Mathematical Induction
Mathematical Induction
MATHEMATICAL INDUCTION
                                       LONG ANSWERQUESTIONS:
                                                                                                   SOLUTION
                                                                                         n+D'(n+2)
                                                                      nterms                          -,VneN
                                                           Fooos upto                         12
                                 +2' +3)+.
  ***1. Show that l' +(1+2')+(1'
                                                                          (Mar-09, 12, May-09,Mar-16)
                                      +--+rt)=Mn+I)(n+2)
      S(n)=I+{l+2')+(r+2+3}4---+(l+2+3            12       tneN
 SolLet                                              n(n+1)(2n+1)
                                                           12
                                                                                                        (IM)
      P+(f+2)+{ +2+3)+---+                         6
                                                                          12
                                                for n=1.
     Step-I: To prove that S(n) is true
     LHS =                             6
                     6
     RHS
                     12
                                                                                                        (IM)
     . LHS =RHS, S(1) is true.
     Step-II: Assumethat S(n) is true for n=k.
                                                       k(k+1)(2k+1)_ k(k+1) (k+2)-....).(IM)
    ie; +(e +2')+(> +2' +3)+---+                                6                   12
     P+(+2)+(P+2+$)+-- k(k+1)(2k
                            6
                                 +1),(k+1)(k+2)(2k+3)
                                             6
     (k+)(k +2)(k+2)(k+3)
             12
                          (k+1)(k+2j(k +3)_(k+1)(k +1+1)}(k+1+2)
                                                           12                            12
   S(k+1) is true                                                                                      (3M)
NARAYANA                                                                                           Page.no.18
JR-IPE-MATHS-IA                                                                               SOLUTIONS
            = +
                  '+2,+2' +3'                                     I+2' +3' +....tn'
                                                                  I+345+....        n
                                                                             (2n-1)2n +9n+
Sol: LetS(n) 1
                                                       t......+
                         1+3           1+3+5                                          24
    L,l+2, I'+2'+3'
            1+3         1+3+5
                                                                           al2n'+9n +13|
    1
                                                      [2+(o-192]
   =,P+2,'+2+3'                                   n'(n+1)14
    1 I+3           1+3+5                              n'
                                                                        2r'+9n +13                    4.
   i'+2'                 +24
                           +3' t + 1 ) ?                                                              (IM)
            I+3         I+3+5                           4
                                                                -2r'
                                                                 24
                                                                     +9n +13]
    1
   Step-I: To prove that S(n) is true for n=1.
        LHS=7+)(l+1)' 4
                    4             4           4
                                                  1
        RHS-+9n+13]-2*9+ 13]=1
                                                                                                      (IM)
        : L.H.S =R.H.S, S(1) is true.
                                            +13|
                  +6k +6k +2+9k +18k +9+13k
                                                                                                    Page.no.19
NARAYANA
 JR-IPE-ATHS-IA                                       +---upto ntems =                                sOLWT
 ***3.S that Yne N4
 Sol:
                                      4.7 7.10
                   I.4,7, . . .arein A.P, a =l,d=3
           ,=0+(n-)d=1+(n-1)3 =1+ 3n-3 =31-2
                                                                                    3n +1
                                                                                    : h AP.
                                                                                            (Mar-6,1,May
          Since 4.7.10,....are in A.P, a-4, d=3
                                                                                                t,-4H\n-l
        .0+{n-1)d=4+(n -1)3 =4+3n-3=3n +1
                                                                          n
        Let S(n)= 14             +
                            4,7 7.10               (3n-2)(3n+1) 3n+1
        Step-l: To prove that S(n)is true for n=l.
                                                        1
        LHS
                   (3n-2)(3n+1) (3-2)(3+1) 4
                             1       1
        RHS =
                3n +1      3+1       4
         :. LHS = RHS, S(1) is true
         Step-II: Assume that S(n) is true for n=k.
