Sol Pyq
Sol Pyq
ANSWER KEYS
1. (3) 2. (4) 3. (3) 4. (1) 5. (4) 6. (15) 7. (2) 8. (3125)
9. (190) 10. (4) 11. (4) 12. (3) 13. (1) 14. (4) 15. (360) 16. (432)
17. (1) 18. (4) 19. (2) 20. (3) 21. (3) 22. (26) 23. (3) 24. (3)
25. (1) 26. (10) 27. (4) 28. (4) 29. (2039) 30. (4)
1. (3)
The domain of the function
2
−1 3x +x−1 x−1
−1
f (x)= sin ( )+ cos ( )
2
x+1
(x−1)
For, cos −1
(
x−1
x+1
)
x−1
−1 ≤ ≤ 1
x+1
2
⇒ −1 ≤ 1 − ≤ 1
x+1
−2
⇒ −2 ≤ ≤ 0
x+1
1
⇒ 0 ≤ ≤ 1
x+1
⇒ x + 1 ∈ [1, ∞)
⇒ x ∈ [0, ∞) . . . .(i)
2
3x +x−1
−1 ≤ ≤ 1
2
( x−1 )
2 2 2
⇒ −(x − 1) ≤ 3x + x − 1 ≤ (x − 1) , x ≠ 1
Now, −(x − 1)
2
2
≤ 3x + x − 1, x ≠ 1
2
⇒ 4x − x ≥ 0 , x ≠ 1
⇒ x(4x − 1)≥ 0, x ≠ 1
1
⇒ x ∈ (−∞, 0] ∪[ , ∞) −{1} . . . .(ii)
4
And 3x 2
+ x − 1 ≤ (x − 1) , x ≠ 1
2
2
⇒ 2x + 3x − 2 ≤ 0, x ≠ 1
1
⇒ x ∈[−2, ] . . . .(iii)
2
Domain of the function sin from the equations (ii) & (iii) is
−1 3x +x−1
( )
2
(x−1)
1 1
⇒ x ∈[−2, 0]∪[ , ] . . . .(iv)
4 2
Now the domain of the given function will be the intersection of the equation (i) & (iv)
Hence, domain is x ∈[ 1
4
,
1
2
]∪{0}
2. (4)
2 −1
f (x) = ln(4x + 11x + 6) + sin (4x + 3)
10x + 6
−1
+ cos ( )
3
2
(i) 4x + 11x + 6 > 0
2
4x + 8x + 3x + 6 > 0
3
x ∈ (−∞, −2) ∪ (− , ∞)
4
(ii) 4x + 3 ∈ [−1, 1]
x ∈ [−1, −1/2]
10x + 6
(iii) ∈ [−1, 1]
3
9 3
x ∈ [− ,− ]
10 10
3 1 3 1
x ∈ (− ,− ] α = − ,β = −
4 2 4 2
5
α + β = −
4
36|α + β| = 45
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
3. (3) We have,
| [ x ] | −2
f (x)= √
| [ x ] | −3
For domain,
| [ x ] | −2
( )≥ 0
| [ x ] | −3
∴ (a + b + c)= −3 +(−2)+3 = −2
(∵ a < b < c)
4. (1)
Given,
f : R → R be a function defined by f (x)= log √m
{√2(sin x − cos x)+m − 2} , for some m,
Also given the range of f is [0, 2],
Now we know that,
−√2 ≤ sin x − cos x ≤ √2
Given, 0 ≤ f (x)≤ 2
⇒ 0 ≤ log (k + m − 2)≤ 2
√m
⇒ 1 ≤ k + m − 2 ≤ m
⇒ −m + 3 ≤ k ≤ 2 …(2)
⇒ m = 5
5. (4)
Given:
[x]
f (x)=
2
1+x
So,
2
f (x)= ; x ∈ [2, 3)
2
1+x
3
f (x)= ; x ∈ [3, 4)
2
1+x
4
