Practical-6
Solution of Cauchy problem for first order PDE
           Question-1
 In[1]:=   eqn1 = D[u[x, y], x] + x * D[u[x, y], y] ⩵ 0
Out[1]=    x u0,1  [x, y] + u1,0  [x, y] ⩵ 0
 In[2]:=   sol1 = u[x, y] / . DSolve [{eqn1, u[0, y] ⩵ Sin [y]}, u[x, y], {x, y}]
                      x2
Out[2]=    - Sin         - y
                      2
 In[3]:=   Plot3D [sol1, {x, - 5, 5}, {y, - 5, 5}]
Out[3]=
           Question-2
 In[4]:=   eqn2 = 3 * D[u[x, y], x] + 2 * D[u[x, y], y] ⩵ 0
Out[4]=    2 u0,1  [x, y] + 3 u1,0  [x, y] ⩵ 0
 In[5]:=   sol2 = u[x, y] / . DSolve [{eqn2, u[x, 0] ⩵ Sin [x]}, u[x, y], {x, y}]
                      3        2x
Out[5]=    - Sin         -        + y 
                      2        3
2
    In[6]:=   Plot3D [sol2, {x, - 5, 5}, {y, - 5, 5}]
 Out[6]=
              Question-3
    In[7]:=   eqn3 = y * D[u[x, y], x] + x * D[u[x, y], y] ⩵ 0
 Out[7]=      x u0,1  [x, y] + y u1,0  [x, y] ⩵ 0
 In[11]:=     sol3 = u[x, y] / . DSolve [{eqn3 , u[0, y] ⩵ Exp [- y ^ 2]}, u[x, y], {x, y}]
              ⅇ             
                   x2 - y2
Out[11]=
    In[9]:=   Plot3D [sol3, {x, - 5, 5}, {y, - 5, 5}]
 Out[9]=
              Question 4 : ∂x u[x,y] + 2* ∂y u[x,y] = 1 + u[x, y]
              u[x, y] = Sin[x] on y = 3*x + 1;
                                                                                                        3
 In[12]:=   A = D[u[x, y], x] + 2 * D[u[x, y], y] ⩵ 1 + u[x, y]
Out[12]=    2 u0,1  [x, y] + u1,0  [x, y] ⩵ 1 + u[x, y]
 In[13]:=   sol = DSolve [{A, u[x, 3 * x + 1] ⩵ Sin [x]}, u[x, y], {x, y}]
            u[x, y] → - ⅇ              - ⅇ            +ⅇ +ⅇ
                                    -y          1+ 3 x     y       1+ 3 x
Out[13]=                                                                    Sin [1 + 2 x - y]
 In[17]:=   Plot3D [u[x, y] / . sol, {x, - 2, 2}, {y, - 7, 8}, AxesLabel → {Automatic }]
Out[17]=
            Question 5. Solve the PDE Subscript[uu, x]+ Subscript[u, y]=1/2. With the initial
            condition u(s,s)=s/4,
            0<=s<=1.
            Solution: x=s+st/4=t^2/4, y=s+t, u=s/4+t/2.
 In[18]:=   sol = DSolve [{x '[t] ⩵ u[t], y '[t] ⩵ 1, u '[t] ⩵ 1 / 2, x[0] ⩵ s,
              y[0] ⩵ s, u[0] ⩵ s / 4}, {x[t], y[t], u[t]}, t]
                              1                                1
             u[t] →             (s + 2 t), x[t] →                × 4 s + s t + t , y[t] → s + t
                                                                                       2
Out[18]=
                              4                                4
 In[19]:=   Print ["u[t]= ", sol 〚 1, 1, 2〛]
                       1
            u [ t ]=       (s + 2 t)
                       4
 In[20]:=   Print ["y[t]= ", sol 〚 1, 2, 2〛]
                       1
                           × 4 s + s t + t 
                                                2
            y [ t ]=
                       4
 In[21]:=   Print ["x[t]= ", sol 〚 1, 3, 2〛]
            x [ t ]= s + t
4
 In[22]:=   map = ParametricPlot3D [{sol 〚 1, 1, 2〛 , sol 〚 1, 2, 2〛 ,
             sol 〚 1, 3, 2〛}, {t, - 1, 1}, {s, 0, 1}, PlotPoints → 10 ]
Out[22]=