           1 1 ,1                             1         k
            1.4 4.7 7.10                 (3k-2)(3k +1) 3k+1                   .()
        Step-II: Wehave to prove that S(n) is true for n=k+1
                                     1
        (k+1)" term =
                           (3k+1)(3k+4) Adding on both sides          (3k +1)(3k+4) to (1) we get
           1,1, 1                                                                                 1
           14 4.7 7.10                    (3k-2)(3k +1) (3k +1)(3k +4) 3k+1 (3k +1)(3k +4)
               1
                      k+
                             L134 +4k+1]
                             1                                    1       34 +3k +k+1
             3k+1          3k +4          3k +1    3k +4       3k+1            3k +4
NARAYANA                                                                                              Page.no
JR-IPE-MATHS-IA
                                                                           o          SOLUTIONS
                      1   1     1                                                            (IM)
Sol :Let S(n) =13 3.5 5.7                    (2n-1)(2n+1) 2n+1
                                       for n=1.
     Step-I: To prove that S(n) istrue
                      1               1 1
   LHS =
            (2n-1)(2n +1) 1.3 3                   .. LHS =RHS, S(1) is true.
                                                                                             (IM)
                           11
    RHS =                       3
            2n+1          2+1
                                       true for n =k.
    Step-II: Assume that S(n) is
                                         1                                                   (IM)
        1    1,1 +                                                   (1)
                                    (2%-1)(2k+1) 2k+1
   i.e; 1.3'3.5 5.7
                                  S(n)           is true for n=k+l
   Step-II: We have to prove that
                                                                                      get
                                             Adding onboth sides, 2k+)(2k+3) to(1) we
                                1
   (k+1)" term = (2k+1)(2k+3)
                                                                                          Page.no.21
NARAYANA
JR-PE-MATHS-IA
               1.23+23.4+345+---+nn+1)(z+2)="+|2+2)(2+3)
                                                                      (TS-Mar-2015,17)
Sol: Let S(n) =                                   4
NARAYANA
JR-IPE-MATHS-IA                                                                       SOLUTIONS
LHS =a+(n-1)d=a+(1-)d=a
                                             n=1.
   Step-I: To prove that S(n) is true for
     LHS =ar      =ar- =ar
    RHS =
            a(r-i) ar'-1)
               r-1         r-1                                                             (IM)
    :. LHS= RHS, S(1) is true.
                                     for n =k.
    Step-II: Assumethat S(n) is true
                ar'+---+ark- =
                                    a(-1)                                                 (IM)
    1.e; a+ar +                        r-1
                                 as -a+ar"r-ar
                                                          -a+ark+!     au-i)              (3M)
          ar-at ar (r-1)                                                  r-1
                                          r-l
                     r-1
                                                                                       Page.no.23
NARAYANA
                                                                                   SoLUTI0
                                                              induction S(n) is true, Vn e N
                                                   mathematical n.(May-05,Mar-17
JR-IPE-MATHS-IA                       offinite
                              principle                                           1,20,Ts Mar-A9
                       .: the
                         By                  all positive integers
        S(k+1)is true.      divisibleby64for
***9. Showthat 49"
                     +16n-l
                                    +16n-1is
                                                       by64
                                                 divisible                                 (M
                   statenent of 49"
Sol:Let S(n) bethe                 for      n=l.
           To provethat S{n)is true
    Tep-]:
                           +16(1)-l=65-1=64                                                 (IMy
     49" +16n-l= 49
                          S(1) is true
    It is divisible by 64              for n =k.
    Step-l;Assumethat S(n) is true               integer.
     i.e; 49 +16k-1=64m
                             where mis positive
                                                                                            (IM,
    49 =64m -16k+1()
                       show that Sn) is      true for n = k+1
     Step-I:We have to
                         +1)-1=        49*,49 +16k+16-1
    Consider, 49t* +16(k
    =(64m-16k +1)49 +16k +15(: from())49m-784k +16k+64 =64.49m-768k +64
                              +16k+15 = 64
     = 64m.49-16k.49+49
                          64(49m-12k +1)=640                 where = 49m-12k +1
     =64.49m--12,64k +64=
    It is divisible by 64.
    .. S(k+1) is true.
