Practice 1
Practice 1
Mathematics 1
                                                                      Practice Booklet
©Trinity College
  Welcome to Mathematics 1. This book contains a collection of exercises that will be used throughout the year to reinforce your understanding of the topics and
procedures we will be studying. The exercises are divided into sections:
  • Pre-tutorial Questions
    These are exercises that you should be doing between your lecture and the tutorial for a topic in order to be properly prepared for that week. This section contains
    a mix of basic concept questions and ’warm-up’ questions. If you are struggling with the pre-tutorial questions you should contact your tutor for help before your
    tutorial for that week.
  • Examinable Section
    This contains the majority of the exercises for the booklet and covers questions up to and including the standard of what we would consider examinable for this
    subject. You should aim to complete the questions in this section each week. If you are comfortable with all of the examinable section questions for a topic you
    consider yourself to be progressing appropriately.
  • Non-examinable Section
    This section contains questions that we would generally consider beyond the scope of what we would include on an exam. They may be more difficult than an
    examinable question, require attention to the subtleties of the topic, or simply take more time than we would consider reasonable for an exam. They are included to
    highlight particular issues with the topic or to provide more ’interesting’ or topical examples than the previous section. You should not focus your attention on this
    section of exercises until after you have completed the Examinable section of questions.
If you ever have questions about anything in this booklet, contact your tutor. We hope you enjoy your time in Maths 1.
                                                                                    1
                                                                                       4. Is the set {∅} empty? Explain.
                                                                                       5. If A ⊆ B and B ⊆ A, what conclusion can you draw?
                            Practice Book                                              6. For the sets A = {1, 2} and B = {2, 3}, select which of the following
                                                                                          statements are correct:
                          Semester 1 Part 1                                                 a) 2 ∈ A                              b) 2 ⊆ A
                                                                                            c) 2 = A ∩ B                          d) {2} ∈ A
                                 Chapter 1                                                  e) {2} ⊆ A                            f) {2} = A ∩ B
                                                                                       7. Determine the value(s) of x ∈ Z, if any, for which {2x, (2x)2 } contains two
                                                                                          elements.
Pre-tutorial Questions
                                                                                       8. Decide whether the following statements are true. For any that are false,
There are no pre-tutorial questions for this chapter.                                     provide an example where the statement in question does not hold.
                                                                                            a) A ∩ (B ∪ C) = (A ∩ B) ∪ C
Examinable Section                                                                          b) A ∩ (B ∩ C) = (A ∩ B) ∩ C
                                                                                            c) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
 1. How would you read the following in English? Explain the meaning for
    each.                                                                              9. The set A = {1, 2} has four subsets. List them.
                                                                                  2
11. State the domain, codomain and range for each of the following functions:                                                       y
      a) f : R → R,     f (x) = 2x − 1
      b) f : [0, ∞) → R,    f (x) = 2x − 1                                                                                 2
              +
      c) f : R → R,      f (x) = 2x − 1
      d) f : (−∞, 0] → R,        f (x) = x2 − 1
      e) f : R− → R,     f (x) = 2x − 1
      f) f : [−3, 2) → R,    f (x) = 2x − 1
                                                                                                                                                         x
      g) f : [−3, 2) → R,    f (x) = x2 − 1                                                                  −2                              2
                                                                                                                                           √
      h) f : R \ {0} → R,    f (x) = 2x − 1                                                                                             y = 4 − x2
                                                                                3
      c) h : [−3, 3] → R given by
         h(x) = x3 − 12x + 16.
      d) p : [−3, 5] → R given by
                                                                                                                 Chapter 2
         p(x) = x3 − 12x + 16.
                                                                                    Pre-tutorial Questions
Non-examinable Section
                                                                                    Tutorial 2
Investigation Questions
                                                                                    17. Solve the following quadratic equations for x:
16. The power set of a set S is defined as the set of all subsets of S. It is
    denoted P(S).                                                                        (a) x2 + 4x + 3 = 0
                                                                                         (b) x2 + 13x + 42 = 0
      a) Write the power set of B = {1, 2, 3}. How many elements does it
         have?                                                                      18. Factorise the following expressions:
      b) If the set C has n elements, how many elements does P(C) have?
                                                                                         (a) x2 + 4x + 3
         Justify your answer.
                                                                                         (b) x2 + 13x + 42
                                                                                         (c) x3 + 4x2 + 3x
                                                                                         (d) x3 − 2x2 − x + 2
                                                                                    22. Factorise:
                                                                                         (a) t3 + 1
                                                                                4
     (b) x2 − 4y 2                                                          (f) x2 + x + 1 = 0
                                                                            (g) x2 + 2x + 1 = 0
23. Find the expanded form of each of the following expressions:
                                                                            (h) x2 − 2x − 2 = 0
                   6
     (a) (a + x)
     (b) (a − x)6                                                      28. By writing each of the following equations in the form ax2 + bx + c = 0,
                                                                           find the discriminant b2 − 4ac. Thus determine the nature of the roots.
