking the Internal Timing‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.36 Muffler And Heat Exchanger Failures‥‥‥‥‥‥ 6.10
High‑Tension Magneto E‑Gap Setting Exhaust Manifold And Stack Failures‥‥‥‥‥‥ 6.10
(Bench Timing)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.36 Internal Muffler Failures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.10
Timing the High‑tension Magneto Exhaust Systems With Turbochargers‥‥‥‥‥‥‥‥‥ 6.10
To The Engine‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.37 Augmentor Exhaust System‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.11
Performing Ignition System Checks‥‥‥‥‥‥‥‥ 5.38 Exhaust System Repairs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.11
Ignition Switch Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.38 Engine Cooling Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.11
Maintenance and Inspection of Ignition Leads 5.38 Engine Cooling System Maintenance‥‥‥‥‥‥‥‥‥ 6.15
Replacement of Ignition Harness‥‥‥‥‥‥‥‥‥‥ 5.40 Maintenance of Engine Cowling‥‥‥‥‥‥‥‥‥‥ 6.15
Checking Ignition Induction Vibrator Systems 5.40 Engine Cylinder Cooling Fin Inspection‥‥‥‥ 6.17
Spark Plug Inspection and Maintenance‥‥‥‥‥‥‥ 5.41 Cylinder Baffle And Deflector Inspection‥‥‥‥ 6.17
Carbon Fouling of Spark Plugs‥‥‥‥‥‥‥‥‥‥‥‥ 5.41 Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.19
Oil Fouling of Spark Plugs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.41 Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6.20
Lead Fouling of Spark Plugs‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.41
Graphite Fouling of Spark Plugs‥‥‥‥‥‥‥‥‥‥‥ 5.42 SUB-MODULE 07
Gap Erosion of Spark Plugs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.42 SUPERCHARGING/TURBOCHARGING
Spark Plug Removal‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5.43 Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.1
Spark Plug Reconditioning Service‥‥‥‥‥‥‥‥‥ 5.44 16.7 ‑ Supercharging/Turbocharging‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.2
Inspection Prior to Installation‥‥‥‥‥‥‥‥‥‥‥‥ 5.44 Principles Of Supercharging‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.2

Module 16 B1 - Piston Engine xi


CONTENTS

Supercharged Induction Systems‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.2 Lubrication System Requirements‥‥‥‥‥‥‥‥‥‥‥‥ 9.2


Construction And Operation Of Supercharging, Dry Sump Oil Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.2
Turbocharging Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.2 Oil Tanks‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.2
Internally Driven Superchargers‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.2 Oil Pump‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.4
Turbochargers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.4 Oil Filters‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.5
Normalizer Turbocharger‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.6 Oil Pressure Regulating Valve‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.6
Ground‑Boosted Turbocharger System‥‥‥‥‥‥ 7.6 Oil Cooler‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.7
A Typical Turbocharger System‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.7 Surge Protection Valves‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.8
Turbocharger Controllers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.10 Airflow Controls‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.8
Variable Absolute Pressure Controller (VAPC)‥‥ 7.12 Dry Sump System Operation‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.9
Sloped Controller‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.12 Wet‑Sump Oil Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.11
Absolute Pressure Controller‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.13 Oil Dilution‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.11
Turbocharger System Troubleshooting‥‥‥‥‥‥‥‥‥‥‥ 7.13 Lubrication System Maintenance Practices‥‥‥‥‥‥‥ 9.12
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.15 Oil Tank‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.12
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7.16 Oil Cooler‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.13
Oil Temperature Bulbs‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.13
SUB-MODULE 08 Pressure And Scavenge Oil Screens‥‥‥‥‥‥‥‥‥‥‥ 9.14
LUBRICANTS AND FUELS Oil Pressure Relief Valves‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.15
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.1 Troubleshooting Oil Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.15
16.8 – Lubricants and Fuels‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.2 Recommendations for Changing Oil‥‥‥‥‥‥‥‥‥‥‥‥ 9.15
Lubricant Properties And Specifications‥‥‥‥‥‥‥‥‥ 8.2 Draining Oil‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.15
Functions of Lubricants‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.2 Oil And Filter Change And Screen Cleaning‥‥‥ 9.15
Reducing Friction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.2 Oil Filter Removal‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.17
Serving As A Cushion‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.2 Oil Filter/Screen Content Inspection‥‥‥‥‥‥‥‥‥ 9.17
Enhancing Sealing Between Parts‥‥‥‥‥‥‥‥‥ 8.2 Assembly Of And Installation Of Oil Filters‥‥‥ 9.17
Transferring Heat For Engine Cooling‥‥‥‥‥‥ 8.2 Oil Analysis‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.17
Serving As A Hydraulic Fluid‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.3 Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.19
Minimizing Corrosion‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.3 Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.20
Requirements and Characteristics Of
Reciprocating Engine Lubricants‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.3 SUB-MODULE 10
Viscosity‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.3 ENGINE INDICATION SYSTEMS
Flash Point And Fire Point‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.4 Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.1
Cloud Point And Pour Point‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.4 16.10 ‑ Engine Indicating Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.2
Specific Gravity‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.4 Engine Instrumentation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.2
Gasoline (AVGAS) Additives‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.5 Typical Instrument Markings‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.2
Anti‑Detonate Injection‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.6 Engine Instruments‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.3
Comparison To Jet Fuel‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.6 Tachometer‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.3
Safety Precautions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.6 Tachometer Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.4
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.9 Manifold Pressure Gauge‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.4
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8.10 Torquemeter‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.6
Exhaust Gas Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.6
SUB-MODULE 09 Cylinder Head Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.8
LUBRICATION SYSTEMS Coolant Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.8
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.1 Oil Pressure Gauge‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.8
16.9 ‑ Lubrication Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.2 Oil Temperature Gauge‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.9
Engine Lubrication Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9.2 Fuel Pressure Gauge‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.9
Combination Splash And Pressure Lubrication‥ 9.2 Fuel Flow Meter‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.10