                                                induction S(n) is true, tn eN             (IM)
     .:.By the principle of finite mathematical                               (May -2005)
                                                        positive integers n.
***10. Show that 4" -3n-1 divisible by 9 for all
                                                                                    (IM)
Sol: Letthe given statement byp(n)=4"3n-1 0s divisible by 9.
    Step-1:-Prove that pn) is true n =1(i.e) prove that p(n) is divisible by9             (IM)
               for n = 1
      P() =4-3(1)-1
    =4-4
    =0
     Clearly pn) is divisible by9 for n= l
    Step-2:-Assume thatp(n) is divisible by 9for n=k(ie.) p(n) is true forn=k.            (1M)
      P(K) =4 -3k1=9t
     ’4 =9t +3k +1
    Step-3:- Prove that pn) is divisible by 9 for n=k+ 1                                 (3M)
      p(k+1)=4* -3(k+1)-1
     =4^4-3k-3-1
     =4(9t +3k +1)-3k-3-1
     =36t +12k+4-3k -4
     = 36t +9k=9(4+k)
    Clearly pn) is true for n=k+1
     . pn) is divisible by 9for allne N                                                (1M)
***11. Show that 3.52n +23n+1 is     divisible by 17 tne      N            (May-08,10,12)
NARAYANA
)   JR-IPE-MATHS-IA                                                                   SOLUTIONS
     Sol:Let S(n)bethe statement of 3.52n+l + 23n+1 is divisible by 17                          (IM)
        Step-I: To prove that S(n) is true for n=1.
            s2n+1 +23n*l =3.5* +2* =3(125)+16=375+16=391=17x23
        It is divisible by 17.
        .S(1) is true.                                                                           (IM)
         Step-I: Assume that S(n) is true for n=k.
        Le: 3.52+ +2** =17m where mis positive integer.
         3.52k+ =17m-23k+’(1)                                                                     (IM)
             =(1+3)
             =4
     RHS=(n+1
            -(1+1}
            -22 =4
     LH.S =R.H.S                                                          ----
                                                                                 (IM)
     S(1) is true
      Step-2:-Assume that s(k) is true forn=k
                                                         ....)                   (1M)
                                                                                 (IM)
      Step -3:- To prove that s(k+1) is true for n=k+1
                                        (k+1)'
                       1+
                            2(k+1)+1|
     (k+1y" term
                             (k+1'
                       (k+1)' +2k +2+1
                             (k+1)
                     (+1+2k+2k +3)
                             (k+1)'
                       k' +4k+4
                        (k+1'
                      (k+2)
                      (k+1)]'
       Multipying (k+1)" term inequation (1)
                                                                                        (2M)
                                                                   (k+1
                                                          -(k+2'
                            s(k+1) is true
      . bvthe priniciple of tnite
                                  mathematical   induction s(n) is true neN (IM)
NARAYANA
                                                                                    Page.no.
JR-IPE-MATHS-IA
                                                                             SOLUTIONS
**14.   Use mathematical
                                   induction to prove the statement,
                      k=l
                                  n(2n-1)(2n+1) for all ne N
                                          3
Sol:
          k=l
                            n(2n-1)(2n+1)
                                  3
       RH.S=     n(2n-1)(2n+1)
                            3
         I(2-)(2+1)
                 3
         1.1.3
             3
         3
       =1
       L.H.S=R.H.S
                                                                          (IM)
       S(1) is true
       Step (2):Assume that s(k) is true for n=k
       s(k) =1 +3² +s +7°....+(2k -1 =
                                                 k(2k-1)(2k+1)
                                                       3      2.)      ----(IM)
                                                   =k+1
       Step (3) :To prove that s(k+1) is true for n
       =S(k)+(2k +1)'
         k(2k -1)(2k +)(2k+1)
               3
                                                                                  Page.no.27
NARAYANA
                                                                                    SOLUTI0
JR-IPE-MATHS-IA
       (2k +1)(2k'+5k+3)
                        3k +3)
       (2k +1)(2A' +2k +
                         +)
       (2k+1)(2A(k+1)+3(k
                        3