f (x)= ; x ∈ [4, 5)
2
1+x
5
f (x)= ; x ∈ [5, 6)
2
1+x
Hence,
5 2
f (x)∈( , ]
37 5
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
6. (15)
Given,
2
f (x)=|5x − 7|+[x + 2x]
2
=|5x − 7|+[(x + 1) − 1]
2
=|5x − 7|+[(x + 1) ]−1
4
)=
3
4
+ 4 =
19
4
and f ( 7
5
)= 0 + 4 = 4
5
) = 4 and f (2) max
= 11
min
25 25 50
f (x)= [(2 − x )(2 + x )]
1
50 50
= (4 − x )
1
50 50
1
So g(1)= f (1)+1 = 3 50
+ 1
1
8. (3125)
Given:
3x+2
1
f (x)=
2x+3
Now,
2 1 1
f (x)= f of (x)
3x+2
3( ) +2
2x+3
2
⇒ f (x)=
3x+2
2( ) +3
2x+3
9x+6+4x+6
2
⇒ f (x)=
6x+4+6x+9
13x+12
2
⇒ f (x) =
12x+13
13x+12
3( ) +2
12x+13
3
⇒ f (x)=
13x+12
2( ) +3
12x+13
3 63x+62
⇒ f (x)=
62x+63
63x+62
3( ) +2
62x+63
4
⇒ f (x)=
63x+62
2( ) +3
62x+63
4 313x+312
⇒ f (x)=
312x+313
5 1563x+1562 ax+b
∴ f (x)= =
1562x+1563 bx+a
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
9. (190)
2n, if n = 1, 2, 3, 4, 5
Given, f (n)={
2n − 11 if n = 6, 7, 8, 9, 10
f (g(2))= 1 ⇒ g(2)= 6
f (g(3))= 4 ⇒ g(3)= 2
f (g(4))= 3 ⇒ g(4)= 7
f (g(5))= 6 ⇒ g(5)= 3
So, g(10)⋅[g(1)+g(2)+g(3)+g(4)+g(5)]
= 10 ⋅[1 + 6 + 2 + 7 + 3]= 190
10. (4)
2
x
f og(x)= f (g(x)) = f( )
2
x +1
2 2 2
x x −x −1 −1
= − 1 = =
2 2 2
x +1 x +1 x +1
We know that, 0 ≤ x 2
< ∞, ∀x ∈ R
1 −1
2
⇒ 1 ≤ x + 1 < ∞, ∀x ∈ R ⇒ 1 ≥ > 0, ∀x ∈ R ⇒ −1 ≤ < 0, ∀x ∈ R
2 2
x +1 x +1
2
=
−1
2
= f (g(x))
( −x ) +1 x +1
f (x) = ∣
∣1 −
1
x
∣
∣ is not a function
∵ f (1) = 0 and 1 ∈ domain but 0 ∉ co-domain
Hence, f (x) is not a function.
12. (3)
Given,
2
x +2x+1
f (x)=
2
x +1
2 2
( x +1 ) (2x+2)−(x +2x+1)2x
′
f (x) =
2
2
( x +1 )
3 2 3 2
2x +2x + 2x +2− 2x −4x − 2x
′
⇒ f (x) =
2
2
( x +1 )
2
2(1−x ) 2(x+1)(x−1)
′
⇒ f (x) = = −
2 2
2 2
( x +1 ) ( x +1 )
Clearly f (x) is one-one in (−∞, −1) and also in (1, ∞) but f (x) is not one-one in (−∞, ∞)
13. (1)
For one value of n we will get only one corresponding value of f (n), so f (n) is one-one
Now, for n = 2, 4, 6 ⋯ ; f (n)= 4, 8, 12. . .
for n = 1, 5, 9 ⋯ ; f (n)= 1, 3, 5, 7. . .
