0% found this document useful (0 votes)
26 views9 pages

Sol Pyq

The document contains answer keys and solutions for important previous year questions (PYQs) related to functions, specifically for the JEE Main Crash Course. It includes detailed explanations for various mathematical functions and their domains, as well as calculations leading to specific values. The document is structured with numbered questions and corresponding answers, providing a comprehensive resource for students preparing for the exam.

Uploaded by

beigasad70
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views9 pages

Sol Pyq

The document contains answer keys and solutions for important previous year questions (PYQs) related to functions, specifically for the JEE Main Crash Course. It includes detailed explanations for various mathematical functions and their domains, as well as calculations leading to specific values. The document is structured with numbered questions and corresponding answers, providing a comprehensive resource for students preparing for the exam.

Uploaded by

beigasad70
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Most Important PYQs Functions

Answer Keys and Solutions JEE Main Crash Course

ANSWER KEYS
1. (3) 2. (4) 3. (3) 4. (1) 5. (4) 6. (15) 7. (2) 8. (3125)
9. (190) 10. (4) 11. (4) 12. (3) 13. (1) 14. (4) 15. (360) 16. (432)
17. (1) 18. (4) 19. (2) 20. (3) 21. (3) 22. (26) 23. (3) 24. (3)
25. (1) 26. (10) 27. (4) 28. (4) 29. (2039) 30. (4)

1. (3)
The domain of the function
2
−1 3x +x−1 x−1
−1
f (x)= sin ( )+ cos ( )
2
x+1
(x−1)

For, cos −1
(
x−1

x+1
)

x−1
−1 ≤ ≤ 1
x+1

2
⇒ −1 ≤ 1 − ≤ 1
x+1

−2
⇒ −2 ≤ ≤ 0
x+1

1
⇒ 0 ≤ ≤ 1
x+1

⇒ x + 1 ∈ [1, ∞)

⇒ x ∈ [0, ∞) . . . .(i)

For, sin −1 3x +x−1


( )
2
(x−1)

2
3x +x−1
−1 ≤ ≤ 1
2
( x−1 )

2 2 2
⇒ −(x − 1) ≤ 3x + x − 1 ≤ (x − 1) , x ≠ 1

Now, −(x − 1)
2
2
≤ 3x + x − 1, x ≠ 1

2
⇒ 4x − x ≥ 0 , x ≠ 1

⇒ x(4x − 1)≥ 0, x ≠ 1

1
⇒ x ∈ (−∞, 0] ∪[ , ∞) −{1} . . . .(ii)
4

And 3x 2
+ x − 1 ≤ (x − 1) , x ≠ 1
2

2
⇒ 2x + 3x − 2 ≤ 0, x ≠ 1

⇒(x + 2)(2x − 1)≤ 0, x ≠ 1

1
⇒ x ∈[−2, ] . . . .(iii)
2

Domain of the function sin from the equations (ii) & (iii) is
−1 3x +x−1
( )
2
(x−1)

1 1
⇒ x ∈[−2, 0]∪[ , ] . . . .(iv)
4 2

Now the domain of the given function will be the intersection of the equation (i) & (iv)
Hence, domain is x ∈[ 1

4
,
1

2
]∪{0}

2. (4)
2 −1
f (x) = ln(4x + 11x + 6) + sin (4x + 3)

10x + 6
−1
+ cos ( )
3

2
(i) 4x + 11x + 6 > 0

2
4x + 8x + 3x + 6 > 0

(4x + 3)(x + 2) > 0

3
x ∈ (−∞, −2) ∪ (− , ∞)
4

(ii) 4x + 3 ∈ [−1, 1]
x ∈ [−1, −1/2]