 Tutorial 3
                                                                            (a) 2x2 − 7x = −4
24. Solve the following inequalities for x:                                 (b) 3x − x2 = 4
                                                                                     25
     (a) 1 + x < 7x + 5                                                     (c) 3x +    = 10
                                                                                     3x
     (b) 4 ≤ 3x − 2 < 13
                                                                       29. Factorise these expressions over R:
     (c) x2 + 3x < 4
                                                                            (a) x2 + 2x + 1
25. Solve the following inequalities for x:
                                                                            (b) x2 − 2x − 2
         1+x                                                                (c) x2 − 3
     (a)     >1
         1−x
          x                                                                (d) t2 − 6t + 2
     (b)     <4                                                             (e) 12x2 + 5x − 3
         3+x
                                                                            (f) 3x2 y 4 + 6x3 y 3
26. Solve for x:
                                                                            (g) x2 − 1
     (a) |3x − 6| = 6
     (b) |x − 1| ≤ 3                                                   30. Complete the square for the following quadratics:
     (c) |6x + 1| > 7                                                       (a) x2 − 4x + 7
                                                                            (b) x2 − 6x + 10
Examinable Section                                                          (c) x2 + 4x − 3
                                                                           (d) 2x2 + 8x − 6
27. Solve the following equations for x
                                                                            (e) 3x2 + 3x + 1
           2
     (a) 6x − 5x − 6 = 0
     (b) 2x2 + 3x + 1 = 0                                              31. Solve for x:
                                                                                √
     (c) x2 + 9x − 10 = 0                                                   (a) 2x − 2 = x − 1
                                                                                √
     (d) x2 + 9x − 1 = 0                                                    (b) 4x + 1 = 3 − 3x
                                                                                √
     (e) 2x2 − 2x − 2 = 0                                                   (c) x + 1 = 1 − x
                                                                   5
           √
     (d)       3x − 5 = x − 1                                    (h) x4 − 2x2 − 3x − 2
           √            √
     (e)       2x + 1 − x = 1                                    (i) t3 + 3t2 + 3t + 126
           √
     (f)       3x − 2 = −x                                       (j) x4 − 1
                                                                 (k) x3 − 6x2 + 12x − 8
32. Solve the following equations for their unknowns:
         √                                                       (l) x3 y − y 3 x
     (a) 4k + 5 − 12 k = 2
             √                                              36. Use Pascal’s Triangle to find the expanded form of each of the following
     (b) 1 + 2 − 3x = x.
                                                                expressions:
33. Use long division to divide                                  (a) (a + x)3
     (a) x3 + 2x2 + 2x + 2 by x + 1                              (b) (a + x)4
     (b) 2x3 + 9x2 + 10x + 23 by x + 4                           (c) (1 + x)3
     (c) x5 + 3x2 + 2x + 1 by x2 + 1                             (d) (5 − 2m)6
                                                                 (e) ( 14 + 3x2 )5
34. Solve for x:
                                                                             1 4
                                                                 (f) (3t −   5t ) .
           3       2
     (a) x + 3x + 3x + 2 = 0                                     (g) (1 + x )2 4
                                                        6
39. Solve the following inequations for x. Write your answers using the            (c) | − 4x − 5| < |1 − 3x|
    bracket notation for intervals.                                                (d) |4x + 5| ≥ | − 1 + 3x|
            3       2
     (a) 2x − 9x + 13x − 6 ≥ 0                                                           4x + 3
                                                                                   (e)           ≥1
                3   2
     (b) −2x − x + 5x − 2 < 0                                                            −2 − 5x
     (c) 12x3 + 4x2 − 9x − 3 > 0                                                           5       1
                                                                                   (f)          >
                                                                                         −2 + x   1+x
     (d) −2x3 + 12 ≤ −8x + 3x2
     (e) x4 + 3x3 + 3x2 − x − 6 > 0
                                                                              Non-examinable Section
40. Solve the following inequations for x. Write your answers using the
    bracket notation for intervals.                                           43. Show that all of the roots of x3 + 2x2 − 5x − 3 = 0 are irrational.
              2                                                               44. Fully factorise each expression over R:
     (a)          ≥2
           2x + 3
            x+1                                                                    (a) x4 − 7x2 + 6
     (b)          <3
           3x − 5                                                                  (b) x4 − x2 + 9.
           x2 + x − 6                                                              (c) x4 + 64
     (c)              ≤0
             4 + 3x                                                                (d) 9x4 + 2x2 + 1
           3x − 1 x + 1    1 − 2x
     (d)          −      ≥                                                         (e) x8 − 1.
              2       4       3
           2x + 3 3x + 1                                                           (f) x4 + x2 + 4
     (e)          −       ≤ −3
              2       3x                                                           (g) 36x4 + 15x2 + 4
41. Solve for x:                                                                   (h) t4 − t2 + 1
                                                                          7
     (b) x2 + 3x + 2 < 0
     (c) x(x − 4) > 5
                                                                                                                      Chapter 3
     (d) 0 < x2 − 7x + 10 < 1
     (e) −1 < x2 + 9x + 19 < 0
     (f) −3 < x2 + 7x + 9 < 9                                                       Pre-tutorial Questions
47. Solve 3x2 − 2x − 1 ≤ 0 on Z (the set of integers).                              49. Convert the following angles from degrees to radians:
                                                                                           a) 45◦
48. Solve the following inequalities for x and write your answers in interval
    notation:                                                                              b) 60◦
                                                                                           c) 150◦
     (a) |x2 − 2| − x < 0
     (b) |x2 − 6x + 6| < 2                                                          50. Convert the following angles from radians to degrees:
                                                                                                3π
                                                                                           a)    2   rad
                                                                                                2π
                                                                                           b)    3   rad
                                                                                    51. Using your calculator write the following o four decimal places:
                                                                                           a) sin 53◦
                                                                                           b) cot 0.4
                                                                                    52. Without using a calculator, find the exact values of the expressions given
                                                                                        below:
                                                                                          a) cosec π2
                                                                                                      
                                                                                           b) sin π
                                                                                           c) tan π
                                                                                8
Examinable Section                                                                           a) Find the depth when t = 0.