xii Module 16 B1 - Piston Engine


CONTENTS

Carburetor Air Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.11 Engine Warm‑Up‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.6


Engine Electrical System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.12 Power Plant Shutdown‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.7
Pneumatic System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.13 Testing, Evaluating, Interpretation, And
Hour Meter‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.13 Troubleshooting‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.7
Multifunction Display (MFD)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.13 Oil Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.8
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.15 Low Oil Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.8
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10.16 High Oil Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.9
Oil Pressure Fluctuation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.9
SUB-MODULE 11 Oil Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.9
POWERPLANT INSTALLATION High Oil Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.9
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.1 Cool Oil Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.10
16.11 ‑ Powerplant Installation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.2 Oil Temperature Fluctuations‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.10
Reasons for Removal of Reciprocating Engines‥‥‥‥ 11.2 Inoperative Oil Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.10
Engine Or Component Lifespan Exceeded‥‥‥‥‥ 11.2 Fuel Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.10
Sudden Stoppage‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.2 High Fuel Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.11
Sudden Reduction in Speed‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.2 Low Fuel Pressure‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.11
Metal Particles In The Oil‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.3 Generator/Alternator System‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.11
Engine Installation Considerations‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.3 Output Defects‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.12
Firewalls‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.3 Low, Or No, Output‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.12
Cowlings‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.3 Excess Output‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.12
Acoustic Panels‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.4 Magneto Operation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.12
Engine Mounts‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.4 Low‑RPM Magneto Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.12
Anti‑vibration Mounts‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.4 High‑RPM Magneto Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.12
Hoses And Tubing‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.4 Performing A Magneto Drop Check‥‥‥‥‥‥‥ 12.13
Wiring Looms And Connectors‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.5 Reasons For Smooth, Excessive RPM Drops‥ 12.15
Control Cables And Push‑Pull Rods‥‥‥‥‥‥‥‥‥‥ 11.5 Reasons For Rough Magneto Drops‥‥‥‥‥‥‥‥ 12.15
Drains‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.6 Carburetor Heat/Alternate Air Check‥‥‥‥‥‥‥‥‥ 12.15
Installation Procedures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.7 Pneumatic System Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.16
Hoisting And Mounting The Engine‥‥‥‥‥‥‥‥‥‥ 11.7 Cylinder Head Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.16
Connections And Adjustments‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.8 Exhaust Gas Temperature‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.17
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.11 Propeller Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.17
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11.12 Propeller Cycle Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.18
Constant RPM Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.18
SUB-MODULE 12 Under‑Speed And Over‑Speed Check‥‥‥‥‥‥ 12.19
ENGINE MONITORING AND GROUND Static RPM Power Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.19
OPERATION Failure To Reach Static RPM‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.21
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.1 Engine Response To Power Changes‥‥‥‥‥‥‥ 12.22
16.12 ‑ Engine Monitoring And Ground Operation‥‥ 12.2 Idle Speed And Mixture‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.22
Procedures for Starting and Ground Run‑Up‥‥‥‥‥ 12.2 Magneto Switch Ground Out Check‥‥‥‥‥‥‥‥‥‥ 12.23
Prestart Inspection‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.2 Engine Troubleshooting‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.23
Priming And Starting‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.2 Inspection Of Engines and Components‥‥‥‥‥‥‥‥‥ 12.26
Engine Priming‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.2 Differential Pressure Tester‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.27
Boost Pump Pressure Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.3 Direct Pressure Test‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.28
Normal Engine Start‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.4 Cold Cylinder Check‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.29
Flooded Engine Start‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.4 Borescope‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.30
Vapor Lock‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.5 Inspecting Cylinders With The Borescope‥‥‥ 12.31
After‑start Operation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.6 Oil Filter Examination‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.32

