0% found this document useful (0 votes)
82 views11 pages

Mensuration.2D.3D. Sonali

The document provides formulas and concepts related to various geometric shapes, including triangles, quadrilaterals, and three-dimensional figures. It covers areas, perimeters, and volumes, along with specific properties of shapes like scalene triangles, rectangles, rhombuses, and spheres. Additionally, it discusses relationships between dimensions and calculations for surface areas and volumes of cubes, cylinders, and cones.

Uploaded by

Laxman Malik
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views11 pages

Mensuration.2D.3D. Sonali

The document provides formulas and concepts related to various geometric shapes, including triangles, quadrilaterals, and three-dimensional figures. It covers areas, perimeters, and volumes, along with specific properties of shapes like scalene triangles, rectangles, rhombuses, and spheres. Additionally, it discusses relationships between dimensions and calculations for surface areas and volumes of cubes, cylinders, and cones.

Uploaded by

Laxman Malik
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

(Mensutokor

&D, 3D -Aua, Peimedea

Tiangle b
O Scalene tniangle
equal ai cle, no equad ange
a tb+c
’ Half P (S) = at btc

-()
bo abc
clrucmeadiu cR) aea=

Area SCS-a) cs-b)(S-)

One side and ras peutive heigt is giuen,


Bau x Heiglt
Contt) ie(ne a)
axhj - bxh = Ch,
a b C2:

Jt a D
each coreapondma Dongtn
then
ktime ftheold qre
New
times he
New

Right angle. tri angle -


neabaex Perpena
’ Squae with ma
maqnituc sf sida/ta
baeXhetatj
( baet hacyl4
Tsocalo Triangl
H

equiloteral triangle-
’ Perinete 3a
ha

(Con eepts)
>Area 2
I# Pis any poind nde
Radius of equilteed triang
a

heiglt h
Ahe b atb t =

’ Squae with may nagnirtucle of (atbte)


Sde thad Can plac d hyide
do
24 letea trans f side a" a'
aea
Catbte)
Note

1f csqulat polygon hwe 3ame pori melea then


gruate hunber of sice împlies qrocdor ua

sides
-the Aniangl la8 m cn q-6m
s l2m Corres pund
to 46m Then wnat is t
to
higct Cin ) corre poiny
la8 m?
a4
Side rato la8M
b 6

haigu ration side

The bau t triangle is naeaud


by 40 '%
By what pocentage howdthe neaînuaau
be hat
by 60 ?

hen to do
from
opteon
The side
and its
atriangle the
peimeten
the qceatst ida The
and the citteune
Smaleut side is)bewn.
Side rcto

8X3
Bernicacle is done on
Siles ) by -taling the
B Side ay dianete
the
Shade porton wl be
tna)
Cqua -to Ahe

the tniasp

A (when)
aute triangle
B
Rigkt ang triange

A squa mami mu sida tn


be placed maie thï alanl
Pr
a
triangle ABc.2
then
ath a= One

Ah h higt to that side

stce o Squae
Baue theigit
Ciecde wilh man. v ale uf cacous
that Can placed muide Scalae
+üange
pei matu

Radias CR) of rwmire f a


Scalane trioga
trúang
R= Racuw

Riglet togle
S axb Xc
ab2taxb

’ Radius

Arangle
Racliw of eirunlo ofa
ongle tiangle
a B
Quadteral
’Rectangle CArsa xs
Perimetea = a(tb)
diaqonal = 4-%dxSme
arsa m terns of
’Trapezium) -
A
B’Fhua-(atb) x h
Sam t squace of diaqona
Squarre of t o
non paralel ides
tuia the muttiplfcotton

Ae+BD AD² +Bc+QAB)Cc)

AB D

>Aeea A= bXh
d
OlAxd xdssibe
’ PerimeteaXtb)
2
Rhombus
’ Perimeder- 4a
d,Lde ’ Area-A= axb
(Side )

Rhomb s -
’ Radius of Toncle of a

’Radlius Aa

A
a
Manimum Magnitude sf side of
Rhombw ingide
bXc
btc
A

P
ABD is paralleloqram,
whfch
mid pont
CD and is the
81de
A
mid pont on Side BCr

Then area ot
AP xAea ot Parcalelogag A6D
3D

|Priam
’[axh t bxh + cXh -(atbte) x h
1 Porimtea
k’Lateral Sfaca Area CLis 4) f BanX

Abave 7 Total 8wtae areoa = L-s.A +


ax Area
Bane
Bae XHeiaiut
9

Cube
Cuboid

a
2

’Total Surface -exn'


GXa ’ Total Suface AeeA (15A)
hrua (T:SA). |aclbtbh th )
’ LatoLa Sutau
’ Latecal Surifaca Area ( l's A)=4a Area lesA) Q(ltb) Xh

volune- g >volumeLxbXh
cuboid
’ Diago nal ofa cube ’ Diagona of a
d= 3
Cyinder
Cueved Sutaco

> Total Surface taca (TS A)=

-|Qr Crth)

’ Diaqonal of the secton ut Cdi)b4


’ Reotanqulan shaperoled up
to form diffet ueidey

bx Nolame b
’Volume 4T

ength o the ope


und tbe cylhdu talm z4 truns
Holao cuindet
-’ VolLme =

Total Swface Aea(TSA)


am(Rtr) [htk

radiu f bae
Cone
h heigt
A- Slant healut
Hee,Lh'+

Area l csA)= T d
-’ Curwed Surfce
> Totul Sutace Ariea (T S:A)

’ volume ev)

diw of a sphee
4

R=

B
Sphera Hlemi sphee
-Racliu R-nalliy

’Volume volume 2 e
’ TsA/e-s A= 4T -|32

’ ube naide a Sphee Sphere mide a


Cube

Radis of Sphe
(R) - VBa ’ Radiu of Sp he
(R)

You might also like