So range of f (n) is N
Hence f (n) is onto
14. (4)
x + 1 if x is odd
f (x)={
x if x is even
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
Taking m = 1
⇒ f (1 ⋅ n)= f (1)⋅f (n)
⇒ f (1)= 1
Now as per diagram we have only 1 way for arranging f (3)> f (5)> f (7)⋯ > f (99),
Similarly if we choose f (1)= 98 then again we have only 1 way for arranging f (3)> f (5)> f (7)⋯ > f (99) ,
So we can see the arrangement f (3)> f (5)> f (7)⋯ > f (99) depends upon f (1),
So number of ways for choosing f (1) is 50
C
1
18. (4)
Total cases will be 5
C4 × 4!
Now favourable cases for 2f (b)= f (c)+f (d)−f (a) will be,
Case (I) if f (b)= 1 then f (c), f (d), f (a) can take the value 3, 4, 5 & 4, 3, 5 respectively
Case (II) if f (b)= 2 then f (c), f (d), f (a) can take value 3, 5, 4 & 5, 3, 4 respectively
Case (III) if f (b)= 3 then f (c), f (d), f (a) can take value 2, 5, 1 & 5, 2, 1 respectively
So total favourable case will be 6
So probability=
favourable cases 6 1
= =
total outcomes 5×4! 20
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
19. (2)
Given,
1
f (x)+f ( )= 1 + x
1−x
1
x = −1 ⇒ f (−1)+f ( )= 0 …(2)
2
1 1 3
x = ⇒ f( )+f (2)= …(3)
2 2 2
20. (3)
x
5 5
f (x)= x and f (2 − x)= x
5 +5 5 +5
f (x)+f (2 − x)= 1
1 2 39
⇒ f( )+f ( )+ … + f ( )
20 20 20
1 39 19 21 20
=(f ( )+f ( ))+ … +(f ( )+f ( ))+f ( )
20 20 20 20 20
1 39
= 19 + =
2 2
21. (3)
Let
3 2
f (x)= x − ax + bx − c
′ 2
f (x)= 3x − 2ax + b
′′
f (x)= 6x − 2a
'''
f (x)= 6
Also,
′
f (1)= a
⇒ 3 − 2a + b = a
⇒ 3a = b + 3
Also,
′′
f (2)= 12 − 2a = b
⇒ 12 − 2a = 3a − 3
⇒ 5a = 15 ⇒ a = 3
⇒ b = 6
And,
'''
f (3)= c ⇒ c = 6
Hence,
3 2
f (x)= x − 3x + 6x − 6
Now,
f (3)+2f (0)= 27 − 27 + 18 − 6 − 12 = 0
f (2)+f (1)= 8 − 12 + 12 − 6 + 1 − 3 + 6 − 6 = 0
So,
f (3)+2f (0)= f (2)+f (1)
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
22. (26)
Given that: kf (k) + 2 = 0 for k = 2, 3, 4, 5 which means (k − 2), (k − 3), (k − 4), (k − 5) are the factors of this expression.
Let kf (k) + 2 = a(k − 2)(k − 3)(k − 4)(k − 5) . . . . (i)
P ut k = 0
2 = a(−2)(−3)(−4)(−5)
1
a =
60
Put a = 1
60
in (i), we get
1
kf (k) + 2 = (k − 2)(k − 3)(k − 4)(k − 5)
60
Now, put k = 10
1
10f (10) + 2 = × 8 × 7 × 6 × 5
60
10 f (10) = 26
So, 52 − 10 f (10) = 26
23. (3)
Given,
f (x + y)= f (x)⋅f (y) and f (1)= 3
Now taking x = 1 & y = 1 we get,
2
f (1 + 1)= f (1)⋅f (1)⇒ f (2)= 3