10x + 6
(iii) ∈ [−1, 1]
3

9 3
x ∈ [− ,− ]
10 10

3 1 3 1
x ∈ (− ,− ] α = − ,β = −
4 2 4 2

5
α + β = −
4

36|α + β| = 45

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

3. (3) We have,
| [ x ] | −2
f (x)= √
| [ x ] | −3

For domain,
| [ x ] | −2
( )≥ 0
| [ x ] | −3

Case I : When |[x]| − 2 ≥ 0 and |[x]|−3 > 0, then


∴ x ∈(−∞, −3)∪[4, ∞) . . .(1)

Case II : When |[x]|−2 ≤ 0 and |[x]|−3 < 0, then


∴ x ∈[−2, 3) . . .(2)

So, from (1) and (2), we get


Domain of function is
(−∞, −3)∪[−2, 3)∪[4, ∞)

∴ (a + b + c)= −3 +(−2)+3 = −2

(∵ a < b < c)

4. (1)
Given,
f : R → R be a function defined by f (x)= log √m
{√2(sin x − cos x)+m − 2} , for some m,
Also given the range of f is [0, 2],
Now we know that,
−√2 ≤ sin x − cos x ≤ √2

⇒ −2 ≤ √2(sin x − cos x)≤ 2

(Assuming √2(sin x − cos x)= k)


⇒ −2 ≤ k ≤ 2 …(1)

Now taking function f (x)= log √m


(k + m − 2)

Given, 0 ≤ f (x)≤ 2
⇒ 0 ≤ log (k + m − 2)≤ 2
√m

⇒ 1 ≤ k + m − 2 ≤ m

⇒ −m + 3 ≤ k ≤ 2 …(2)

Now from equations (1) & (2), we get


−m + 3 = −2

⇒ m = 5

5. (4)
Given:
[x]
f (x)=
2
1+x

So,
2
f (x)= ; x ∈ [2, 3)
2
1+x

3
f (x)= ; x ∈ [3, 4)
2
1+x

4
f (x)= ; x ∈ [4, 5)
2
1+x

5
f (x)= ; x ∈ [5, 6)
2
1+x

Hence,
5 2
f (x)∈( , ]
37 5

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

6. (15)
Given,
2
f (x)=|5x − 7|+[x + 2x]

2
=|5x − 7|+[(x + 1) − 1]

2
=|5x − 7|+[(x + 1) ]−1

(as [x − 1]=[x]-1 where [.] is greatest integer function)

Now critical points of


7
f (x)= , √5 − 1, √6 − 1, √7 − 1, √8 − 1, 2
5

∴ Maximum or minimum value of f (x) occur at critical points or boundary points.


So, f(
5

4
)=
3

4
+ 4 =
19

4
and f ( 7

5
)= 0 + 4 = 4

As both |5x − 7| and x 2


+ 2x are increasing in nature after x = 7

So, f (2)=|10 − 7|+[4 + 4]= 3 + 8 = 11


∴ f(
7

5
) = 4 and f (2) max
= 11
min

So sum of minimum and maximum value is 4 + 11 = 15


7. (2)
1
25

Given f (x)= [2(1 − x 50


25
)(2 + x )]
2

25 25 50
f (x)= [(2 − x )(2 + x )]
1
50 50
= (4 − x )
1

50 50
1

i.e. f (f (x))= (4 − ((4 − x 50


)
50
) ) = x

Now g(x)= f (f (f (x)))+f (f (x))


