2024 II PU Mathematics Exam Prep
2024 II PU Mathematics Exam Prep
PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                                                 PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)
                                                                                                                                                                                   𝑥1 −2        𝑥2 −2
                                            PASSING PACKAGE (2025EXAM)                                                         One-one: Consider 𝑓(𝑥1 ) = 𝑓(𝑥2 ) ⇒                          =               ⇒ (𝑥1 − 2)(𝑥2 − 3) = (𝑥2 − 2)(𝑥1 − 3)                                          3         3      2          2 −1 2 
                                                                                                                                                                                                                                                                         2. 1) If If A =                      and B =          , verify that ( A + B ) = A + B
                                                                                                                                                                                   𝑥1 −3        𝑥3 −3
                                      FOUR &FIVE MARKS MARK QUESTIONS                                                           ⇒ 𝑥1 𝑥2 − 3𝑥1 − 2𝑥2 + 6 = 𝑥1 𝑥2 − 3𝑥2 − 2𝑥1 + 6 ⇒ −3𝑥1 − 2𝑥2 = −3𝑥2 − 2𝑥1                                                                                  4        2       0         1 2 4 
 I.1)Let 𝒇: 𝑹 → 𝑹 be given by (𝒙) = 𝟒𝒙 + 𝟑 . Show that f is invertible and find                                                 ⇒ −𝑥1 = −𝑥2 ⇒ 𝑥1 = 𝑥2                             ⇒ 𝑓is one-one.                                                                             Solution:Let
    the inverse of 𝒇.                                                                                                          Onto: Let 𝑦 ∈ 𝐵. Suppose 𝑓(𝑥) = 𝑦 ⇒
                                                                                                                                                                                      𝑥−2
                                                                                                                                                                                              = 𝑦 ⇒ 𝑥 − 2 = 𝑥𝑦 − 3𝑦 ⇒ 𝑥 − 𝑥𝑦 = 2 − 3𝑦                                               3        3 2   2 −1 2  3 + 2                         3 − 1 2 + 2  5         3 −1 4
                                                                                                                𝑦−3
                                                                                                                                                                                      𝑥−3                                                                                    A+ B =              +        =                                          =                
    Solution: Let 𝑓: ℝ → ℝ                           Givn by 𝑓(𝑥) = 4𝑥 + 3 = y⇒ 4x = y – 3⇒ 𝑥 =
                                                                                                                 4                                              2 − 3𝑦                                                                                                              4       2 0  1 2 4   4 + 1                          2 + 2 0 + 4  5           4   4
                                                    𝑦−3
                                                                                                                               ⇒ 𝑥(1 − 𝑦) = 2 − 3𝑦 ⇒ 𝑥 =               ∈𝐴
    Let 𝑔: ℝ → ℝ as𝑔(𝑦) = 𝑥 =                                                                                                                                    1−𝑦
                                                     4                                                                                                                                                                                                                                              5     5
                                                                                                                                                                                      2−3𝑦
                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                             LHS= ( A + B )
                                                                                  4𝑥+3−3       4𝑥                                                                        𝑥−2                 −2         2−3𝑦−2−2𝑦
   Consider 𝑔𝑜𝑓(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(4𝑥 + 3) =                                                                                                                                                                                                                                                       =  3 − 1 4
                                                                                                                                                                                     1−𝑦
                                                                                    4
                                                                                           =
                                                                                                   4
                                                                                                       =𝑥                      ⇒ ∀𝑦 ∈ 𝐵∃𝑥 ∈ 𝐴such that 𝑓(𝑥) =                     = 2−3𝑦            =                    =𝑦
                                                                                                                                                                         𝑥−3                 −3         2−3𝑦−3+3𝑦
                                                                                                                                                                                                                                                                                                    4       
                                                                                                                                                                                      1−𝑦
 ⇒ 𝑓(𝑥) ≠ −2 ∀𝑥 ∈ ℝ ⇒ 𝑓is not onto                                                                                             One-one: Let 𝑥1 , 𝑥2 ∈ 𝑁(Domain), Suppose 𝑓(𝑥1 ) = 𝑓(𝑥2 ) ⇒
                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                   =
                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                            ⇒ 𝑥1 = 𝑥2                                   9   1  10 
                                                                                                                                                                                                                                                                             AC + BC = 12  +  8  =  20 =RHS
                                                                                                                                                                                                                              𝑥1       𝑥2
 ⇒f is neither one-one nor onto.∴ 𝑓𝑖𝑠𝑛𝑜𝑡𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒.                                                                             ⇒ 𝑓is one-one
                                                                                                                                                                                                                                                                                        30  −2  28
4) Let A = R – {3} and B = R – {1}.Consider the function f : A →B defined by                                                               2                                                                2
                                                                                                                               Onto: Let       ∈ 𝑹∗ (Co-domain), Suppose, 𝑓(𝑥) =
             𝒙−𝟐
                                                                                                                                           3                                                                3
                                                                                                                                                                                                                                                                             Clearly LHS = RHS ⇒ ( A + B ) C = AC + BC
  f (x) =(         ).Is f one-one and onto? Justify your answer.                                                                 1     2         3
             𝒙−𝟑
                                                                𝑥−2
                                                                                                                               ⇒ = ⇒ 𝑥 = ∉ 𝑵 ⇒ 𝑓is not onto⇒ 𝑓is one-one but not onto.
                                                                                                                                 𝑥     3         2
 Solution: Given 𝑓: 𝐴 → 𝐵 as𝑓(𝑥) = (                                     ), where A = R – {3} and B = R – {1}
                                                                𝑥−3
 PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                                    PASSING PACKAGE II PU MATHEMATICS                          2024 EXAM (PRT –D AND E)                                                        PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)
                                                                                                                                                                                                                                                                         3. 1. Solve the following system of linear equations using matrix ethod
   3) If      1 
                   and B =                 −1          2 1 , verify that ( AB ) = BA                                                 1 2 −3             3                        −1 2           4 1 2
                                                                                                                                                                                                                  
           A=                                                                                                                   5) If A = 5 0      2  , B =  4
                                                                                                                                                                                                                                                                             1) 𝟑𝒙 − 𝟐𝒚 + 𝟑𝒛 = 𝟖 , 𝟐𝒙 + 𝒚 − 𝒛 = 𝟏𝒂𝒏𝒅𝟒𝒙 − 𝟑𝒚 + 𝟐𝒛 = 𝟒
              −4 
                                                                                                                                                                                         2 5  and C =  0 3 2  then                                                                                          x
                                                                                                                                                                                                                                                                                               3 −2 3                       8
              3 
                                                                                                                                           1 −1 1            2                      0 3           1 −2 3                                                          Solution: Let A =[2 1 −1], X =[y] and B =[1]
                                         1 
   Solution:We have                                                                                                                                                                                                                                                                             4 −3 2            z          4
                                      A=                                                                                                       A + B and B − C . Also, verify that A + ( B − C) = ( A + B) − C .