                                                                                             b) Find the depth at 1 am. Write your answer to 2 decimal places.
54. Convert the following angles from degrees to radians:
                                                                                             c) Find the depth at 2 am.
      a) 30◦                                b) 90◦                                           d) Find the maximum depth.
      c) 120◦                               d) 135◦                                          e) Find the minimum depth.
      e) 270◦                               f) 360◦
                                                                                       59. Express each of the following in terms of sin θ, cos θ or tan θ
55. Convert the following angles from radians to degrees:
                                                                                             a) sin(2π − θ)                          b) cos(2π − θ)
         π                                   π                                                      π                                     π    
      a)    radians                       b)    radians                                      c) sin      −θ                          d) cos    −θ
         4                                   3
         5π                                                                                          2π                                    2
      c)     radians                      d) π radians                                       e) sec      −θ                          f) tan(π − θ)
          6
                                                                                                     2π                                   π     
56. Using your calculator find the value (to 4 decimal places) of the following:             g) cos      +θ                          h) sin    +θ
                                                                                                       2                                     2
      a) cos 4.86                           b) sin 5.78                                60. Without using a calculator, find the exact values of the expressions given
                ◦
      c) tan 49                             d) cot 3.64                                    below:
                                                                                                                                         
      e) cos 5.316                                                                                   2π                                    5π
                                                                                             a) sin                                b) cot
                                                                                                      3                                     6
57. A body moves so that its speed, V m · s−1 , after t seconds is given by                                                              
                                                                                                     5π                                    7π
                                                                                           c) tan                                d) sin
                                                t                                                     4                                     6
                              V = 30 − 8 cos        .                                                                                    
                                                2                                                    7π                                    3π
                                                                                             e) cos                                f) sec
                                                                                                      6                                     4
      a) Calculate the body’s speed after four seconds. Present your answer                                                              
         in a sentence and to two decimal places.                                                    5π                                    4π
                                                                                             g) sec                                h) cot
                                                                                                      4                                     3
      b) Calculate the body’s initial speed. (That is, its speed when t = 0.)
      c) Calculate the body’s greatest speed. (Do not use calculus to answer           61. For each of the following angles θ, find exact values of sin θ, cos θ and tan θ
         this question.)                                                                   without the use of a calculator.
                                                                                                 3π                                    5π
58. The depth of water in a particular part of a bay varies with time according              a)                                     b)
                                                                                                  4                                     6
    to the following formula:                                                                    7π                                    5π
                                                                                             c)                                     d)
                                               π                                                6                                     4
                              D = 20 + 3 sin        t                                            4π                                    5π
                                                 12                                          e)                                     f)
                                                                                                  3                                     3
    where D is the depth measured in metres, and t is the number of hours                        7π                                    11π
    after midnight, with 0 ≤ t ≤ 24.                                                         g)                                     h)
                                                                                                  4                                      6
                                                                                   9
62. Without using a calculator, find the exact values of the expressions given         66. Solve the following for x ∈ [0, 2π]:
    below:
                                                                                                              1
                                                                                               a) sin x = −
                                                       
               7π                                    11π
      a) cot                                b) cos                                                            2
                4                                      6
                                                                                           b) sin(3x) = 0
               5π                                       5π
      c) sin                                d) cosec                                              √          π
                3                                        3                                     c) 3 tan 3x −     = −1
                                                                                                            6
                                                     13π
      e) sin (2π)                           f) sin
                                                      6                                                  π            h π πi
                                                                                       67. Solve tan 2θ +    = 1 for θ ∈ − , .
                                                                                                          4               2 2
                                                  
               9π                                    7π
      g) tan                                h) cot
                4                                     3
                                                                                       68. Given that
                                                                                                                              π  √5 − 1
                                                  
               13π                                   5π
      i) cos                                j) cos
                 6                                    2                                                                  sin      =
                                                                                                                              10     4
                           1
63.     a) Solve cos x =       for 0 ≤ x ≤ 2π.                                               find the exact value of cos π5 .
                                                                                                                           
                           2
                           1
        b) Solve cos x =   2   for 0 ≤ x ≤ 3π.
                           1                                                           69. Prove the following identities:
        c) Solve cos x =   2   for −2π ≤ x ≤ 3π.
                                                                                                    sin(3A) cos(3A)
64. Solve                                                                                      a)           −       =2
                                     π    1       h π πi                                            sin A   cos A
                           sin 7x −        = for x ∈ − ,
                                      6     2         2 2                                      b) cos(4x) = 8 cos4 x − 8 cos2 x + 1
      using the following steps:                                                                                         1 + cos t
                                                                                               c) (cot t + cosec t)2 =
        a) Rewrite the equation in terms of a new unknown A = 7x −     π                                                 1 − cos t
                                                                       6.
        b) Solve the new equation for A, writing the values in a set from least                        1         1
                                                                                               d)            +          = 2 sec2 θ
           to greatest.                                                                             1 − sin θ 1 + sin θ
        c) Hence complete the original task.                                                   e) (1 − tan θ)2 + (1 + tan θ)2 = 2 sec2 θ
                                                                                               f) sin(α + β) + sin(α − β) = 2 sin α cos β
65. Solve the following equations for θ ∈ [0, 2π]:
                        1                                                              70.     a) Using the same set of axes, sketch the graphs of y = sin x and y =
        a) sin (2θ) = −
                        2                                                                         cos x between x = 0 and x = 2π.