= f (x)+x
1

So g(1)= f (1)+1 = 3 50
+ 1
1

Hence [g(1)]=[3 50 + 1]= 2

8. (3125)
Given:
3x+2
1
f (x)=
2x+3

Now,
2 1 1
f (x)= f of (x)
3x+2
3( ) +2
2x+3
2
⇒ f (x)=
3x+2
2( ) +3
2x+3

9x+6+4x+6
2
⇒ f (x)=
6x+4+6x+9

13x+12
2
⇒ f (x) =
12x+13

13x+12
3( ) +2
12x+13
3
⇒ f (x)=
13x+12
2( ) +3
12x+13

3 63x+62
⇒ f (x)=
62x+63
63x+62
3( ) +2
62x+63
4
⇒ f (x)=
63x+62
2( ) +3
62x+63

4 313x+312
⇒ f (x)=
312x+313

5 1563x+1562 ax+b
∴ f (x)= =
1562x+1563 bx+a

∴ a + b = 1563 + 1562 = 3125

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

9. (190)
2n, if n = 1, 2, 3, 4, 5
Given, f (n)={
2n − 11 if n = 6, 7, 8, 9, 10

So, f (1)= 2, f (2)= 4, .....f (5)= 10


And f (6)= 1, f (7)= 3, f (8)= 5 ......f (10)= 9
n + 1 ; n ∈ odd
f (g(n))={
n − 1 ; n ∈ even

So, f (g(10))= 9 ⇒ g(10)= 10


f (g(1))= 2 ⇒ g(1)= 1

f (g(2))= 1 ⇒ g(2)= 6

f (g(3))= 4 ⇒ g(3)= 2

f (g(4))= 3 ⇒ g(4)= 7

f (g(5))= 6 ⇒ g(5)= 3

So, g(10)⋅[g(1)+g(2)+g(3)+g(4)+g(5)]
= 10 ⋅[1 + 6 + 2 + 7 + 3]= 190

10. (4)
2
x
f og(x)= f (g(x)) = f( )
2
x +1

2 2 2
x x −x −1 −1
= − 1 = =
2 2 2
x +1 x +1 x +1

We know that, 0 ≤ x 2
< ∞, ∀x ∈ R

1 −1
2
⇒ 1 ≤ x + 1 < ∞, ∀x ∈ R ⇒ 1 ≥ > 0, ∀x ∈ R ⇒ −1 ≤ < 0, ∀x ∈ R
2 2
x +1 x +1

So, range of f og(x) is [−1, 0)⊂ R .


Hence, the function f og(x) is into function and f og(−x)= f (g(−x))= −1

2
=
−1

2
= f (g(x))
( −x ) +1 x +1

∴ f og(x) is an even function. So, it is a many one function.


Hence, f og(x) is neither one-one nor onto function.
11. (4) f : (0, ∞) → (0, ∞)

f (x) = ∣
∣1 −
1

x

∣ is not a function
∵ f (1) = 0 and 1 ∈ domain but 0 ∉ co-domain
Hence, f (x) is not a function.
12. (3)
Given,
2
x +2x+1
f (x)=
2
x +1
2 2
( x +1 ) (2x+2)−(x +2x+1)2x

f (x) =
2
2
( x +1 )

3 2 3 2
2x +2x + 2x +2− 2x −4x − 2x

⇒ f (x) =
2
2
( x +1 )

2
2(1−x ) 2(x+1)(x−1)

⇒ f (x) = = −
2 2
2 2
( x +1 ) ( x +1 )

Clearly f (x) is one-one in (−∞, −1) and also in (1, ∞) but f (x) is not one-one in (−∞, ∞)
13. (1)
For one value of n we will get only one corresponding value of f (n), so f (n) is one-one
Now, for n = 2, 4, 6 ⋯ ; f (n)= 4, 8, 12. . .

for n = 3, 7, 11 ⋯ ; f (n)= 2, 6, 10. . .

for n = 1, 5, 9 ⋯ ; f (n)= 1, 3, 5, 7. . .

So range of f (n) is N
Hence f (n) is onto
14. (4)
x + 1 if x is odd
f (x)={
x if x is even

∵ g : A → A such that g(f (x))= f (x)


⇒ If x is even then g(x)= x …(1)

