LINEAR COMBINATIONS
Linear Algebra and Numerical Methods    MA 5356       1 / 17
Linear Combination
Let V be a vector space and S be a non empty subset of V. A vector
v ∈ V is called a linear combination of vectors of S if there exists a finite
number of vectors u1 , u2 , u3 , · · · , un ∈ S and scalars
a1 , a2 , a3 , · · · , an ∈ F such that
                              v = a1 u1 + a2 u2 + a3 u3 + · · · + an un
Note
        In any vector space V, 0 · v = 0 ∀ v ∈ V.
        i.e., Zero vector is a linear combination of any non empty subset of
        V.
        Consider (2, 1), which is the linear combination of (1, 0)&(0, 1).
        i.e., (2, 1) = 2(1, 0) + 1(0, 1)
Linear Algebra and Numerical Methods           MA 5356                       2 / 17
Example 1
Let V = R2 ; S = {(1, 2), (2, 1)}. Then, check v = (2, 2) ∈ V a linear
combination of S or not?
Solution:
Let a, b ∈ R. Then
                                       (2, 2) = a(1, 2) + b(2, 1)
                                              = (a, 2a) + (2b, b)
                                              = (a + 2b, 2a + b)
                                       a + 2b = 2                        (1)
                                       2a + b = 2                        (2)
                                                2     2
Solve (1) and (2), we get                  a=     , b= .
                                                3     3
∴ (2, 2) = 23 (1, 2) + 32 (2, 1).
Hence linear combination exist.
Linear Algebra and Numerical Methods             MA 5356                  3 / 17
Example 2
Check whether the vector v = (2, −5, 3) is a linear combination of the
vectors e1 = (1, −3, 2), e2 = (2, −4, −1) and e3 = (1, −5, 7) or not?
Solution: Let a, b, c ∈ R. Then
                 (2, −5, 3) = ae1 + be2 + ce3
                                       = a(1, −3, 2) + b(2, −4, −1) + c(1, −5, 7)
                                       = (a, −3a, 2a) + (2b, −4b, −b) + (c, −5c, 7c)
                                       = (a + 2b + c, −3a − 4b − 5c, 2a − b + 7c)
               a + 2b + c = 2                                                          (3)
        −3a − 4b − 5c = −5                                                             (4)
             2a − b + 7c = 3                                                           (5)
The above equations are written as follows
                                          
                  1    2     1       a       2
               −3 −4 −5   b  =  −5 
                  2 −1 7             c       3
Linear Algebra and Numerical Methods              MA 5356                               4 / 17
Solve above system of equations by Cramer’s rule.
Let
                                             1   2     1
                                       ∆ =   −3 −4 −5
                                             2 −1 7
                                         = 1(−28 − 5) − 2(−21 + 10) + 1(3 + 8)
                                          = −33 + 22 + 11
                                          = 0
      ⇒ ∆ is inconsistent.
∴ There is no solution.
Hence linear combination does not exist.
Linear Algebra and Numerical Methods            MA 5356                          5 / 17
Example 3
For which values of k will the vector v = (1, −2, k) in R3 be a linear
combination of u = (3, 0, −2) and w = (2, −1, 5).
Solution: Let a, b ∈ R. Then
                         (1, −2, k) = au + bw
                                         = a(3, 0, −2) + b(2, −1, 5)
                                         = (3a, 0, −2a) + (2b, −b, 5b)
                                         = (3a + 2b, −b, −2a + 5b)
                            3a + 2b = 1                                  (5)
                                       −b = −2                           (6)
                         −2a + 5b = k                                    (7)
From (5) and (6), we get a = −1, b = 2.
∴ a, b exists.
From (7), k = 12.
Linear Algebra and Numerical Methods           MA 5356                    6 / 17
Example 4
                                      
                           3 1
Write down the matrix E =         as a linear combination of the
                           1 −1
                                                
               1 1          0 0                0 2
matrices A =          ,B=         and C =
               1 0          1 1                0 −1
Solution: Let a, b, c ∈ R.
Then
                   E = aA + bB + cC
                                                  
              3 1          1 1          0 0         0 2
                     = a          +b           +c
              1 −1         1 0          1 1         0 −1
                                                 
                          a a        0 0        0 2c
                     =           +          +
                          a 0        b b        0 −c
                                      