                                             
                                         −4  and B =  −1                         2    1                                          compute                                                                                                                                         3 −2 3
                                        
                                         3                                                                                                                                                                                                                                 ∴ |A|=|2 1 −1| = 3(2-3)+2 (4+4)+3(-6-4) = -17.
                                                                                                                                                           3            −1 2   4                         1        2   −1 −2                 0                                  4 −3 2
          1                                −1           2            1 
                                                                                                                                     Solution: Now B − C =  4           2 5  − 0                                2  =  4 −1              3
    AB =                             1 =                            −4 
                                                                                                                                                                                                                                                                                                                      adj A
          −4   −1              2          4            −8                                                                                                                                             3                                                                 Given equation is AX = B ∴ X =A−1 B = ( |A| ) B
         
          3                              
                                             −3           6             3 
                                                                                                                                                           2          0 3  1                         −2       3   1   2               0                                          −1          −5
                                                                                                                                                                                                                                                                                                           −1
             −1                      −3                                                                                                                                                                                                                                    𝑎𝑛𝑑    adj A = [ −8          −69]
                         4
                                                   = LHS                                                                                       1 2 −3  −1 −2 0  0 0 −3
    (AB)' =             −8           6                                                                                                                                                                                                                                                     −10           17
            2
                        −4           3
                                                                                                                                    A+(B-C) = 5 0 2  +  4 −1 3 = 9 −1 5  =LHS                                                                                                    adj A    1
                                                                                                                                                                                                                                                                                                             −1 −5 −1 8
                                                                                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                   −8 − 5 − 4
            1                                                                                                                                                                                                                                                              ∴ X =A−1 B = ( |A| ) B=       [ −8 −6 9 ] [1] =     [−64 − 6 + 36]
                                                                                                                                                1 −1 1   1 2 0  2 1 1                                                                                                                     −17
                                                                                                                                                                                                                                                                                                            −10 1    7 4
                                                                                                                                                                                                                                                                                                                             −17
                                                                                                                                                                                                                                                                                                                                  −80 + 1 + 28
                     −1                                                                                                                                                                                                                                                       x                   x
                                                                                                                                                                                                                                                                                            −17          1
   Now B ' =  2  and A' = 1                           −4     3                                                                          4       1         −1                                                                                                                      1
                                                                                                                                                                                                                                                                           ∴ [y ] =      [−34]⇒[y] = [2]⇒ x = 1, y = 2, z = 3
                                                                                                                                     A+ B =                   7 
                                                                                                                                                                                                                                                                                       −17
                     1                                                                                                                  9       2                                                                                                                         z           −51     z    3
                                                                                                                                            
                                                                                                                                            3       −1        4                                                                                                          2) 𝒙 − 𝒚 + 𝒛 = 𝟒 , 𝟐𝒙 + 𝒚 − 𝟑𝒛 = 𝟎𝒂𝒏𝒅𝒙 + 𝒚 + 𝒛 = 𝟐
            −1                             −1           4            −3                                                                                                                                                                                                                         1 −1 1         x           4
                                                                                  = RHS
    BA =    
            2  1           −4       3 = 
                                            2             −8           6                                                                4        1     −1  4            1           2 0                 0     −3                                                     Solution:Let A =[2 1 −3], X =[y] and B =[0]
                                                                                                                                                                                                                           = RHS
           
           1                             
                                            1             −4           3                                                      (A+B)-C = 9       2     7  −  0        3           2  = 9            −1    5                                                                           1 1       1    z           2
                                                                                                                                             3     −1    4  1           −2          3  2              1     1                                                             1 −1 1
   Clearly LHS = RHS ⇒ ( AB ) = BA                                                                                                                                                                                                                                        ∴ |A|=|2 1 −3| = 1(1+3)-(-1)(2+3)+1(2-1) = 4+5+1=10.
              −𝟐
                                                                                                                                 Clearly LHS = RHS ⇒ A +             ( B − C ) = ( A + B) − C                                                                                         1 1       1
                                                                                                                                                                                                                                                                                                                       adj A
                                                                                                                                                                                                                                                                             Given equation is AX = B ∴ X =A−1 B = ( |A| ) B
   4) If 𝑨 = [ 𝟒 ] , 𝑩 = [𝟏                    𝟑    −𝟔],Verify that (𝑨𝑩)′ = 𝑩′ 𝑨′ .                                                        0
               𝟓                                                                                                                 6) If A= [1] , 𝐵 = [1     5    7], thenverify that (𝑨𝑩)′ = 𝑩′ 𝑨′ .                                                                                           4        2
                                                                                                                                                                                                                                                                                                       2
                                                                                                                                           2                                                                                                                                 𝑎𝑛𝑑    adj A = [−5        5]
                                                                                                                                                                                                                                                                                                       0
                         −2 
   Solution:We have A =  4  and B = 1 3                                                                                                                  0                                         0                 0    0                                                                 1       −2
                                                                                                                                                                                                                                                                                                       3
                                                                                     −6
                                                                                                                                     Solution:Let A=      [1] 𝑎𝑛𝑑𝐵 = [1           5        7] ∴AB = [1                 5    7]                                                                          4  2 2 4           16 + 0 + 4
                                                                                                                                                                                                                                                                                          adj A    1                  1
                         5                                                                                                                             2                                         2                10   14                                                ∴ X =A−1 B =( |A| ) B= [−5 0 5] [0] = [−20 + 0 + 10]
                                                                                                                                                                                                                                                                                                   10                 10
                                                                                                                                                     0      1 2                                                                                                                                         1 −2 3 2            4+0+6
          −2                               −2           −6           12                                                                                                                                                                                                     x       20      x     2
    AB =                            −6 =                            −24                                                         LHS = (𝐴𝐵)′ = [0       5 10]
          4  1
                                                                                                                                                                                                                                                                                     1
                              3              4            12                                                                                                                                                                                                               ∴ [y] = [−10]⇒[y] = [−1]⇒ x = 2, y = - 1, z = 1
         
          5                              
                                             5            15           −30 
                                                                            
                                                                                                                                                     0      7 14                                                                                                                z
                                                                                                                                                                                                                                                                                     10
                                                                                                                                                                                                                                                                                                z
                                                                                                                                                                                                                                                                                        10            1
                                                                                                                                               1
   LHS =                −2                           5                                                                                                                                                                                                                    3) 𝟐𝒙 + 𝟑𝒚 + 𝟑𝒛 = 𝟓 , 𝒙 − 𝟐𝒚 + 𝒛 = −𝟒𝒂𝒏𝒅𝟑𝒙 − 𝒚 − 𝟐𝒛 = 𝟑.