If x is odd then g(x + 1)= x + 1 …(2)

from (1) and (2) we can say that g(x)= x if x is even


⇒ If x is odd then g(x) can take any value in set A
so number of g(x)= 10 5
× 1

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

15. (360) f (1) + f (2) + 1 = f (4) ≤ 6


f (1) + f (2) ≤ 5

Case (i) f (1) = 1 ⇒ f (2) = 1, 2, 3, 4 ⇒ 4 mappings


Case (ii) f (1) = 2 ⇒ f (2) = 1, 2, 3 ⇒ 3 mappings
Case (iii) f (1) = 3 ⇒ f (2) = 1, 2 ⇒ 2 mappings
Case (iv) f (1) = 4 ⇒ f (2) = 1 ⇒ 1 mapping
f (5) & f (6) both have 6 mappings each
Number of functions = (4 + 3 + 2 + 1) × 6 × 6 = 360
16. (432)
Given,
f (m ⋅ n)= f (m)⋅f (n)

Taking m = 1
⇒ f (1 ⋅ n)= f (1)⋅f (n)

⇒ f (1)= 1

Now taking m = 3 & n = 3 we get,


f (9) = f (3) × f (3) ,
So, (f (3), f (9)) have two possibility (1, 1) & (3, 9)
Now taking m = 2 & n = 1 we get,
f (2 ⋅ 1)= f (2)⋅f (1)

Now here f (1)= 1, so f (2) can take all 6 numbers,


Similarly, for f (5) & f (8) there will be 6 ways each,
So, total possible function will be, = 1 × 6 × 2 × 6 × 6 × 1 = 432
17. (1)
Given, f (1, 3, 5, 7, ⋯ , 99)→(2, 4, 6, 8, ⋯ , 100)
The number of elements in domain and codomain is 99.
Now, let us assume f (1)= 100

Now as per diagram we have only 1 way for arranging f (3)> f (5)> f (7)⋯ > f (99),
Similarly if we choose f (1)= 98 then again we have only 1 way for arranging f (3)> f (5)> f (7)⋯ > f (99) ,
So we can see the arrangement f (3)> f (5)> f (7)⋯ > f (99) depends upon f (1),
So number of ways for choosing f (1) is 50
C
1

18. (4)
Total cases will be 5
C4 × 4!

Now favourable cases for 2f (b)= f (c)+f (d)−f (a) will be,
Case (I) if f (b)= 1 then f (c), f (d), f (a) can take the value 3, 4, 5 & 4, 3, 5 respectively
Case (II) if f (b)= 2 then f (c), f (d), f (a) can take value 3, 5, 4 & 5, 3, 4 respectively
Case (III) if f (b)= 3 then f (c), f (d), f (a) can take value 2, 5, 1 & 5, 2, 1 respectively
So total favourable case will be 6
So probability=
favourable cases 6 1
= =
total outcomes 5×4! 20

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

19. (2)
Given,
1
f (x)+f ( )= 1 + x
1−x

x = 2 ⇒ f (2)+f (−1)= 3 …(1)

1
x = −1 ⇒ f (−1)+f ( )= 0 …(2)
2

1 1 3
x = ⇒ f( )+f (2)= …(3)
2 2 2

On subtracting equation (3) and equation (2) we get,


3
f (2) − f (−1) = . . . . . . . . (4)
4

On adding equation (1) and equation (4) we get,


9
2f (2)=
2
9
⇒ f (2)=
4

20. (3)
x
5 5
f (x)= x and f (2 − x)= x
5 +5 5 +5

f (x)+f (2 − x)= 1

1 2 39
⇒ f( )+f ( )+ … + f ( )
20 20 20

1 39 19 21 20
=(f ( )+f ( ))+ … +(f ( )+f ( ))+f ( )
20 20 20 20 20

1 39
= 19 + =
2 2

21. (3)
Let
3 2
f (x)= x − ax + bx − c

′ 2
f (x)= 3x − 2ax + b

′′
f (x)= 6x − 2a

'''
f (x)= 6

Also,

f (1)= a

⇒ 3 − 2a + b = a

⇒ 3a = b + 3

Also,
′′
f (2)= 12 − 2a = b

⇒ 12 − 2a = 3a − 3

⇒ 5a = 15 ⇒ a = 3

⇒ b = 6

And,
'''
f (3)= c ⇒ c = 6

Hence,
3 2
f (x)= x − 3x + 6x − 6

Now,
f (3)+2f (0)= 27 − 27 + 18 − 6 − 12 = 0

f (2)+f (1)= 8 − 12 + 12 − 6 + 1 − 3 + 6 − 6 = 0

So,
f (3)+2f (0)= f (2)+f (1)

