0% found this document useful (0 votes)
55 views3 pages

9 9calchmw

The document provides solutions for finding areas and arc lengths of regions bounded by polar curves in AP Calculus BC. It includes specific examples with calculations for various polar equations, detailing the steps to derive the areas and lengths using integrals. Additionally, it outlines the surface area formula for polar equations when rotated about a horizontal axis.

Uploaded by

Nehir COSKUN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
55 views3 pages

9 9calchmw

The document provides solutions for finding areas and arc lengths of regions bounded by polar curves in AP Calculus BC. It includes specific examples with calculations for various polar equations, detailing the steps to derive the areas and lengths using integrals. Additionally, it outlines the surface area formula for polar equations when rotated about a horizontal axis.

Uploaded by

Nehir COSKUN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Avon High School SOLUTIONS

AP Calculus BC
Period _____ Score ______ / 10

Skill Builder 9.9: Finding the Area of a Region Bounded by Two Polar
Curves
Use your calculators to both graph the polar equations and find the area of the indicated region.
1.) Common interior of r = 4(1 + sin q ) and 2.) Outside r = 1 + sin q and inside r = 2
r = 4(1 - sin q )
A = A1 + A2 A1 = A2 Þ A = 2 A1 r1 = 1 + sin q r2 = 2
"# $% !
circle radius 2
symmetry
2p
r1 = 4 (1 + sin q ) r2 = 4 (1 - sin q ) 1
A = p ( 2 ) - ò r12 dq
2

! 2 0
p area of circle #$%$
&
r1 = 0 Þ sin q = -1 Þ q = - inside r1
2
p = 7.8539"
r2 = 0 Þ sin q = 1 Þ q =
2
r1 = 4 Þ sin q = 0 Þ q = 0
r2 = 4 Þ sin q = 0 Þ q = 0
0 p /2
1 1
A1 = ò r12 dq + ò r dq = 5.6991!
2
2
2 -p / 2 2 0

A = 2 A1 = 11.3982!
3.) Inside the lemniscate of r 2 = 8cos 2q and 4.) The sonar signal from a submarine is modeled
outside r = 2 by r = a cos 2 q . Find the area of the region
between the two curves for a = 5 and
a = 10 .
A = A1 + A2 A1 = A2 A = 2 A1
"# $%
symmetry

1 p p
4 = 8cos ( 2q ) Þ cos ( 2q ) = Þ 2q = Þ q = A = A1 + A2 A1 = A2 A = 2 A1
"# $%
2 3 6 symmetry
p 6
1
A1 = ò ( r 2 - 22 ) dq = 1.3697 ! r1 = 5cos q r2 = 10 cos 2 q
2

2 -p 6 p 2
1
A = 2 A1 = 2.7394!
A1 = ò
2 -p 2
( r22 - r12 ) dq = 44.1786!

A = 2 A1 = 88.3572!

This study source was downloaded by 100000877601339 from CourseHero.com on 02-23-2025 07:49:30 GMT -06:00

https://www.coursehero.com/file/218883283/Topic-99-Finding-the-Area-of-a-Region-Bounded-by-Two-Polar-Curves-SOLUTIONSpdf/
Find the arc length of the polar equation on the given interval. You may use your calculator to evaluate the
integrals for #’s 7 and 8 only.
p 6.) r = eq 0 £ q £ 2p
5.) r = sec q 0 £ q £
4
p /4 2 2p 2
æ dr ö æ dr ö
L= ò
0
r2 + ç ÷ dq
è dq ø
L= ò r +ç 2
÷ dq
è dq ø
0
p /4 2p 2p 2p

ò ( secq ) + ( secq tan q ) dq e 2q + ( eq ) dq =


2 2
= 2

0
= ò
0
ò
0
2e2q dq = 2 ò eq dq
0
p4
= ò sec 2 q + sec 2 q tan 2 q dq = 2 ( e 2p - e 0 ) = 2 ( e2p - 1)
0
p /4
= ò sec 2 q (1 + tan 2 q )dq
0
p /4 p /4
= ò sec 2 q ( sec 2 q )dq = ò sec 4 q dq
0 0
p4
p
dq = [ tan q ]0 = tan
p 4
= ò sec - tan 0 = 1
2

0
4
7.) r = 2 + sin q 0 £ q £ 2p e
8.) r = p £ q £ 2p
2p
æ dr ö
2 q
L= ò r2 + ç ÷ dq
è dq ø

⎛ dr ⎞
2

L= ∫ r + ⎜ ⎟ dθ
0 2
2p
π
⎝ dθ ⎠
ò r + ( cos q ) dq = 13.3648!
2
= 2

( )
2
0
= ∫
π
r 2 + −eθ −2 dθ = 1.9350…

This study source was downloaded by 100000877601339 from CourseHero.com on 02-23-2025 07:49:30 GMT -06:00

https://www.coursehero.com/file/218883283/Topic-99-Finding-the-Area-of-a-Region-Bounded-by-Two-Polar-Curves-SOLUTIONSpdf/
Find the surface area when the polar equation on the given interval is rotated about the given line.
Surface area in polar is very similar to finding surface area in both rectangular (which we covered in August)
and surface area in parametric (which we covered in December).
Surface Area Formula w/ Rectangular Equations b
S = 2p ò f ( x) 1 + [ f ¢( x) ] dx
2

a
Surface Area Formula w/ Parametric Equations b 2 2
æ dx ö æ dy ö
S = 2p ò f (t ) ç ÷ + ç ÷ dt
a è dt ø è dt ø
Surface Area Formula w/ Polar Equations b 2
æ dr ö
S = 2p ò r sin q ( r ) + ç
2
÷ dq
a è dq ø
Note: All three of the above formulae assume that the plane region is being rotated about a HORIZONTAL
axis, hence the reason the “radius” expression that precedes the square root is a “y” value.
p p
9.) r = 2sin q 0 £ q £ q=
2 2
p /2
ó é dr ö ù
2

S = 2p ô ê r cos q r 2 + æç ÷ ú dq
ô ê è dq ø ú
õ0 ë û
p /2
ó é dr ö ù
2

S = 2p ô ê 2sin q × cos q r 2 + æç ÷ ú dq
ô ê è dq ø ú
õ0 ë û
p /2
S = 2p ó é ( 2sin q ) + ( 2 cos q ) ù dq
2 2
ô ê 2sin q × cos q
õ0 ë ûú
p /2
ô éê 2sin q × cos q 4 ( sin 2 q + cos 2 q ) ùú dq
S = 2p ó
õ0 ë û
p /2
S = 8p ò
0
[sin q × cos q ] dq
u = sin q du = cos q dq
p 2
é1 2ù éæ p ö 2 2ù
= 8p ê ( sin q ) ú = 4p êç sin ÷ - ( sin 0 ) ú
ë2 û0 êëè 2ø úû
= 4p (1 - 0 ) = 4p

p
10.) r = e-q 0 £q £ q =0
2
p /2
ó é dr ö ù
2

S = 2p ô ê r sin q r 2 + çæ ÷ ú dq
ô ê è dq ø ú
õ ë û
0
p /2

S = 2p ó ée -q × sin q e-2q + e-2q ù dq


õë û
0
S = 1.62356

This study source was downloaded by 100000877601339 from CourseHero.com on 02-23-2025 07:49:30 GMT -06:00

https://www.coursehero.com/file/218883283/Topic-99-Finding-the-Area-of-a-Region-Bounded-by-Two-Polar-Curves-SOLUTIONSpdf/
Powered by TCPDF (www.tcpdf.org)

You might also like