                                            4
                                                                                                                                     Now 𝐵′ = [5] 𝑎𝑛𝑑𝐴′ = [0 1           2]
             ( AB ) =  −6               12        15                                                                                      7
                                                                                                                                                                                                                                                                                                  2 3     3       x            5
                        
                        12                −24       −30 
                                                                                                                                                                                                                                                                             Solution:Let A = [1 −2 1 ], X =[y] and B =[−4]
                                                                                                                                                    0 1 2
                                                                                                                                                                                                                                                                                                  3 −1 −2         z            3
                         1                                                                                                         RHS = 𝐵′ 𝐴′ = [0 5 10]
   Now                                                                                                                                                                                                                                                                              2 3      3
                   B =     
                         3  and A =  −2
                                                               4            5                                                                     0 7 14                                                                                                                   ∴ |A|=|1 −2 1 | = 2(4+1)-3(-2-3)+3(-1+6)=10+15+15=40.
                        
                         −6 
                                                                                                                                     Clearly LHS = RHS ⇒ ( AB ) = BA
                                                                                                                                                                                                                                                                                   3 −1 −2
                                                                                                                                                                                                                                                                                                                     adj A
                                                                                                                                                                                                                                                                             Given equation is AX = B ∴ X =A−1 B = ( |A| ) B.
            1                                          −2                  4          5                                               3 4
                                                                                                                                                      −1 2 1
                                                                                                                               7) If A= [−1 2] , 𝐵 = [       ], then verify that (𝑨 + 𝑩)′ = 𝑨′ + 𝑩′                                                                                      5    3   9
    BA =     
            3   −2                      4       5 = 
                                                         −6                 12         15 
                                                                                              =RHS
                                                                                                                                                       1 2 3                                                                                                                 and adj A =[5  −13 1 ]
                                                                                                                                          0 1
           
            −6 
                                                       
                                                        12                  −24        −30 
                                                                                                                                          3 4                                                                                                                                           5   11 −7
                                                                                                                                                        −1 2 1                                                                                                                              5   3   9  5                              25 − 12 + 27              40
                                                                                                                                8) If A= [−1 2] , 𝐵 = [        ], then verify that (𝑨 − 𝑩)′ = 𝑨′ − 𝑩′                                                                                    1                                      1                         1
   Clearly LHS = RHS ⇒ ( AB ) = BA
                                                                                                                                                         1 2 3                                                                                                               ∴ X =A−1 B = [5 −13 1 ] [−4]=                           [ 25 + 52 + 3 ] =        [ 80 ]
                                                                                                                                           0 1                                                                                                                                           40                                     40                       40
                                                                                                                                                                                                                                                                                            5 11 −7 3                                 25 − 44 − 21             −40
PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                                        PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                               PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)
  2) If 𝐲 = 𝐬𝐢𝐧−𝟏 𝐱 then prove that (𝟏 − 𝐱 𝟐 )𝐲𝟐 − 𝐱𝐲𝟏 = 𝟎.                                                                         6)If 𝒚 = 𝟑𝒆𝟐𝒙 + 𝟐𝒆𝟑𝒙 then prove that
                                                                                                                                                                                                               𝒅𝟐 𝒚
                                                                                                                                                                                                                      −𝟓
                                                                                                                                                                                                                           𝒅𝒚
                                                                                                                                                                                                                                + 𝟔𝒚 = 𝟎.
                                                                                                                                                                                                               𝒅𝒙𝟐         𝒅𝒙
  Solution:Given 𝑦 = sin−1 𝑥                                                                                                                                                     2𝑥         3𝑥
                                                                                                                                                                                                                                                              𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given f(x) is continuous at x = 3.
                                                           𝑑𝑦         1                    𝑑𝑦
                                                                                                                                    𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given 𝑦 = 3𝑒 + 2𝑒
  Differentiate w.r.t x, we get⇒                                =             ⇒ √1 − 𝑥 2        =1                                                                                                                                                            ⇒ lim 𝑓(𝑥) = 𝑓(3)
                                                           𝑑𝑥       √1−𝑥 2                 𝑑𝑥                                       𝑑𝑦                                                                                                                          𝑥→3
                                                                                                                                       = 6𝑒 2𝑥 + 6𝑒 3𝑥 = 6(𝑒 2𝑥 + 𝑒 3𝑥 )
  Again Differentiate w.r.t x, we get                                                                                               𝑑𝑥                                                                                                                        ⇒ LHL = RHL ⇒ lim− 𝑓(𝑥) = lim+ 𝑓(𝑥) = 𝑓(3)
                                                                                                                                                                                                                                                                                           𝑥→3             𝑥→3
                                                                                                                                        𝑑2𝑦               2𝑥                3𝑥              2𝑥          3𝑥 )
             𝑑2𝑦            2𝑥    𝑑𝑦                                                                                                ∴          = 12𝑒              + 18𝑒          = 6(2𝑒          + 3𝑒                                                         ⇒lim(𝑎𝑥 + 1) = lim (𝑏𝑥 + 3) = 3a+1
   √1 − 𝑥 2 𝑑𝑥 2 −                     =0                                                                                               𝑑𝑥 2                                                                                                                   𝑥→3                       𝑥→3
                       2√1−𝑥 2 𝑑𝑥
                                                                                                                                                𝑑2𝑦               𝑑𝑦
                𝑑 𝑦2             𝑑𝑦                                                                                                 LHS=               −5              + 6𝑦 = 6(2𝑒 2𝑥 + 3𝑒 3𝑥 ) − 30(𝑒 2𝑥 + 𝑒 3𝑥 ) + 6(3𝑒 2𝑥 + 2𝑒 3𝑥 )                        ⇒ 3𝑎 + 1 = 3𝑏 + 3 = 3𝑎 + 1 ⇒ 3𝑎 − 3𝑏 = 3 − 1 = 2
   ⇒ (1 −   𝑥 2) 2     −𝑥             =0                                                                                                        𝑑𝑥 2              𝑑𝑥
                                                                                                                                                                                                                                                                           2
                𝑑𝑥               𝑑𝑥
                                                                                                                                     = 12𝑒 2𝑥 + 18𝑒 3𝑥 − 30𝑒 2𝑥 − 30𝑒 3𝑥 + 18𝑒 3𝑥 + 12𝑒 2𝑥 = 0 = 𝑅𝐻𝑆.                                                         ⇒𝑎 − 𝑏 = .