                     π
        b) tan 3θ +       = −1
                      4                                                                        b) Find the x–coordinates of the points of intersection of the two
                   √                                                                              graphs.
        c) sin θ + 3 cos θ = 0
                                                                                               c) Hence find the values of x between 0 and 2π for which sin x > cos x.
                                                                                  10
Non-examinable Section                                                            77. Solve each of the following inequations:
                                                                                                         π      √
71. Solve each of the following inequalities, for x ∈ [0, 2π]:                          a) 2 cos 2x −        > − 3 for x ∈ [0, 2π]
                                                                                                          3
                  1
      a) cos x − √ ≥ 0
                                                                                                       π
                    2                                                                   b) 2 sin 3t +        ≤ 1 for t, where 0 ≤ t ≤ 2π
                                                                                                         4
                  1                                                                            x π
      b) sin x − √ ≥ 0                                                                  c) tan       −      ≤ 1 for x, where 0 ≤ x ≤ 2π
                   2                                                                              2    4
                        √                                                                                  
72.   a) Solve tan(2x) − 3 ≤ 0 for x ∈ [0, 2π].                                                     πt π
               √                                                                        d) 2 sin       −      + 4 > 3 for t, where 12 < t ≤ 40
                                                                                                    6     3
      b) Solve 2 sin(2x − π) + 1 > 0 for x ∈ [0, 2π].
                                                                                                        
                                                                                                  θ π
73. Solve the following inequalities, for θ ∈ [0, 2π]:                                  e) cos      −       < 1 for θ ∈ [−6π, 2π].
                                                                                                  4    6
                  π 1
      a) sin θ −       − <0
                   6     2                                                                        x                                 
                                                                                                           π     1            8π 16π
         √            π                                                         78. Solve sin        −      >   2   for x ∈ − ,       .
      b) 2 cos θ −        +1≥0                                                                     4       3                    3  3
                       4
                    π 
      c) tan 2 θ +       ≤1                                                                                       1
                     2                                                            79. Solve cos4 θ − sin4 θ <       for θ ∈ [−π, π].
                                                                                                                  2
74. Suppose that A is the angle in −π, − π2 for which cosec A = −3.
                                             
                                                                                                                                                        π π
                                                                                  80. Find, to two decimal places, all real values of θ in the interval − ,
      a) Draw a diagram that shows the angle A.                                                                                                            2 2
                                                                                      for which tan(θ) + tan(2θ) = 2 by substituting x for tan(θ) and then using
      b) Evaluate cos A and cot A.
                                                                                      a calculator or other technology to solve the resulting cubic equation.
                                             
75.                                          5π
      a) Determine the exact value of tan         .                                                                             π
                                             12                                   81. Determine the exact value of 1 − sin          .
                      π                                                                                                      16
                                         3π
      b) Let x be sin     . Express sin       in terms of x.
                       7                  7                                       82. One way to prove the two double angle formulas for 2θ ∈ (0, π2 ) is by
      c) Prove the following identity:                                                using the following two properties of circles: Suppose a line segment AB
                                                                                      forms the diameter of a circle with center O, and let C be a point on the
                            cos6 t + sin6 t = 1 − 3 cos2 t sin2 t.                    edge of the circle. Then:
76. With θ as the variable on the horizontal axis, sketch the graph of y =              • the angle ∠ACB is a right angle.
    tan(θ) from θ =√−2π to θ = 2π. On your graph, highlight the points for
    which tan(θ) < 3.                                                                 Consider the following picture:
                                                                             11
                                                C                                  83. One geometric proof of the addition formulae involves setting up the fol-
                                                                                       lowing rectangle:
                                                α
                                                                                                                     x1           x2
                      θ                 2θ
               A                    O                    B
y2
                                                                                                       y                               π
                                                                                                                 1                     2
Using these facts above, and the definitions of sin and cos. y1
  c) Identify the length corresponding to cos(2θ) and calculate it in terms           Calculate each of the unknown lengths in terms of sin α, cos α, sin β and
     of cos θ and sin(θ).                                                             cos β. Then compare the lengths of the opposite sides of the rectangle.
(Hint: Make your life easier by making the circle in your picture a unit
circle.)
                                                                              12
                                                                                          a) log10 2 + log10 3 − log10 6
                                                                                          b) 4 log10 3 − log10 81
                              Chapter 4
                                                                                                    1                     1
                                                                                          c) log3     − log7 49 + log5 √
                                                                                                    9                      5
Pre-tutorial Questions                                                                    d)
                                                                                             log10 8
                                                                                             log10 4
84. Simplify the following expressions.                                                      5                  √
                                                                                          e)    log10 a − log10 a where a ∈ (0, ∞)
      a) x5 y × x2 y 4                                                                       2
      b) (6x)2 × (2x2 )3                                                                  f) 3log3 (5a−2) where a ∈ ( 25 , ∞)
88. Simplify the following to a single logarithm and evaluate where possible              d) ep ln(m) where m ∈ (0, ∞)
    without using a calculator.                                                           e) eln x+ln 5 where x ∈ (0, ∞)
                                                                               13
92. Solve the following exponential equations for x ∈ R.                               a) 16x < 2
                                                                                                        1
      a) 2x = 0.125                                                                    b) 0.54x−1 <
                                                                                                       16
      b) 4x = 83−x × 2x−1                                                                           1
                                                                                       c) 42x+1 ≥
      c) 9 2x+1
                  = 27x                                                                             32
           3x−1                                                                 98. Sketch the graph of y = log2 x. Remember to label the x–intercept and
      d)        =1                                                                  the asymptote. Label two more points on the curve: (8, 3) and (x, y) for a
           272x
                                                                                    general x greater than 8. Hence write down the solution to log2 x > 3.