Module 16 B1 - Piston Engine xiii


CONTENTS

Cylinder Replacement‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.33


Cylinder Removal‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.33
Cylinder Installation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.34
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.37
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12.38

SUB-MODULE 13
ENGINE STORAGE AND PRESERVATION
Knowledge Requirements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.1
16.13 ‑ Engine Storage And Preservation‥‥‥‥‥‥‥‥‥‥‥ 13.2
Engine Storage And Preservation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.2
Flyable Storage‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.2
Temporary Storage‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.3
Indefinite Storage‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.4
Storage Containers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.5
Power Plant Pre-Oiling‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.5
Pre-Oiling Steps‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.5
Preservation Of Fuel Metering Devices‥‥‥‥‥‥‥‥‥‥‥‥ 13.6
Float Carburetors‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.6
Pressure Carburetors and RSA Fuel Injectors‥‥‥ 13.6
Questions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.9
Answers‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13.10

Acronym Index‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ A.1


Index‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ I.1

xiv Module 16 B1 - Piston Engine


The mounting arrangement supports the entire power the intake pipe or its arrangement eliminates the need
plant including the propeller, and therefore is designed for a slip joint. In any case, the engine induction system
to provide ample strength for rapid maneuvers or other must be arranged so that it does not leak air and change
loadings. Because of the elongation and contraction of the desired fuel/air ratio.
the cylinders, the intake pipes which carry the mixture
from the diffuser chamber through the intake valve CRANKSHAFTS
ports are arranged to provide a slip joint which must The crankshaft is carried in a position parallel to the
be leak proof. The atmospheric pressure on the outside longitudinal axis of the crankcase and is generally
of the induction system of an unsupercharged engine is supported by a main bearing between each throw. The
higher than on the inside, especially when the engine is crankshaft main bearings must be supported rigidly in
operating at idling speed. If the engine is equipped with the crankcase. This usually is accomplished by means
a supercharger and operated at full throttle, the pressure of transverse webs in the crankcase, one for each main
is considerably higher on the inside than on the outside bearing. The webs form an integral part of the structure
of the induction system. If the slip joint connection has and, in addition to supporting the main bearings, add
a slight leakage, the engine may idle fast due to a slight to the strength of the entire case. The crankcase is
leaning of the mixture. If the leak is quite large, it may divided into two sections along a longitudinal plane.
not idle at all. At open throttle, a small leak probably This division may be in the plane of the crankshaft
would not be noticeable in the operation of the engine, so that one‑half of the main bearing (and sometimes
but the slight leaning of the fuel/air mixture might cause camshaft bearings) are carried in one section of the
detonation or damage to the valves and valve seats. On case and the other half in the opposite section. Refer
some radial engines, the intake pipe has considerable to Figure 3‑3. Another method is to divide the case in
length and on some inline engines, the intake pipe is at such a manner that the main bearings are secured to
right angles to the cylinders. In these cases, flexibility of only one section of the case on which the cylinders are

Camshaft Bearings
Main Bearing Surface
Generator Prop Shaft Connecting Rod

Crankcase (Left Half) Parting Surface


Crankcase (Right Half)
Magneto
Transverse Webs

Cylinder
Crankshaft

Tachometer
Generator

Camshaft
Starter
Accessory Case Assembly

Oil Sump Induction System


Oil Pump

Figure 3-3. Exploded view of an aircraft engine.

3.4 Module 16 B1 - Piston Engine


Cylinders
1 4
1 4
Crank Arm

180 °
180 °
Journal
2 3
2 3

3 4
3 4

ENGINE CONSTRUCTION
12
°
120


5 1

2 6
1 2 5 6 12 0 °

Figure 3-4. Four and six cylinder solid crankshafts.

attached, thereby providing means of removing a section


of the crankcase for inspection without disturbing the Crankpin
bearing adjustment.