  3) If 𝒚 = 𝟑 𝐜𝐨𝐬(𝐥𝐨𝐠 𝒙) + 𝟒 𝐬𝐢𝐧(𝐥𝐨𝐠 𝒙) then prove that 𝒙𝟐 𝒚𝟐 + 𝒙𝒚𝟏 + 𝒚 = 𝟎.                                                                                                                                                                                               3
                                                                                                                                  2.1) Find the value of K, so that the function                                                                                            𝟐 𝒊𝒇𝒙 ≤ 𝟐
  Solution:Given𝑦 = 3 cos(𝑙𝑜𝑔𝑥) + 4sin (𝑙𝑜𝑔𝑥)                                                                                                                                                                                                                 5) 𝒇(𝒙) = {𝑲𝒙             is continuous at 𝒙 = 𝟐.
                                                                                                                                                𝒌𝒙 + 𝟏 𝒊𝒇 𝒙 ≤ 𝟓                                                                                                           𝟑 𝒊𝒇𝒙 > 2
  Differentiating w.r.t x on both sides                                                                                                𝑓(𝒙) = {                 is continuous at 𝒙 = 𝟓.
                                                                                                                                                𝟑𝒙 − 𝟓 𝒊𝒇 𝒙 > 5                                                                                               𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:Given f(x) is continuous at x = 2.
           3sin (𝑙𝑜𝑔𝑥) 4cos (𝑙𝑜𝑔𝑥)
  ⇒ 𝑦1 = −            +                                                                                                             𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given f(x) is continuous at x = 5.                                                                              ⇒ lim 𝑓(𝑥) = 𝑓(2)
                𝑥            𝑥                                                                                                                                                                                                                                  𝑥→2
                                                                                                                                    ⇒ lim 𝑓(𝑥) = 𝑓(5)
  ⇒ 𝑥𝑦1 = −3 sin(𝑙𝑜𝑔𝑥) + 4cos (𝑙𝑜𝑔𝑥)                                                                                                     𝑥→5                                                                                                                  ⇒ LHL = RHL ⇒ lim− 𝑓(𝑥) = lim+ 𝑓(𝑥) = 𝑓(2)
                                                                                                                                                                                                                                                                                           𝑥→2             𝑥→2
  Again differentiating on both sides we get                                                                                        ⇒ LHL = RHL= f(5) ⇒ lim− 𝑓(𝑥) = lim+ 𝑓(𝑥)= f(5)                                                                           ⇒lim𝑘𝑥 2 = lim 3 = 4k
                                                                                                                                                                                  𝑥→5                   𝑥→5
                                                                                                                                                                                                                                                               𝑥→2               𝑥→2
                    3 cos(𝑙𝑜𝑔𝑥) 4𝑠𝑖𝑛 (𝑙𝑜𝑔𝑥)                                                                                         ⇒lim(𝑘𝑥 + 1) = lim 3𝑥 − 5=5k + 1                                                                                                   2
  𝑥𝑦2 + (1)𝑦1 = −              −                                                                                                        𝑥→5                             𝑥→5                                                                                   ⇒ 𝑘(2) = 3 = 4 ⇒ 4𝑘 = 3
                         𝑥             𝑥                                                                                                                                                                                         9                                     3
  ⇒ 𝑥 2 𝑦2 + 𝑥𝑦1 = −[3 cos(𝑙𝑜𝑔𝑥) + 4sin (𝑙𝑜𝑔𝑥)]                                                                                     ⇒5𝑘 + 1 = 3(5) − 5 ⇒ 5𝑘 + 1 = 10⇒5𝑘 = 9 ⇒ 𝑘 = .                                                                           ⇒𝑘 =
                                                                                                                                                                                                                                 5                                     4
  𝑥 2 𝑦2 + 𝑥𝑦1 = −𝑦 ⇒ 𝑥 2 𝑦2 + 𝑥𝑦1 + 𝑦 = 0                                                                                                     𝒌𝒙 + 𝟏                     𝒊𝒇     𝒙≤                                                                          6)Find the value of 𝒂𝒂𝒏𝒅𝒃 such that the function
                                                                                                                                   2) 𝒇(𝒙) = {                                       is continuous at x = 𝝅
                                                      𝒅𝒚                                              𝒅𝟐 𝒚     𝒅𝒚 𝟐                             𝐜𝐨𝐬 𝒙                     𝒊𝒇     𝒙>                                                                                   𝟓           𝒊𝒇𝒙 ≤ 𝟐
  4)If 𝒆𝒚 (𝒙 + 𝟏) = 𝟏, prove that                          = −𝒆𝒚 and hence prove that                        =( ) .
                                                      𝒅𝒙                                              𝒅𝒙𝟐      𝒅𝒙                   𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given f(x) is continuous at x = 𝜋                                                                               𝒇(𝒙) = { 𝒂𝒙 + 𝒃𝒊𝒇 𝟐 < 𝒙 < 10 is continuous function.
  𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝑒 𝑦 (𝑥 + 1) = 1                                                                                                         ⇒ lim 𝑓(𝑥) = 𝑓(𝜋)                                                                                                                 𝟐𝟏          𝒊𝒇𝒙 ≥ 𝟏𝟎
                                                                                                                                         𝑥→𝜋
  Differentiate w.r.t x on both sides,then we get                                                                                                                                                                                                             𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given f(x) is continuous function.(continuous ∀ x ∈ 𝑅)
                       𝑑𝑦              𝑑𝑦             1
                                                                                                                                    ⇒ LHL = RHL ⇒ lim− 𝑓(𝑥) = lim+ 𝑓(𝑥) = 𝑓(𝜋)
                                                                                                                                                                         𝑥→𝜋
  𝑒 𝑦 + (𝑥 + 1)𝑒 𝑦          =0⇒             =−             = −𝑒 𝑦                                                                                                                                𝑥→𝜋
                                                                                                                                                                                                                                                              ⇒ f(x) is continuous at x = 2 and at x = 10.
                       𝑑𝑥              𝑑𝑥            𝑥+1
                                                                                                                                    ⇒lim (𝑘𝑥 + 1) = lim 𝑐𝑜𝑠𝑥 = 4𝜋 + 1
  Again differentiate w.r.t x, we get                                                                                                   𝑥→𝜋                             𝑥→𝜋                                                                                   ⇒ lim 𝑓(𝑥) = 𝑓(2)𝑎𝑛𝑑 lim 𝑓(𝑥) = 𝑓(10)
                                                                                                                                                                                                                                                                𝑥→2                               𝑥→10
    2                        2               2                                                                                      ⇒ k𝜋 + 1 = −1 = k𝜋 + 1 ⇒ k𝜋 = −1 − 1 = −2
  𝑑 𝑦         𝑑𝑦 𝑑 𝑦     𝑑𝑦                                                                                                                                                                                                                                   ⇒ lim− 𝑓(𝑥) = lim+ 𝑓(𝑥)= f(2) and lim− 𝑓(𝑥) = lim+ 𝑓(𝑥) = 𝑓(10)
       = −𝑒 𝑦   ⇒     = ( )                                                                                                         ⇒𝑘 = − .
                                                                                                                                                      2                                                                                                        𝑥→2                   𝑥→2                         𝑥→10           𝑥→10
  𝑑𝑥 2        𝑑𝑥 𝑑𝑥 2    𝑑𝑥                                                                                                                           𝜋
                                                                      𝒅𝟐 𝒚               𝒅𝒚                                                                   𝒌𝒄𝒐𝒔𝒙                     
                                                                                                                                                                                                                                                              ⇒lim 5 = lim(𝑎𝑥 + 𝑏) = 5 and lim (𝑎𝑥 + 𝑏) = lim 21 = 21
                                                                                                                                                                                                                                                                𝑥→2           𝑥→2                              𝑥→10              𝑥→10
  5)If 𝒚 = 𝑨𝒆𝒎𝒙 + 𝑩𝒆𝒏𝒙 then prove that                                       − (𝒎 + 𝒏)        + 𝒎𝒏𝒚 = 𝟎.                                                                  𝒊𝒇      𝒙≠                                             
                                                                      𝒅𝒙𝟐                𝒅𝒙
                                                                                                                                     3) 𝒇(𝒙) = { −𝟐𝒙                                    is
                                                                                                                                                                                        𝟐
                                                                                                                                                                                                 continuous at 𝒙 = .                                          ⇒5 = 2𝑎 + 𝑏 ⇒ 2𝑎 + 𝑏 = 5 ……….(1) and 10𝑎 + 𝑏 = 21 ………(2)
                                                                                                                                                                                                                                 𝟐
  Solution: 𝑦 = 𝐴𝑒 𝑚𝑥 + 𝐵𝑒 𝑛𝑥                                                                                                                     𝟑                       𝒊𝒇      𝒙=
                                                                                                                                                                                        𝟐                                                                       Solving (1) and (2) ,we get a = 2 and b = 1.
  Differentiating w.r.t x on both sides                                                                                             𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given f(x) is continuous at 𝑥 =
                                                                                                                                                                                                                       𝜋
  𝑑𝑦
                                                                                                                                                                                                                       2                                   5.1) Find the area enclosed by the circle x 2 + y 2 = a 2 
     = 𝐴𝑚𝑒 𝑚𝑥 + 𝐵𝑛𝑒 𝑛𝑥                                                                                                                               𝜋         𝑘𝑐𝑜𝑠 𝑥
                                                                                                                                                                                                                                                           Solution : Given circle x + y = a 
                                                                                                                                                                                                                                                                                                   2       2     2
  𝑑𝑥                                                                                                                                ⇒ lim𝜋 𝑓(𝑥) = 𝑓 ( ) ⇒ lim𝜋        =3
                                                                                                                                      𝑥→             2    𝑥→ 𝜋 − 2𝑥
  Again differentiate w.r.t x on both sides                                                                                              2                   2
                                                                                                                                                                                                                                                           ⇒ 𝑥 = √𝑎2 − 𝑥 2 and center origin and radius a
                                                                                                                                                              𝜋
    2                                                                                                                                                𝑠𝑖𝑛 ( 2 −𝑥)
  𝑑 𝑦                                                                                                                               ⇒𝑘 lim𝜋                            =3
       = 𝐴𝑚2 𝑒 𝑚𝑥 + 𝐵𝑛2 𝑒 𝑛𝑥                                                                                                               𝑥→
                                                                                                                                                          𝜋
                                                                                                                                                      2( −𝑥)
  𝑑𝑥 2                                                                                                                                          2         2
          𝑑2 𝑦                    𝑑𝑦                                                                                                                  𝑠𝑖𝑛 𝜃      𝑘
  LHS =          − (𝑚 + 𝑛)             + 𝑚𝑛𝑦                                                                                        ⇒ 𝑘 lim                 = 3 ⇒ (1) = 3
          𝑑𝑥 2                    𝑑𝑥
                                                                                                                                               𝜃→0     2𝜃        2
  = 𝑚2 𝐴𝑒 𝑚𝑥 + 𝑛2 𝐵𝑒 𝑛𝑥 − (𝑚 + 𝑛)(𝐴𝑚2 𝑒 𝑚𝑥 + 𝐵𝑛2 𝑒 𝑛𝑥 ) + 𝑚𝑛𝑦                                                                       ⇒𝑘 = 6
  = 𝑚2 𝐴𝑒 𝑚𝑥 + 𝑛2 𝐵𝑒 𝑛𝑥 − 𝐴𝑚2 𝑒 𝑚𝑥 − 𝐵𝑚𝑛𝑒 𝑛𝑥 − 𝐴𝑚𝑛𝑒 𝑚𝑥 − 𝑛2 𝐵𝑒 𝑛𝑥 + 𝑚𝑛𝑦                                                            4) Find the relationship between a and b so that the function f defined
  = −𝐵𝑚𝑛𝑒 𝑛𝑥 − 𝐴𝑚𝑛𝑒 𝑚𝑥 + 𝑚𝑛𝑦 = −𝑚𝑛(𝐴𝑒 𝑚𝑥 + 𝐵𝑒 𝑛𝑥 ) + 𝑚𝑛𝑦                                                                              by
  = −𝑚𝑛𝑦 + 𝑚𝑛𝑦 = 0 = RHS                                                                                                                    𝒂𝒙 + 𝟏 𝒊𝒇𝒙 ≤ 𝟑
                                                                                                                                    𝒇(𝒙) = {                is continuous at 𝒙 = 𝟑.