93. Solve the following equations for x ∈ R.
    (Hint: Use substitution)                                                    99. Sketch the graph of y = log4 x. Label two further points on the curve:
                                                                                    (16, 2) and (x, y) for a general positive x less than 16. Hence state the
      a) 22x = 2x+1 − 1                                                             solution to log4 x < 2.
      b) 4x − 9(2x ) + 8 = 0
                                                                               100. Solve for x ∈ R.
94. Solve each of the following for x ∈ R.                                             a) log5 (x + 3) ≤ 2
      a) ln(x2 − 3x − 9) = 0                                                           b) 5 + 3 log0.5 x ≥ 11
                                                                          14
                                                                                     1
                                                                       (a) f (x) =
                                                                                     x
                                   Chapter 5                           (b) f (x) =
                                                                                      x
                                                                                   2x − 1
                                                                       (c) f (x) = 2x − 1
Pre-tutorial Questions                                                 (d) f (x) = sin x
                                                                                   √
There are no pre-tutorial questions for this chapter.                  (e) f (x) = x
                                                                                   √
                                                                        (f) f (x) = −x
                                                                                   √
Examinable Section                                                     (g) f (x) = x2 − 1
                                                                       (h) f (x) = log4 (2x + 1)
103. Are the following functions one–one?
                                                                                     1
      (a) f : [0, 2π] −→ R where f (x) = sin x                          (i) f (x) = √
                                                                                      x
      (b) f : [0, π] −→ R where f (x) = sin x                                          x
                                                                        (j) f (x) = √
      (c) f : [0, 2π] −→ R where f (x) = cos x                                        1−x
     (d) f : [0, π] −→ R where f (x) = cos x                                              1
                                                                       (k) f (x) = 2
                                                                                    x − 4x + 3
104. Find the implied domain for the following functions:
                                                                                                                                          f
                    4x + 1                                       107. In each of the following, find the rules for f + g, f −g, f g and     , and state
      (a)   f (x) =                                                                                                                       g
                     x+4                                              the corresponding domains:
                    √
      (b)   f (x) = 2 − x
                                                                                      x               1
                       4                                               (a) f (x) =       and g(x) =
      (c)   f (x) =                                                                  x−4            2x + 3
                    1 − x2
                    √                                                                                       1
     (d)    f (x) = 1 − x2                                             (b) f (x) = log2 (x + 2) and g(x) =
                       4x                                                                                x2 − 1
      (e)   f (x) = √                                                                                    √
                      1 − x2                                           (c) f (x) = x2 − 2x + 1 and g(x) = x
      (f)   f (x) = 1 + x2
                                                                                     √
105. Find the implied domain of the following functions:               (d) f (x) =       9 − x2 and g(x) = 2x
                                                            15
109. If f (x) = x2 and g(x) = 2x + 4 then                                     114. The functions f and g below have been expressed in a particular format.
                                                                         16
                                                                1                       Answers
119.    (a) Let f : (−∞, −2) → R given by f (x) =                     .
                                                             (x + 2)2
              i. Sketch the graphs of y = f (x) and y = f −1 (x).                       Chapter 1
             ii. Completely determine f −1 . That is, find the domain, range and
                 rule for f −1 .                                                         Examinable Section
                                                      1
        (b) Let g : (−2, ∞) → R given by g(x) =             .                            1. Find these terms in the course notes.
                                                  (x + 2)2
              i. Sketch the graphs of y = g(x) and y = g −1 (x).                         2.   a) A ∩ B = {2, 4}
             ii. Completely determine g −1 . That is, find the domain, range and                 A ∪ B = {0, 1, 2, 3, 4, 5, 6, 8}
                 rule for g −1 .                                                                 A \ B = {1, 3, 5}
                                                                                   17
                             D•                  •                           d)                                y
                                            •   C
                                                                                                               16
                        B
                                                                                                                        y = f (x)
                                      •                  A                                                 9
                                                             x
                      −4 −3 −2 −1 0         1    2   3   4
      a) [0, 3)                             b) [0, 1]                             −4                                                3 x
      c) [0, 2]                             d) (−3, 1]                       e) ran(f ) = [0, 16]
      e) [−2, 2]                            f) [−2, 1]
      g) [0, 1]                             h) (−3, ∞)                 13.   a) dom(g) = [−2, 2]
      i) (−∞, 3)                            j) [−2, 3)                       b) −4
      k) (−∞, ∞) = R                        l) (−3, ∞)                       c) −4
      m) (−∞, 2]                            n) (−∞, ∞) = R                   d)                        y
      o) ∅                                  p) (−3, 0) ∪ [3, ∞)                        −2                           2
      q) (1, 3)                             r) (−∞, 0)                                                                        x
      s) (2, 3)                             t) [−2, 0)
                                                                  18
16. P(B) has 8 elements:                                                                         (c) x ∈ (−4, 1)
    ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, B
                                                                                           25.   (a) x ∈ (0, 1)
      If B has n elements, P(B) has 2n elements.
