(Mensutokor
&D, 3D -Aua, Peimedea
Tiangle b
O Scalene tniangle
equal ai cle, no equad ange
a tb+c
’ Half P (S) = at btc
-()
bo abc
clrucmeadiu cR) aea=
Area SCS-a) cs-b)(S-)
One side and ras peutive heigt is giuen,
Bau x Heiglt
Contt) ie(ne a)
axhj - bxh = Ch,
a b C2:
Jt a D
each coreapondma Dongtn
then
ktime ftheold qre
New
times he
New
Right angle. tri angle -
neabaex Perpena
’ Squae with ma
maqnituc sf sida/ta
baeXhetatj
( baet hacyl4
Tsocalo Triangl
H
equiloteral triangle-
’ Perinete 3a
ha
(Con eepts)
>Area 2
I# Pis any poind nde
Radius of equilteed triang
a
heiglt h
Ahe b atb t =
’ Squae with may nagnirtucle of (atbte)
Sde thad Can plac d hyide
do
24 letea trans f side a" a'
aea
Catbte)
Note
1f csqulat polygon hwe 3ame pori melea then
gruate hunber of sice împlies qrocdor ua
sides
-the Aniangl la8 m cn q-6m
s l2m Corres pund
to 46m Then wnat is t
to
higct Cin ) corre poiny
la8 m?
a4
Side rato la8M
b 6
haigu ration side
The bau t triangle is naeaud
by 40 '%
By what pocentage howdthe neaînuaau
be hat
by 60 ?
hen to do
from
opteon
The side
and its
atriangle the
peimeten
the qceatst ida The
and the citteune
Smaleut side is)bewn.
Side rcto
8X3
Bernicacle is done on
Siles ) by -taling the
B Side ay dianete
the
Shade porton wl be
tna)
Cqua -to Ahe
the tniasp
A (when)
aute triangle
B
Rigkt ang triange
A squa mami mu sida tn
be placed maie thï alanl
Pr
a
triangle ABc.2
then
ath a= One
Ah h higt to that side
stce o Squae
Baue theigit
Ciecde wilh man. v ale uf cacous
that Can placed muide Scalae
+üange
pei matu
Radias CR) of rwmire f a
Scalane trioga
trúang
R= Racuw
Riglet togle
S axb Xc
ab2taxb
’ Radius
Arangle
Racliw of eirunlo ofa
ongle tiangle
a B
Quadteral
’Rectangle CArsa xs
Perimetea = a(tb)
diaqonal = 4-%dxSme
arsa m terns of
’Trapezium) -
A
B’Fhua-(atb) x h
Sam t squace of diaqona
Squarre of t o
non paralel ides
tuia the muttiplfcotton
Ae+BD AD² +Bc+QAB)Cc)
AB D
>Aeea A= bXh
d
OlAxd xdssibe
’ PerimeteaXtb)
2
Rhombus
’ Perimeder- 4a
d,Lde ’ Area-A= axb
(Side )
Rhomb s -
’ Radius of Toncle of a
’Radlius Aa
A
a
Manimum Magnitude sf side of
Rhombw ingide
bXc
btc
A
P
ABD is paralleloqram,
whfch
mid pont
CD and is the
81de
A
mid pont on Side BCr
Then area ot
AP xAea ot Parcalelogag A6D
3D
|Priam
’[axh t bxh + cXh -(atbte) x h
1 Porimtea
k’Lateral Sfaca Area CLis 4) f BanX
Abave 7 Total 8wtae areoa = L-s.A +
ax Area
Bane
Bae XHeiaiut
9
Cube
Cuboid
a
2
’Total Surface -exn'
GXa ’ Total Suface AeeA (15A)
hrua (T:SA). |aclbtbh th )
’ LatoLa Sutau
’ Latecal Surifaca Area ( l's A)=4a Area lesA) Q(ltb) Xh
volune- g >volumeLxbXh
cuboid
’ Diago nal ofa cube ’ Diagona of a
d= 3
Cyinder
Cueved Sutaco
> Total Surface taca (TS A)=
-|Qr Crth)
’ Diaqonal of the secton ut Cdi)b4
’ Reotanqulan shaperoled up
to form diffet ueidey
bx Nolame b
’Volume 4T
ength o the ope
und tbe cylhdu talm z4 truns
Holao cuindet
-’ VolLme =
Total Swface Aea(TSA)
am(Rtr) [htk
radiu f bae
Cone
h heigt
A- Slant healut
Hee,Lh'+
Area l csA)= T d
-’ Curwed Surfce
> Totul Sutace Ariea (T S:A)
’ volume ev)
diw of a sphee
4
R=
B
Sphera Hlemi sphee
-Racliu R-nalliy
’Volume volume 2 e
’ TsA/e-s A= 4T -|32
’ ube naide a Sphee Sphere mide a
Cube
Radis of Sphe
(R) - VBa ’ Radiu of Sp he
(R)