                                                                                                                                             𝒃𝒙 + 𝟑 𝒊𝒇𝒙 > 3
                                                                                                                                                                                                                                                cos x dx + 
                                                                                                                      2
2) Find the area enclosed by the ellipse
                                                               x2 y2
                                                                  +   =1
                                                                                                                                                                                                                                     Area =                                cos x dx +           cos x dx
                                                               a 2 b2                                                                                                                                                                          0                  / 2                  3 / 2
                                      2        2
                                   x    y
Solution : Given ellipse              +   =1
                                                                                                                                                                                                                                           = sin x 0 + [sin x]3/ 2/ 2 + sin x 3 / 2
                                                                                                                                                                                                                                                         / 2                              2
                                   a 2 b2
         𝑏
⇒ 𝑥 = √𝑎2 − 𝑥 2 and center origin and vertices (0, a)                                                                                                                                                                                      = 1 + 2 + 1 = 4 square unit.
     𝑎
PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                       PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                         PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)
                                                                                                                         Corner points A (0, 5), C (0, 6) and E (4, 3)                                                                                                                            Corresponding value of
                                                                                                                                                                                                                                            Sl. No.             Corner points
                                                                                                                                                                                          Corresponding value of                                                                                            z = 3x + 9 y
                                                                                                                                            Sl. No.                       Corner points                                                                           C (0, 10)                   90
                                                                                                                                                                                              z = 200 x + 500 y                              1.
                                                                                                                                                                                                                                             2.                    G (5, 5)                   60  Minimum
                                                                                                                                                                                          2500
                                                                                                                                             1.                              A (0, 5)                                                        3.                   H (15, 15)                  180 Maximum
                                                                                                                                                                                          3000                                               4.                   A (0, 20)                   180 Maximum
                                                                                                                                             2.                              C (0, 6)
                                                                                                                                                                                                                                     The minimum value of Z is 60 at the point (5, 5). and maximum value of Z is 180 at
                                                                                                                                                                                          2300  Minimum                            all points on line segment joining the points A (0, 20) and H (15, 15).
                                                                                                                                             3.                              E (4, 3)
   Solution lies in the region OAED.                                                                                                                                                                                               4. Minimise Z = – 3x + 4y subject to x + 2y ≤ 8, 3x + 2y ≤ 12, x ≥ 0, y ≥ 0.
  Corner points O (0, 0),A (0, 50), E (20, 30) and D (30, 0).                                                        Hence, minimum value of z is 2300 at the point (4, 3).                                                         Solution :To Minimise Z = - 3x + 4y
                                     Corresponding value of                                                      3. Solve the following problem graphically:Minimise and Maximise Z = 3x + 9y.                                      Region represented byx + 2y ≤ 8, Consider, x + 2y = 8                x       0   8
     Sl. No.    Corner points                                                                                                                                                                                                                                                                            y       4   0
                                                               z = 4x + y                                        subject to the constraints: x + 3y ≤60, x + y ≥10 ,x ≤y .and x ≥0, y ≥0.                                           Clearly O (0, 0) satisfies x + 2y ≤ 8 Solution region contain
                                                                                                                 Solution :Minimise and Maximise Z = 3x + 9y
         1.               O (0, 0)                 0                                                                                                                                                                                the origin.
                                                                                                                 Region represented by x + 3 y  60 ,                        x   0     60
                          A (0, 50)                50                                                                                                                                                                               Region represented by 3x + 2y ≤ 12 ,Consider,3x + 2y = 12              x     0  4
         2.                                                                                                      Consider the equation x + 3 y = 60                          y   20    0
                         E (20, 30)                110                                                                                                                                                                              Clearly O (0, 0) not satisfies x + y  10                             y     6  0
         3.                                                                                                      Clearly O (0, 0) satisfies x + 3 y  60  Solution region contain the origin.
                          D (30, 0)                120  Maximum                                                                                                                                                                     Solution region does not contain the origin.
         4.                                                                                                      Region represented by x + y  10  ,                                 x    0                          10            And x ≥ 0, y ≥ 0 are called non negative constraints which represents the first
     Hence, maximum value of Z is 120 at the point (30, 0).                                                      Consider the equation x + y = 10 .                                                                                 quadrant.
                                                                                                                                                                                      y    10                         0
2.. Solve the following linear programming problem graphically:
                                                                                                                 Clearly O (0, 0) not satisfies x + y  10                                                                          Now plotting the graph as follows
Minimise Z = 200x + 500y .subject to the constraints:x+2y ≥10,3x + 4y ≤24 and
x ≥0, y ≥0.                                                                                                       Solution region does not contain the origin.                                                   x    0     10
Solution :Minimise Z = 200x + 500y                                                                               Region represented by x  y i.e., x − y  0 ,Consider                            x = y i.e.,     y    0     10
: Region represented by x + 2 y  10  Consider x + 2 y = 10                                                     x− y=0
                                                             x 0 10
                                                             y 5 0                                               Plot the points O(0, 0) and A(10, 10). Join OA and produce .