                                                                                                 (b) x ∈ (−∞, −4) ∪ (−3, ∞)
      This is Cantor’s Theorem, and holds for infinite as well as finite sets (once
      you have worked out what the ”number of elements” means for infinite                 26.   (a) x ∈ {4, 0}
      sets).                                                                                     (b) x ∈ [−2, 4]
Chapter 2                                                                                                      4
                                                                                                 (c) x ∈ (−∞, − ) ∪ (1, ∞)
                                                                                                               3
 Pre-tutorial Questions                                                                    Examinable Section
17.    (a) x = −1, −3
                                                                                           27.   (a) x = 32 , − 32
       (b) x = −6, −7
                                                                                                 (b) x = − 12 , −1
18.    (a) (x + 1)(x + 3)                                                                        (c) x = 1, −10
                                                                                                                √
       (b) (x + 6)(x + 7)                                                                        (d) x =   −9± 85
                                                                                                               2
                                                                                                             √
       (c) x(x + 1)(x + 3)                                                                                 1± 5
                                                                                                 (e) x =     2
       (d) (x − 2)(x + 1)(x − 1)
                                                                                                 (f) No real solutions.
                      √
                    1± 5
19.    (a) x = 1,     2
                                                                                                 (g) x = −1
                                                                                                                √
       (b) x = ±1, ±3                                                                            (h) x = 1 ±         3
                                                                                      19
      (b) (x − 3)2 + 1                                                         (f) (x − 2)(x + 1)(x + 3)
                    2
      (c) (x + 2) − 7                                                          (g) (x − 1)(x + 1)(x + 2)
                        2
      (d) 2(x + 2) − 14                                                        (h) (x + 1)(x − 2)(x2 + x + 1)
      (e) 3(x + 12 )2 +         1
                                4                                              (i) (t + 6)(t2 − 3t + 21)
31.   (a) x = 1, 3                                                             (j) (x2 + 1)(x + 1)(x − 1)
      (b) x =   4                                                              (k) (x − 2)3
                9
      (c) x = 0                                                                (l) xy(x + y)(x − y)
      (d) x = 2, 3                                                       36.   (a) a3 + 3a2 x + 3ax2 + x3
      (e) x = 0, 4                                                             (b) a4 + 4a3 x + 6a2 x2 + 4ax3 + x4
       (f) No solutions.                                                       (c) 1 + 3x + 3x2 + x3
                 √           √
32.   (a) k = −2 5 + 4, k = 2 5 + 4                                            (d) 64m6 − 960m5 + 6000m4 − 20000m3 + 37500m2 − 37500m + 15625
                                                                                               405 8    135 6   45 4  15 2        1
      (b) There are no possible (real) values for x.                           (e) 243x10 +     4 x + 8 x + 32 x + 256 x     +   1024
                                                                    20
                   √          √
                   3 1          3                                                7      1
      (c) x ∈ (−    ,− ) ∪ (      , ∞)                             (f) x ∈ (−∞, − ) ∪ (− , 2) ∪ (2, ∞)
                  2    3       2                                                 4      2
                    3                                        Non-examinable Section
      (d) x ∈ [−2, − ] ∪ [2, ∞)
                    2
      (e) x ∈ (−∞, −2) ∪ (1, ∞)                              43. omitted
                                                                                         √      √
                   3                                         44.   (a) (x + 1)(x − 1)(x + 6)(x − 6)
40.   (a)   x ∈ (− , −1]                                                     √             √
                   2                                               (b) (x2 + 7x + 3)(x2 − 7x + 3)
                     5                                             (c) (x2 − 4x + 8)(x2 + 4x + 8)
      (b)   x ∈ (−∞, ) ∪ (2, ∞)
                     3                                             (d) (3x2 + 2x + 1)(3x2 − 2x + 1)
                              4                                                                   √            √
      (c)   x ∈ (−∞, −3] ∪ (− , 2]                                 (e) (x + 1)(x − 1)(x2 + 1)(x2 + 2x + 1)(x2 − 2x + 1)
                              3                                              √              √
                 13                                                 (f) (x2 − 3x + 2)(x2 + 3x + 2)
      (d)   x ∈ [ , ∞)
                 23                                                (g) (6x2 − 3x + 2)(6x2 + 3x + 2)
                            √            √                                    √            √
                     −21 − 489             489 − 21                (h) (t2 − 3t + 1)(t2 + 3t + 1)
      (e)   x ∈ (−∞,             ] ∪ (0,            ]                                √            √
                          12                 12                     (i) (t2 + 1)(t2 − 3t + 1)(t2 + 3t + 1)
                   11
41.   (a) x ∈ {−      , −1}                                  45. (a) −7.65, −2.35, 0.35
                    3                                                          √           √                  7
                   5 1                                           (b) x1 = −5 − 7, x2 = −5 + 7, x3 =           20   or x3 = 0.35
      (b)   x ∈ {− , − }                                                  √             √
                   2 2
                                                             46. (a) −1 − 2 < x < −1 + 2
                   5
      (c)   x ∈ {− , −1}                                           (b) −2 < x < −1
                   3
                   8                                               (c) x > 5 or x < −1
      (d)   x ∈ {2, }                                                               √            √
                   3                                               (d) 5 < x <    7+ 13
                                                                                          or   7− 13
                                                                                                       <x<2
                                                                                    2            2
                   4 2                                                       √                                √
      (e)   x ∈ {− , − }                                           (e)   −9− 5
                                                                                 < x < −5 or −4 < x <     −9+ 5
                   7 5                                                     2                                2
                                                                   22
63.               π 5π                                          a)
       a) x =     3, 3
       b) x =     π 5π 7π                                                    sin 3A cos 3A
                  3, 3 , 3                                           LHS   =         −
                                                                              sin A      cos A
       c) x = − 5π   π π 5π 7π                                               sin 3A cos A − cos 3A sin A
                 3 ,−3, 3, 3 , 3                                           =
                                                                                      sin A cos A
                                                                             sin(3A − A)
                                1
                                                                           =
64.    a) Solve sin A =         2   for A ∈ [− 11π 10π
                                                3 , 3 ].