                           a    a + 2c
                     =
                          a+b b−c
Linear Algebra and Numerical Methods       MA 5356             7 / 17
                                          a = 3
                                       a + 2c = 1
                                       a+b = 1
                                       b − c = −1
Solve above equations, we get
                                        a = 3
                                        b = −2
                                         c = −1
∴ a, b, c exists.
Hence the linear combination of E is 3A − 2B − C
Linear Algebra and Numerical Methods      MA 5356   8 / 17
Span
Let S be a nonempty subset of a vector space V. The span of S, denoted
span(S), is the set consisting of all linear combinations of the vectors in
S.
Note
For convenience, we define span(φ) = {0}.
Generate
A subset S of a vector space V generates or spans V, if span(S)=V.
We also say that the vectors of S generate or span V.
Linear Algebra and Numerical Methods   MA 5356                          9 / 17
Example 1
Determine whether the vector v = (x, 1) belong to span(S), where
S = {(1, 1), (1, 0)}.
Solution:
Let a, b ∈ F. Then
                                       a(1, 1) + b(1, 0) = (x, 1)
                                         (a, a) + (b, 0) = (x, 1)
                                             (a + b, a) = (x, 1)
                                             ⇒ a+b = x
                                                      a = 1
Solving the above equations, we get                        a = 1,   b=x−1
∴ v = 1(1, 1) + (x − 1)(1, 0)
Hence v is spanned by S.
Linear Algebra and Numerical Methods             MA 5356                    10 / 17
Example 2
Determine whether the vector v = 2x3 − x2 + x + 3 belong to span(S),
where S = {x3 + x2 + x + 1, x2 + x + 1, x + 1}.
Solution: Let a, b, c ∈ F. Then
      a(x3 + x2 + x + 1) + b(x2 + x + 1) + c(x + 1) = v
 (ax3 + ax2 + ax + a) + (bx2 + bx + b) + (cx + c) = 2x3 − x2 + x + 3
         ax3 + (a + b)x2 + (a + b + c)x + (a + b + c) = 2x3 − x2 + x + 3
Comparing the coefficients of x3 , x2 , x, constant, we get
                                           a = 2                     (8)
                                         a + b = −1                  (9)
                                       a+b+c = 1                    (10)
                                       a+b+c = 3                    (11)
Solving above equations, we get a = 2, b = −3, c = 2
Substitute in (11), we get a + b + c = 2 − 3 + 2 = 1 6= 3
∴ v is not a linear combination of S. Hence S is doesn’t span v.
Linear Algebra and Numerical Methods      MA 5356                     11 / 17
Example 3
Show that the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate F 3 .
Solution: Let a, b, c ∈ F.
Then
                      a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = (x, y, z)
                              (a, a, 0) + (b, 0, b) + (0, c, c) = (x, y, z)
                                       (a + b, a + c, b + c) = (x, y, z)
                                                  ⇒ a+b = x
                                                         a+c = y
                                                         b+c = z
Linear Algebra and Numerical Methods           MA 5356                        12 / 17
Solving the above equations, we get
                                             1
                                       a =     (x + y − z)
                                             2
                                             1
                                       b =     (x − y + z)
                                             2
                                             1
                                       c =     (−x + y + z)
                                             2
                 1                  1                 1
(x, y, z) =        (x+y−z)(1, 1, 0)+ (x−y+z)(1, 0, 1)+ (−x+y+z)(0, 1, 1)
                 2                  2                 2
Hence every vector in F 3 is spanned by S.
i.e., F 3 = Span(S)
∴ The vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate F 3
Linear Algebra and Numerical Methods         MA 5356                 13 / 17
Example 4                                                                     
                                           1 0          0 1     0 0     0 0
Show that the matrices                               ,       ,       ,
                                           0 0          0 0     1 0     0 1
generate M2×2 (F)
Solution: Let a, b, c, d ∈ F.Then
                                                                                               1 0              0 1          0 0                                     0 0               x y
   a         +b               +c         +d                                          =
     0 0              0 0          1 0                                     0 1               z w                                                                                          
         a 0             0 b        0 0                                    0 0               x y
                  +             +         +                                          =
         0 0             0 0        c 0                                    0 d               z w                                                                                                
                                                                           a b               x y
                                                                                     =
                                                                           c d               z w                                                                                          
        1 0                    0 1                  0 0                    0 0               x y
x                    +y                    +y                     +w                 =
        0 0                    0 0                  1 0                    0 1               z w                                              
                       1 0        0 1     0 0     0 0
∴ M2×2 (F) = span             ,        ,       ,
                       0 0        0 0     1 0     0 1
∴ Given vectors generates M2×2 (F).
Linear Algebra and Numerical Methods                MA 5356                                    14 / 17
Theorem
The span of any subset S of a vector space V is a subspace of V.
Moreover, any subspace of V that contains S must also contain the span
of S.
Proof:
Let S = φ, then span(φ) = {0}.
∴ span(φ) is a subspace of V (∵ {0} is a subspace that is contained in
any subspace of V)
Let S 6= φ, then S contains a vector z.
Now, 0z = 0 ∈ span(S).
Let x, y ∈ span(S).
Then there exist vectors u1 , u2 , · · · , um , v1 , v2 , · · · , vn ∈ S and
scalars a1 , a2 , · · · , am , b1 , b2 , · · · , bn such that
                                   x = a1 u1 + a2 u2 + · · · + am um
                                       y = b1 v1 + b2 v2 + · · · + bn vn
.
Linear Algebra and Numerical Methods                MA 5356                    15 / 17
Then
                    x + y = a1 u1 + a2 u2 + · · · + am um + b1 v1 + b2 v2 + · · · + bn v
                                ∈ span(S)
 For any scalar c,
                         cx = c(a1 u1 + a2 u2 + · · · + am um )
                                = (ca1 )u1 + (ca2 )u2 + · · · + (cam )um
                                ∈ span(S)
∴ x + y and cx are in span(S).
Thus span(S) is a subspace of V.
Linear Algebra and Numerical Methods           MA 5356                            16 / 17
Let W denote any subspace of V that contains S. i.e., S ⊆ W
To prove: span(S) ⊆ W
Let w ∈ span(S).
Then w = c1 w1 + c2 w2 + · · · + ck wk for some vectors w1 , w2 , · · · , wk ∈ S
and some scalars c1 , c2 , · · · , ck .
Since S ⊆ W, we have w1 , w2 , · · · , wk ∈ W.
We know that "If W is a subspace of a vector space V and
w1 , w2 , · · · , wn ∈ W, then a1 w1 + a2 w2 + · · · + an wn ∈ W for any scalars
a1 , a2 , · · · , an ".
By the above fact, we have
                                   c1 w1 + c2 w2 + · · · + ck wk ∈ W
                                              ⇒w∈W
                                           ∴ span(S) ⊆ W
Hence proved.
Linear Algebra and Numerical Methods            MA 5356                      17 / 17