The crankshaft is the backbone of the reciprocating


engine. It is subjected to most of the forces developed
Journal
by the engine. Its main purpose is to transform the
reciprocating motion of the piston and connecting
rod into rotary motion for rotation of the propeller or
helicopter transmission. The crankshaft, as the name Crank Cheek
implies, is a shaft composed of one or more cranks
located at specified points along its length. The cranks,
or throws, are formed by forging offsets into a shaft
before it is machined. Since crankshafts must be very
strong, they generally are forged from a very strong
alloy, such as chromium‑nickel‑molybdenum steel.

A crankshaft may be of single‑piece or multi‑piece


construction. Figure 3‑4 shows two representative Counterweight Damping Weights

types of solid crankshafts used in aircraft engines. Figure 3-5. Single-throw radial engine crankshaft.
The four‑throw construction may be used either on
four‑cylinder horizontal opposed or four‑cylinder inline Counterweights and dampers, although not a true part
engines. The six‑throw shaft is used on six‑cylinder inline of a crankshaft, are usually attached to it to reduce
engines, 12‑cylinder V‑type engines, and six‑cylinder engine vibration.
opposed engines. Crankshafts of radial engines may
be the single‑throw, two‑throw, or four‑throw type, The journal is supported by, and rotates in, a main
depending on whether the engine is the single‑row, bearing. It ser ves as the center of rotation of the
twin‑row, or four‑row type. A single‑throw radial crankshaft. It is surface‑hardened to reduce wear. The
engine crankshaft is shown in Figure 3‑5. No matter crankpin is the section to which the connecting rod is
how many throws it may have, each crankshaft has attached. It is off‑center from the main journals and is
three main parts—a journal, crankpin, and crank cheek. often called the throw. Two crank cheeks and a crankpin

Module 16 B1 - Piston Engine 3.5


make a throw. When a force is applied to the crankpin Cam gear is twice the size Camshaft Lobe
of the crankshaft gear and
in any direction other than parallel or perpendicular to operates at 1/2 speed.
and through the center line of the crankshaft, it causes
the crankshaft to rotate. The outer surface is hardened by
nitriding to increase its resistance to wear and to provide
the required bearing surface. The crankpin is usually Camshaft
hollow. This reduces the total weight of the crankshaft
and provides a passage for the transfer of lubricating oil.

On early engines, the hollow crankpin also served as


a chamber for collecting sludge, carbon deposits, and
Crankshaft
other foreign material. Centrifugal force threw these
substances to the outside of the chamber and kept them
Crankshaft Gear
from reaching the connecting‑rod bearing surface. Due
to the use of ashless dispersant oils, newer engines no
longer use sludge chambers. On some engines, a passage Timing Gear

is drilled in the crank cheek to allow oil from the hollow Figure 3-6. Cam drive mechanism opposed-type aircraft engine.
crankshaft to be sprayed on the cylinder walls. The
crank cheek connects the crankpin to the main journal. SUMPS
In some designs, the cheek extends beyond the journal Reciprocating aircraft engines have sumps that are used
and carries a counterweight to balance the crankshaft. as part of the oil system. The sumps are located at the low
The crank cheek must be of sturdy construction to point of the engine and are used to collect oil circulating
obtain the required rigidity between the crankpin and through the engine after the oil has completed its tasks.
the journal. Depending on where the lubricating oil for the engine is
stored will determine whether the engine is a wet sump
In all cases, the type of crankshaft and the number or a dry sump.
of crankpins must correspond with the cylinder
arrangement of the engine. The position of the cranks on Wet sump engines use the sump as the storage tank
the crankshaft in relation to the other cranks of the same for the oil. Oil departs the oil sump, passes through
shaft is expressed in degrees. the engine, and returns to the oil sump beneath the
engine. Because the oil remains in the engine, with the
The simplest crankshaft is the single‑throw or 360° type. exception that it may travel to a remote oil cooler, the
This type is used in a single‑row radial engine. It can be engine is classified as a wet sump design. (Figure 3‑10)
constructed in one or two pieces. Two main bearings
(one on each end) are provided when this type of By contrast, dry sump engines store their oil in a remote
crankshaft is used. The double‑throw or 180° crankshaft tank. Generally speaking, dry sump engines have oil
is used on double‑row radial engines. In the radial‑type quantities that are comparatively large. For example, an
engine, one throw is provided for each row of cylinders. airplane equipped with a 9‑cylinder radial engine may
have an oil capacity of 8 gallons. A 14‑cylinder radial
CAMSHAFT engine typically has an oil tank with a 30 gallon capacity.
The valve mechanism of an opposed engine is operated In such instances, it would not be practical to keep those
by a camshaft. The camshaft is driven by a gear that quantities of oil within the engine. Consequently, the oil
meshes with another gear attached to the crankshaft sump is used to collect the oil that has passed through
as shown in Figure 3‑6. The camshaft always rotates at the engine and return the oil to the oil tank. A scavenge
one‑half the crankshaft speed. As the camshaft revolves, oil pump is used to transfer the oil from the dry sump to
the lobes cause the tappet assembly to rise in the tappet the oil tank. Normally, the oil returning to the oil tank
guide, transmitting the force through the push rod and from the sump passes through an oil cooler. An example
rocker arm to open the valve as illustrated in Figure 3‑7, of a dry sump is presented in Figure 3‑11.
Figure 3‑8 and Figure 3‑9.