                                                                              sin A cos A
                                                                                sin 2A
                                                                           =
       b) A ∈ {− 19π  11π  7π π 5π 13π 17π
                  6 ,− 6 ,− 6 , 6, 6 , 6 , 6 }
                                                                             sin A cos A
                                                                             2 sin A cos A
                                                                           =
       c) x ∈ {− 3π     5π     π π π π 3π
                  7 , − 21 , − 7 , 21 , 7 , 3 , 7 }
                                                                              sin A cos A
                                                                           = 2
66.               7π 11π                                        b)
       a) x =        ,
                   6   6
                                                                     LHS   =   cos 4x
                      π 2π      4π 5π
       b) x = 0,       ,   , π,   ,   , 2π                                 =   cos(2 × 2x)
                      3 3        3 3
                                                                           =   2 cos2 (2x) − 1
                      π 2π      4π 5π
       c) x = 0,       ,   , π,   ,   , 2π                                 =   2(cos 2x)2 − 1
                      3 3        3 3
                                                                           =   2(2 cos2 x − 1)2 − 1
                                                                           =   2(4 cos4 x − 4 cos2 x + 1) − 1
         π     π
67. θ = − , 0,                                                             =   8 cos4 x − 8 cos2 x + 2 − 1
         2     2
                                                                           =   8 cos4 x − 8 cos2 x + 1
                          √                                                =   RHS
                           5
68. cos( π5 ) =   1
                  4   +   4 .
69.
                                                           23
      c)                                                                        π 5π
                                                                      b) x =     ,
                                                                                4 4
                       LHS   =    (cot t + cosec t)2
                                                                           π               5π
                                  
                                    cos t       1
                                                    2                c)   4   <x<          4
                             =            +
                                    sin t     sin t
                                              2               Non-examinable Section
                                    cos t + 1                                h π i  7π              
                             =                                  71.   a) x ∈ 0,       ∪         , 2π
                                      sin t                                       4        4
                                  (cos t + 1)2                               
                                                                               π 3π
                                                                                      
                             =                                        b) x ∈     ,
                                     sin2 t                                    4 4
                                  (cos t + 1)2
                             =                                  72.
                                                                             h π i  π 2π   3π 7π   5π 5π   7π                     
                                   1 − cos2 t                         a) x ∈ 0,       ∪       ,        ∪     ,     ∪      ,    ∪    , 2π
                                        (cos t + 1)2                              6        4 3              4 6         4 3       4
                             =                                               h π   3π 9π   11π                   
                                  (1 + cos t)(1 − cos t)              b) x ∈ 0,       ∪          ,       ∪      , 2π
                                        (1 + cos t)2                              8         8 8               8
                             =                                               h π
                                  (1 + cos t)(1 − cos t)        73.   a) θ ∈ 0,       ∪ (π, 2π]
                                  1 + cos t                                       3 
                             =                                                          3π
                                                                                                   
                                  1 − cos t                           b) θ ∈ [0, π] ∪       , 2π
                                                                                         2
                                                                             h πi                                                   
                                                                                           π 5π            3π 9π       5π 13π     7π
                                                                      c) θ ∈ 0,      ∪       ,         ∪     ,     ∪      ,     ∪     , 2π
                                                                                  8        4 8              4 8         4   8      4
      d) omitted
                                                                74.   a)
      e) omitted
      f) omitted
                                                                                                           •
70.   a)
                                                                                1               3
            y
                                                                                       •                          A
                        y = cos x
           1
                                                                                            √
                                                                                           2 2               √
                                                                      b) cos A = −                  cot A = 2 2
                   π             3π           x                                             3
                   2    π         2      2π                                    √
                                                                75.   a) 2 +       3
           −1
                        y = sin x                                     b) 3x − 4x3
                                                                      c) Omitted. Hint: (a)6 = (a2 )3
                                                           24
76.                                                                                               Chapter 4
                                                   y                                               Pre-tutorial Questions
                                                                                                  84.    a) x7 y 5
                                                                                                         b) 288x8
                √                √                     √                    √
      (− 5π
          3
            ,          (− 2π
                    3) ◦   3
                             ,       3) ◦   ( π3   ,       3) ◦    ( 4π
                                                                      3
                                                                        ,       3) ◦                     c) −2a15
            •                    •                     •                    •          • θ                      m4
                                                                                                         d)
           −2π                   −π                    O                    π          2π                      16n4
                                                                                                  85.    a) 27n
                                                                                                         b) 2n+1 3n+4
        (θ = − 3π )        (θ = − π2 )             (θ =      π
                                                               )     (θ =       3π
                                                                                   )                                     1                  1           1
                2                                            2                   2                86. (a) 32       (b)       (c) 4   (d)         (e)
                                                                                                                         3                 125         16
77.                7π       3π 19π       7π                                                       87.    a) m 15
                                                                                                                   31
        a) x ∈ [0,    )∪( ,         ) ∪ ( , 2π]
                   12        4 12         4                                                                      7
                                                                                                               3 15 − 35
                7π 23π        31π 47π       55π 71π                                                      b)    2a b
        b) t ∈ [ ,       ]∪[      ,     ]∪[     ,   ]
                36 36          36 36          36 36
                                                                                                  88.    a) 0
                         3π
        c) x ∈ [0, π] ∪ ( , 2π]                                                                          b) 0
                          2
        d) t ∈ (13, 21) ∪ (25, 33) ∪ (37, 40]                                                            c) −4.5
                           2                                                                                   3
                                                                                                         d)
      e) θ ∈ [−6π, 2π] \ { π} ; alt.form θ ∈ [−6π, 32 π) ∪ ( 23 π, 2π]                                         2
                           3                                                                             e) 2 log10 a
                                                                                                         f) 5a − 2
                               
               2π             14π
78. x ∈ −2π,         ∪ 2π,
                3              3
                                                                                                              1
                                                                                              89.   (a)   2
           5π π          π 5π                                                                                 3
79. θ ∈ − , −         ∪     ,                                                                           (b)   2
            6     6       6 6
                                                                                                  Examinable Section
80. θ = −0.93, 0.49, 1.23
                                                                                                  90.    a) 4 log3 x + log3 (x + 3)