⇒2f (0)−f (1)+f (3)= f (2)

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

22. (26)
Given that: kf (k) + 2 = 0 for k = 2, 3, 4, 5 which means (k − 2), (k − 3), (k − 4), (k − 5) are the factors of this expression.
Let kf (k) + 2 = a(k − 2)(k − 3)(k − 4)(k − 5) . . . . (i)
P ut k = 0

2 = a(−2)(−3)(−4)(−5)

1
a =
60

Put a = 1

60
in (i), we get
1
kf (k) + 2 = (k − 2)(k − 3)(k − 4)(k − 5)
60

Now, put k = 10
1
10f (10) + 2 = × 8 × 7 × 6 × 5
60

10 f (10) = 26

So, 52 − 10 f (10) = 26
23. (3)
Given,
f (x + y)= f (x)⋅f (y) and f (1)= 3
Now taking x = 1 & y = 1 we get,
2
f (1 + 1)= f (1)⋅f (1)⇒ f (2)= 3

Similarly f (2 + 1)= f (2)⋅f (1)⇒ f (3)= 3 2


× 3 = 3
3

And so on f (n)= 3 n

So, ∑ n

r=1
f (r)= 3279

⇒ f (1)+f (2)+f (3). . . . . . . f (n)= 3279

2 3 n
⇒ 3 + 3 + 3 . . . . . . . +3 = 3279
n
3 −1
⇒ 3 × = 3279
3−1
n
3 −1
⇒ = 1093
2

n
⇒ 3 − 1 = 2186

n
⇒ 3 = 2187

n 7
⇒ 3 = 3

⇒ n = 7

24. (3)
Given,
Functional equation f (x + y)= f (x)+f (y)−1
Now taking x = 0 & y = 0 in above equation we get,
f (0 + 0)= f (0)+f (0)−1 ⇒ f (0)= 1

Now we know that,


f ( x+h ) −f ( x )

f (x)= lim
h
h→0

f ( x ) +f ( h ) −1−f ( x )

⇒ f (x)= lim
h
h→0

f ( h ) −1

⇒ f (x)= lim
h
h→0

f ( h ) −1
Now let lim = k
h
h→0

So, the equation becomes f ′


(x)= k

Now putting x = 0 in above equation we get,


′ ′
f (0)= k ⇒ k = 2 {as given f (0)= 2}

So, f ′
(x)= 2

Now integrate both side we get,


f (x)= 2x + c

Now again taking x = 0 we get,


f (0)= 2 × 0 + c ⇒ c = 1 {as f (0)= 1}

So, f (x)= 2x + 1
And f (−2)= 2 ×(−2)+1 ⇒ f (−2)= −3
Hence, |f (−2)|= 3

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

25. (1)
Given functional equation is
f (m + n)= f (m)+f (n); m, n ∈ N . . . .(1)

Put m = n = 3
f (3 + 3) = f (3) + f (3)

⇒ f (3) = 9[∵ f (6)= 18]

Put m = 2, n = 1 in equation (1)


∴ f (3) = f (2 + 1) = f (2) + f (1)

= f (1 + 1) + f (1)

= f (1) + f (1) + f (1)

9 = 3f (1)