                                                                                                                  and (0, 10) satisfies x − y  0   Solution region contain the point (0, 10).
Clearly O (0, 0) not satisfies x + 2 y  10   Solution region does not contain the origin.                     And x ≥ 0, y ≥ 0 are called non negative constraints which represents the first
Region represented by 3x + 4 y  24 ,Consider 3x + 4 y = 24                                                      quadrant.
                                                                                      x   0    8
                                                                                                                   Now plotting the graph as follows
                                                                                      y   6    0                                                                                                                                    Thus, the feasible region is OBCD,
                                                                                                                                                                                                                                    Corner points D (0, 4), B (4, 0), C (2, 3) and O (0, 0)
Clearly O (0, 0) satisfies 3x + 4 y  24  Solution region contain the origin.
And x ≥ 0, y ≥ 0 are called non negative constraints which represents the first
quadrant.
 Now plotting the graph as follows
                                                                                                                                                                                                                                    Minimum value = -12 at (4, 0).
                                                                                                                                                                                                                                    5. Maximise Z = 3x + 2y subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.
                                                                                                                                                                                                                                        Solution : To Maximise Z =3x + 2y
                                                                                                                                                                                                                                        Region represented by x + 2y ≤ 10, Consider, x + 2y = 10                               x   0   10
                                                                                                                                                                                                                                    Clearly O (0, 0) satisfies x + 2y ≤ 10                                                     y   5    0
                                                                                                                                                                                                                                     Solution region contain the origin.
                                                                                                                                                                                                                                    Region represented by 3x + y ≤ 15, Consider, 3x + y = 15                               x       0           5
                                                                                                                         Thus, the feasible region is ACGH,                                                                         Clearly O (0, 0) satisfies 3x + y ≤ 15                         y     15                                    0
                                                                                                                         Corner points A (0, 20), C (0, 10), G (5, 5) and H (15, 15)                                                 Solution region contain the origin.
       Solution lies in the region ACE.                                                                                                                                                                                             And x ≥ 0, y ≥ 0 are called non negative constraints which represents the first
                                                                                                                                                                                                                                    quadrant.
                                                                                                   SATISH NAIK                                                                                                        SATISH NAIK                                                                                                      SATISH NAIK
PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                                               PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                                     PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)
 Now plotting the graph as follows
Consider, x – 2y = 0                                                               y             0                          20                                                                                                                                          3.Find the projection of the vector𝒊̂ + 𝟑𝒋̂ + 𝟕𝒌   ̂ on the vector 𝟕𝒊̂ − 𝒋̂ + 𝟖𝒌
                                                                                                                                                                                                                                                                                                                                                       ̂.
                                                                                                                                             Region represented by 2x + y ≤ 200,
    Plot the points O(0, 0) and A(40, 20).                                                                                                                                                x        0               100                                                  Solution:Let the given vectors be 𝑎⃗ = 𝑖̂ + 3𝑗̂ + 7𝑘̂and 𝑏⃗⃗ = 7𝑖̂ − 𝑗̂ + 8𝑘̂.
                                                                                                                                             Consider, 2x + y = 200,
Join OA and produce .                                                                                                                         Clearly O (0, 0) satisfies 2x + y ≤ 200                                y          200                         0                                                       𝑎⃗⃗∙𝑏
                                                                                                                                                                                                                                                                        Then projection of 𝑎⃗ on 𝑏⃗⃗ is given by 𝑝 = ⃗⃗ =
                                                                                                                                                                                                                                                                                                                                               ⃗⃗
                                                                                                                                                                                                                                                                                                                          (𝑖̂ +3𝑗̂ +7𝑘 )∙(7𝑖̂ −𝑗̂ +8𝑘 )
                                                                                                                                                                                                                                                                                                                                                        =
                                                                                                                                                                                                                                                                                                                                                            ̂
                                                                                                                                                                                                                                                                                                                                                          7−3+56              ̂
                                                                                                                                                                                                                                                                                                                                   2       2
                                                                                                                                                                                                                                                                                                                                          |𝑏 |    2     √7 +(−1) +8               √114
    and (20, 0) satisfies x – 2y ≥ 0 Solution region contain the point (20, 0).                                                          Solution region contain the origin.                                                                                                                                                60
And x ≥ 0, y ≥ 0 are called non negative constraints which represents the                                                                                                                                                x             0               20               Therefore, required projection =                            .
                                                                                                                                           Region represented by 2x – y ≤ 0,                                                                                                                                                 √114
first quadrant.                                                                                                                          Consider, 2x – y = 0                                                            y             0               40               4.Find the projection of the vector𝑎⃗ = 2𝑖̂ + 3𝑗̂ + 2𝑘̂ on the vector 𝑏⃗⃗ = 𝑖̂ + 2𝑗̂ + 𝑘̂.
 Now plotting the graph as follows                                                                                                                                                                                                                                                                                                        ⃗⃗                ̂             ̂
                                                                                                                                            Plot the points O(0, 0) and A(20, 40).                                                                                                                                𝑎⃗⃗∙𝑏
                                                                                                                                                                                                                                                                        Solution:The projection of 𝑎⃗ on 𝑏⃗⃗is 𝑝 = ⃗⃗ =
                                                                                                                                                                                                                                                                                                                        (2𝑖̂+3𝑗̂ +2𝑘 )∙(𝑖̂+2𝑗̂ +𝑘 )
                                                                                                                                                                                                                                                                                                                                                    =
                                                                                                                                                                                                                                                                                                                                                      2+6+2
                                                                                                                                                                                                                                                                                                                                                            =
                                                                                                                                                                                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                                                                                                                                                                              .
                                                                                                                                                                                                                                                                                                                                  2   2 2
                                                                                                                                                                                                                                                                                                                                        |𝑏 |            √1 +2 +1                  √6     √6
                                                                                                                                         Join OA and produce .
                                                                                                                                                                                                                                                                        5.Find the area of the parallelogram whose adjacent sides are determined by the
                                                                                                                                            and (0, 20) satisfies x – 2y ≥ 0 Solution region contain the point (0, 20).