81. Answer omitted.
                                                                                                         b) 3 log8 x − log8 (x − 8)
82. Omitted                                                                                                 1
                                                                                                         c)    ln a − 2 ln b − 5 ln c
83. Omitted                                                                                                 2
                                                                                                  91.
                                                                                             25
      a) 2x                                     99. Graph omitted. Solution: x ∈ (0, 16).
      b) 3y − 1                                100.    a) x ∈ (−3, 22]
      c) 7                                             b) x ∈ (0, 41 ]
             p
      d) m
      e) 5x                                    Non-examinable Section
                                               101. Omitted.
92.   a) x = −3
                                               102. Omitted.
      b) x = 2
      c) x = −2                                Chapter 5
                  1
      d) x = −                                   Examinable Section
                  5
                                               103.   (a) No
93.   a) x = 0
                                                      (b) No
      b) x = 0 or x = 3
                                                      (c) No
94.   a) x = 5 or x = −2                              (d) Yes
      b) x = 0.5                               104.   (a) dom(f ) = R \ {−4}
                                                      (b) dom(f ) = (−∞, 2]
95.   a) x = 1.54 (2 d.p.)
                                                      (c) dom(f ) = R \ {±1}
      b) x = −0.82 (2 d.p.)
                                                      (d) dom(f ) = [−1, 1]
96.   a) x ∈ (−∞, 3]                                  (e) dom(f ) = (−1, 1)
      b) x ∈ [−2, ∞)                                  (f) dom(f ) = R
      c) x ∈ R                                 105.   (a) dom(f ) = ( 21 , ∞)
      d) x ∈ ∅                                        (b) dom(f ) = (−∞, 1)
      e) x ∈ (−∞, 0)                                  (c) dom(f ) = (1, ∞)
                                          26
                                                                                                     √
       (f) dom(f ) = (−∞, 0]                                         • (f − g)(x) = x2 − 2x + 1 −        x
       (g) dom(f ) = (−∞, −1] ∪ [1, ∞)                                 dom(f − g) = [0, ∞)
       (h) dom(f ) = − 12 , ∞                                                                 √
                             
                                                                                    5      3
                                                                     • (f g)(x) = x 2 − 2x 2 + x
       (i) dom(f ) = (0, ∞)                                            dom(f g) = [0, ∞)
       (j) dom(f ) = (−∞, 1)                                                      2
                                                   27
       (b) g(f (x)) = 2x2 + 4                                 115. dom(f ) = R \ { 95 }
                                                                              9x − 3
110.   (a) [−1, ∞)                                                 f −1 (x) =
                                                                              5x − 2
       (b) [1, ∞)                                                  ran(f −1 ) = R \ { 95 }
       (c) [1, ∞)                                             116. (b), (c) and (d)
       (d) [−1, ∞)
                                                              117.    a) Omitted
       (e) f −1 (x) = x2 − 2x
                                                                      b) dom(f ) = [−2, 2] and ran(f ) = [0, 2]
       (f)
                         y                                            c) Since f is not one–one, f does not have an inverse function.
                                                                                              √
                                                              118.   (a) b = 0, f −1 (x) =       x+4
                                                                                      −1
                                                                                                  √
                                            (3, 3)                   (b) b = −2, f         (x) = − x − 2
                         2
             y = f (x)                                        119.   (a) Graph omitted
                                                                         f −1 (x) = − √1x − 2
               (−1, 1)                                                   dom(f −1 ) = (0, ∞)
                                                                         ran(f −1 ) = (−∞, −2)
                                       2             x
                             (1, −1)
                                                                     (b) Graph omitted
                                y = f −1 (x)                             g −1 (x) = √1x − 2
                                                                         dom(g −1 ) = (0, ∞)
111.   (a) dom(f ◦ g) = (−∞, −2)                                         ran(g −1 ) = (−2, ∞)
       (b) f (g(x)) = |x|
                                                                               √
                                                              120. f −1 (x) = − 4 − x
28