And so on f (n)= 3 n
So, ∑ n
r=1
f (r)= 3279
2 3 n
⇒ 3 + 3 + 3 . . . . . . . +3 = 3279
n
3 −1
⇒ 3 × = 3279
3−1
n
3 −1
⇒ = 1093
2
n
⇒ 3 − 1 = 2186
n
⇒ 3 = 2187
n 7
⇒ 3 = 3
⇒ n = 7
24. (3)
Given,
Functional equation f (x + y)= f (x)+f (y)−1
Now taking x = 0 & y = 0 in above equation we get,
f (0 + 0)= f (0)+f (0)−1 ⇒ f (0)= 1
f ( x ) +f ( h ) −1−f ( x )
′
⇒ f (x)= lim
h
h→0
f ( h ) −1
′
⇒ f (x)= lim
h
h→0
f ( h ) −1
Now let lim = k
h
h→0
So, f ′
(x)= 2
So, f (x)= 2x + 1
And f (−2)= 2 ×(−2)+1 ⇒ f (−2)= −3
Hence, |f (−2)|= 3
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
25. (1)
Given functional equation is
f (m + n)= f (m)+f (n); m, n ∈ N . . . .(1)
Put m = n = 3
f (3 + 3) = f (3) + f (3)
= f (1 + 1) + f (1)
9 = 3f (1)
⇒ f (1) = 3
Now,
f (2) ⋅ f (3) = (6)(9) = 54
26. (10)
f (x)
∵ lim = 1 ⇒ f '(0)= 1
x
x→0
2 2
f (x + y)= f (x)+f (y)+xy + x y
put y = −x
2 2
f '(0)= f '(x)+x − 2x
2
1 = f '(x)−x
2
f '(x)= 1 + x
f '(3)= 10 .
27. (4)
Given,
1
f (n) + f (n + 1) = 1, ∀ n ∈ {1, 2, 3}
n
⇒ nf (n) + f (n + 1) = n
At n = 1,
f (1) + f (2) = 1 ....(1)
At n = 2,
2f (2) + f (3) = 2 ....(2)
At n = 3,
3f (3) + f (4) = 3 ....(3)
Put the value of f (2) from equation (1) in equation (2),
2(1 − f (1)) + f (3) = 2
⇒ f (4) = 3 − 6f (1)
∵ f : {1, 2, 3, 4} → {a ∈ Z : |a| ≤ 8}
⇒ −8 ≤ f (4) ≤ 8
⇒ −8 ≤ 3 − 6f (1) ≤ 8
−5 11
⇒ ≤ f (1) ≤
6 6
⇒ f (1) = 0, 1
Case I: f (1) = 0
⇒ f (2) = 1, f (3) = 0, f (4) = 3
#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course
f (x)=[x]=⎨ −1 ; − 1 ≤ x < 0
⎩
⎪
−2 ; − 2 ≤ x < −1
Given series
1 1 1 1 2 1 3 1 99
S =[− ]+[− − ]+[− − ]+[− − ]+ … +[− − ]
3 3 100 3 100 3 100 3 100
−1 0 ≤ r ≤ 66
General term T
1 r
r
=[− − ]={
3 100
−2 r > 66
66 99
⇒ S = ∑ (−1)+ ∑ (−2)=(−67)+(−2)×33
r=0 r=67
= − 133
29. (2039)
Given:
f (x)= ax − 3
1
b −1 x−7 3
Now, let
h(x)=(f ∘ g)(x)
1
−1 x−7 3
⇒ h (x)= ( )
2
Let
1
x−7 3
y = ( )
2
x−7
3
⇒ y =( )
2
3
⇒ x = 2y + 7
So, inverse of h −1
(x) is 2x 3
+ 7 i.e.,
3
h(x)= f og(x)= 2x + 7
Also,
b
f og(x)= a(x + c)−3
b 3
⇒ ax + ac − 3 = 2x + 7
On comparing, we get
a = 2, b = 3, c = 5
So,
f (x)= 2x − 3
3
g(x)= x + 5
Now,
f og (ac)= f og(10)= f (1005)= 2007
Therefore,
f og (ac)+(gof )(b)= 2007 + 32 = 2039
30. (4)
Given:
2
x − 4x +[x]+3 = x[x]
2
⇒ x − 4x + 3 = x[x]−[x]
⇒ x = 1 or x − 3 =[x]
If x − 3 =[x]
⇒ x–[x]= 3
⇒{x}= 3
#MathBoleTohMathonGo
www.mathongo.com