                                                                                                                                                                                                                                                                        vectors𝒂               ̂and ⃗𝒃⃗ = 𝟐𝒊̂ − 𝟕𝒋̂ + 𝒌
                                                                                                                                                                                                                                                                               ⃗⃗ = 𝒊̂ − 𝒋̂ + 𝟑𝒌                      ̂.
                                                                                                                                            And x ≥ 0, y ≥ 0 are called non negative constraints which represents the
                                                                                                                                           first quadrant.                                                                                                              Solution:The area of a parallelogram with 𝑎⃗ and 𝑏⃗⃗ as its adjacent sides is given
                                                                                                                                         Now plotting the graph as follows                                                                                                       by |𝑎⃗ × 𝑏⃗⃗|.
PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)                                                                               PASSING PACKAGE II PU MATHEMATICS 2024 EXAM (PRT –D AND E)
                 𝑖̂   𝑗̂ 𝑘̂                                                                                                                                                           2
                                                                                                                                         ⇒ |𝑎⃗|2 + 𝑎⃗ ∙ 𝑏⃗⃗ + 𝑐⃗ ∙ 𝑎⃗ + 𝑎⃗ ∙ 𝑏⃗⃗ + |𝑏⃗⃗| + 𝑏⃗⃗ ∙ 𝑐⃗ + 𝑐⃗ ∙ 𝑎⃗ + 𝑏⃗⃗ ∙ 𝑐⃗ + |𝑐⃗|2 = 0
Now, 𝑎⃗ × 𝑏⃗⃗ = |1 −1 3| = (−1 − (−21))𝑖̂ − (1 − 6)𝑗̂ + (−7 − (−2))𝑘̂ = 20𝑖̂ + 5𝑗̂ − 5𝑘̂ .                                                               2
                 2 −7 1                                                                                                                  ⇒ |𝑎⃗|2 + |𝑏⃗⃗| + |𝑐⃗|2 + 2(𝑎⃗ ∙ 𝑏⃗⃗ + 𝑏⃗⃗ ∙ 𝑐⃗ + 𝑐⃗ ∙ 𝑎⃗) = 0
                                                                                                                                                                                                                21
Therefore, area of parallelogram |𝑎⃗ × 𝑏⃗⃗| = √202 + 52 + (−5)2 = √450 = 15√2sq units.                                                   ⇒ 1 + 16 + 4 + 2𝜇 = 0                ⇒ 2𝜇 = −21           ⇒𝜇=− .
                                                                                                                                                                                                                 2
6.Find the area of a parallelogram whose adjacent sides are given by the                                                                          ⃗⃗&𝒄                                         ⃗⃗| = 𝟒, |𝒄
                                                                                                                                         10.If 𝒂
                                                                                                                                               ⃗⃗,𝒃  ⃗⃗ are three vectors such that |𝒂
                                                                                                                                                                                     ⃗⃗| = 𝟑, |𝒃         ⃗⃗| = 𝟓and each vector is
vectors𝒂                 ̂ and 𝒃
        ⃗⃗ = 𝟑𝒊̂ + 𝒋̂ + 𝟒𝒌     ⃗⃗ = 𝒊̂ − 𝒋̂ + 𝒌
                                              ̂.
                                                                                                                                         orthogonal to sum of the other two vectors then find |𝒂          ⃗⃗ + 𝒄
                                                                                                                                                                                                     ⃗⃗ + 𝒃    ⃗⃗|.
Solution:The area of a parallelogram with 𝑎⃗ and 𝑏⃗⃗ as its adjacent sides is given by
                                                                                                                                         Solution:Given|𝑎⃗| = 3, |𝑏⃗⃗| = 4, |𝑐⃗| = 5 and 𝑎⃗ ∙ (𝑏⃗⃗ + 𝑐⃗) = 0, 𝑏⃗⃗ ∙ (𝑐⃗ + 𝑎⃗) = 0, 𝑐⃗ ∙ (𝑎⃗ + 𝑏⃗⃗) = 0.
|𝑎⃗ × 𝑏⃗⃗|.                                                                                                                                                     2                     2
                                                                                                                                         Now, |𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗| = (𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗) = (𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗) ∙ (𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗)
                 𝑖̂ 𝑗̂ 𝑘̂
Now, 𝑎⃗ × 𝑏⃗⃗ = |3 1 4| = (1 − (−4))𝑖̂ − (3 − 4)𝑗̂ + (−3 − 1)𝑘̂ = 5𝑖̂ + 𝑗̂ − 4𝑘̂.                                                                                         = 𝑎⃗ ∙ 𝑎⃗ + 𝑎⃗ ∙ (𝑏⃗⃗ + 𝑐⃗) + 𝑏⃗⃗ ∙ 𝑏⃗⃗ + 𝑏⃗⃗ ∙ (𝑐⃗ + 𝑎⃗) + 𝑐⃗ ∙ (𝑎⃗ + 𝑏⃗⃗) + 𝑐⃗ ∙ 𝑐⃗
                 1 −1 1                                                                                                                                                         2
                                                                                                                                                                = |𝑎⃗|2 + |𝑏⃗⃗| + |𝑐⃗|2 = 9 + 16 + 25 = 50.
Therefore, area of parallelogram |𝑎⃗ × 𝑏⃗⃗| = √52 + 12 + (−4)2 = √25 + 1 + 16 = √42sq units.
                                                                                                                                         Therefore, |𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗| = √50 = 5√2.
7.Show that the position vector of the point R, which divides the line joining the
points P and Q having the position vectors𝒂                 ⃗⃗internally in the ratio𝒎: 𝒏is
                                                     ⃗⃗ and 𝒃
 ⃗⃗+𝒏𝒂
𝒎𝒃   ⃗⃗
       .
 𝒎+𝒏
Solution:Given ⃗⃗⃗⃗⃗⃗     ⃗⃗⃗⃗⃗⃗⃗ = 𝑏⃗⃗.
               𝑂𝑃 = 𝑎⃗ and𝑂𝑄
                                                                         𝑃𝑅        𝑚
 R divides ⃗⃗⃗⃗⃗⃗
           𝑃𝑄 internally in the ratio of 𝑚 ∶ 𝑛.                               =
                                                                         𝑅𝑄        𝑛