⇒ f (1) = 3

∴ f (2) = f (1 + 1) = f (1) + f (1) = 6

Now,
f (2) ⋅ f (3) = (6)(9) = 54

26. (10)
f (x)
∵ lim = 1 ⇒ f '(0)= 1
x
x→0

2 2
f (x + y)= f (x)+f (y)+xy + x y

Differentiate w.r.t. x keeping y constant


2
f '(x + y)= f '(x)+0 + y + 2xy

put y = −x
2 2
f '(0)= f '(x)+x − 2x

2
1 = f '(x)−x

2
f '(x)= 1 + x

f '(3)= 10 .
27. (4)
Given,
1
f (n) + f (n + 1) = 1, ∀ n ∈ {1, 2, 3}
n

⇒ nf (n) + f (n + 1) = n

At n = 1,
f (1) + f (2) = 1 ....(1)
At n = 2,
2f (2) + f (3) = 2 ....(2)
At n = 3,
3f (3) + f (4) = 3 ....(3)
Put the value of f (2) from equation (1) in equation (2),
2(1 − f (1)) + f (3) = 2

⇒ f (3) = 2f (1) ....(4)


Put the value of f (3) from equation (4) in equation (3),
3(2f (1)) + f (4) = 3

⇒ f (4) = 3 − 6f (1)

∵ f : {1, 2, 3, 4} → {a ∈ Z : |a| ≤ 8}

⇒ −8 ≤ f (4) ≤ 8

⇒ −8 ≤ 3 − 6f (1) ≤ 8

⇒ −11 ≤ −6f (1) ≤ 5

−5 11
⇒ ≤ f (1) ≤
6 6

⇒ f (1) = 0, 1

Case I: f (1) = 0
⇒ f (2) = 1, f (3) = 0, f (4) = 3

Case II: f (1) = 1


⇒ f (2) = 0, f (3) = 2, f (4) = −3

Therefore, two such functions are possible.

#MathBoleTohMathonGo
www.mathongo.com
Most Important PYQs Functions
Answer Keys and Solutions JEE Main Crash Course

28. (4) Greatest integer function


⎧ 0 ; 0 ≤ x < 1

f (x)=[x]=⎨ −1 ; − 1 ≤ x < 0


−2 ; − 2 ≤ x < −1

Given series
1 1 1 1 2 1 3 1 99
S =[− ]+[− − ]+[− − ]+[− − ]+ … +[− − ]
3 3 100 3 100 3 100 3 100

−1 0 ≤ r ≤ 66
General term T
1 r
r
=[− − ]={
3 100
−2 r > 66
66 99
⇒ S = ∑ (−1)+ ∑ (−2)=(−67)+(−2)×33
r=0 r=67

= − 133

29. (2039)
Given:
f (x)= ax − 3
1

b −1 x−7 3

g(x)= x + c, x ∈ R (f og) (x)= ( )


2

Now, let
h(x)=(f ∘ g)(x)
1

−1 x−7 3
⇒ h (x)= ( )
2

Let
1

x−7 3

y = ( )
2

x−7
3
⇒ y =( )
2

3
⇒ x = 2y + 7

So, inverse of h −1
(x) is 2x 3
+ 7 i.e.,
3
h(x)= f og(x)= 2x + 7

Also,
b
f og(x)= a(x + c)−3

b 3
⇒ ax + ac − 3 = 2x + 7

On comparing, we get
a = 2, b = 3, c = 5

So,
f (x)= 2x − 3

3
g(x)= x + 5

Now,
f og (ac)= f og(10)= f (1005)= 2007

(gof )(b)= gof (3)= g(3)= 32

Therefore,
f og (ac)+(gof )(b)= 2007 + 32 = 2039

30. (4)
Given:
2
x − 4x +[x]+3 = x[x]

2
⇒ x − 4x + 3 = x[x]−[x]

⇒(x − 1)(x − 3)=[x](x − 1)

⇒ x = 1 or x − 3 =[x]
If x − 3 =[x]
⇒ x–[x]= 3

⇒{x}= 3

which is not Possible, since {x}∈ [0, 1).


Hence, x = 1 is the only one solution in (−∞, ∞).

#MathBoleTohMathonGo
www.mathongo.com

You might also like