3.6 Module 16 B1 - Piston Engine


Push Rod Tappet
Camshaft

ENGINE CONSTRUCTION
Valve Spring

Figure 3-7. Valve-operating mechanism (opposed engine).

Figure 3-8. Cam load on lifter body.

Oil Hole

Oil Pressure Chamber Oil Supply Chamber

Cam

Tappet Body
Ball Check Valve
Push Rod Push Rod Socket

Push Rod Shroud Tube Cylinder


Plunger Spring Plunger

Figure 3-9. Illustration of zero-lash hydraulic lifter.

Module 16 B1 - Piston Engine 3.7


or those requiring the least play or backlash in the gear
train. Bevel gears permit angular location of short stub
shafts leading to the various accessory mounting pads.
On opposed, reciprocating engines, the accessory gear
trains are usually simple arrangements. Many of these
engines use simple gear trains to drive the engine's
accessories at the proper speeds.

CYLINDER AND PISTON


Figure 3-10. Wet sump engine. ASSEMBLIES

CYLINDERS
The portion of the engine in which the power is
developed is called the cylinder. The cylinder provides a
combustion chamber where the burning and expansion
of gases take place, and it houses the piston and the
connecting rod. There are four major factors that need
to be considered in the design and construction of the
cylinder assembly. It must:
1. Be strong enough to withstand the internal
pressures developed during engine operation.
2. Be constructed of a lightweight metal to keep
down engine weight.
Figure 3-11. Dry sump on a radial engine located 3. Have good heat‑conducting properties for
between the two lowest cylinders. efficient cooling.
4. Be comparatively easy and inexpensive to
ACCESSORY SECTION manufacture, inspect, and maintain.
The accessory (rear) section usually is of cast construction
and the material may be either aluminum alloy, which is The cylinder head of an air‑cooled engine is generally
used most widely, or magnesium, which has been used made of aluminum alloy because aluminum alloy is
to some extent. On some engines, it is cast in one piece a good conductor of heat and its light weight reduces
and provided with means for mounting the accessories, the overall engine weight. Cylinder heads are forged or
such as magnetos, carburetors, fuel, oil, vacuum pumps, die‑cast for greater strength. The inner shape of a cylinder
starter, generator, tachometer drive, etc., in the various head is generally semispherical. The semispherical shape
locations required to facilitate accessibility. Other is generally stronger than other designs and aids in a
adaptations consist of an aluminum alloy casting and more rapid and thorough scavenging of the exhaust
a separate cast magnesium cover plate on which the gases. The cylinder used in the air‑cooled engine is the
accessory mounts are arranged. Accessory drive shafts overhead valve type. As illustrated in Figure 3‑15, each
are mounted in suitable drive arrangements that are cylinder is an assembly of two major parts: cylinder
carried out to the accessory mounting pads. In this head and cylinder barrel. At assembly, the cylinder
manner, the various gear ratios can be arranged to give head is expanded by heating and then screwed down on
the proper drive speed to magnetos, pumps, and other the cylinder barrel, which has been chilled. When the
accessories to obtain correct timing or functioning. head cools and contracts and the barrel warms up and
expands, a gas‑tight joint results. The majority of the
ACCESSORY GEAR TRAINS cylinders used are constructed in this manner using an
Gear trains, containing both spur‑ and bevel‑type gears, aluminum head and a steel barrel. Review Figure 3‑12
are used in the different types of engines for driving for an illustration of a cylinder head.
engine components and accessories. Spur‑type gears are
generally used to drive the heavier loaded accessories

3.8 Module 16 B1 - Piston Engine

You might also like