1d 2d 3a 4a 5a 6 ac 7abcd 8ad 9abc 10abcd 11abcd 12c 13c 14c15(3) 16(2) 17(5) 18(4) 19(1) 20(3)
1)Find domain and differentiate
ALT:
1 D Let x2 = 4 cos2 + sin2
then (4 – x2) = 3 sin2 and (x2 – 1) = 3 cos2
f(x) = 3 sin 3 cos
1 1
ymin. = 3 and ymax. = 3 = 6.
2 2
Hence range of f(x) is 3, 6
2D For
' x 2, L.H.S. is always non negative and R.H.S. is always – ve.
Hence for x 2 no solution.
If 1 x < 2 then (x – 2) = (x – 1) – 1 = x – 2, which is an identity (D)
For 0 x < 1, LHS is '0' and RHS is (–) ve No solution.
For x < 0, LHS is (+) ve, RHS is (–) ve No solution.]
3. If sinx 2 cos x 3, x 0, 2 ([.] denotes the greatest integer function), then x belongs to
5 5 5 5
(A) , (B)
, 4 (C) , 2 (D)
4 , 2
4 4
3A The only posibility is [sinx] =-1 and [ 2 cos x ]=-2 .Draw Graph
ax b
a b
cx d
4. (a) : fof (x) x
ax b
c d
cx d
(ac + dc)x2 + (bc + d2 – bc – a2)x – ab – bd = 0
ac + dc = 0, a2 – d2 = 0, ab + bd = 0
So a = –d
5. If k and K are minimum and maximum values of
sin–1x + cos–1x + tan–1x respectively, then
p 3p
(a) k = , K = (b) k = 0, K = p
4 4
(c) k = p/2, K = p (d) not defined
6 (
A)
i
sone-
oneandont
obot
h.
(
B)
i
smanyone
(
c)
Fr
om t
hegr
aphi
tiscl
eart
hatf
(x)i
sone-
oneandont
obot
h.
(
D)
Rangeoffi
s
fismanyonei
nto
7.
8 AD
9.
On comparing, we can write a = 4, b = 2, c = 7
and d = 3.
a + c = 11, a + d = 7 and b + d = 5 are primes.
10. (a, b, c, d) : Given f(x) f(y) = f(x) + f(y) + f(xy) – 2
x, y ∈ R. f(x) 10 + x
16. (a) : e = , x ∈ (–10, 10)
Put x = y = 1 then f(1)2 – 3f(1) + 2 = 0 10 − x
⇒ f(1) = 1 or f(1) = 2 10 + x
⇒ f(x) = log
If f(1) = 1, then f(x) = 1 x ∈ R. 10 − x
A contradiction ∵ degree of f(x) is positive.
200 x
\ f(1) ≠ 1. hence, f(1) = 2. 10 +
200 x 100 + x 2
1 ⇒ f = log
Replace 'y' with then 100 + x 2 10 − 200 x
x
100 + x 2
1 1
f(x) f = f(x) + f (∵ f(1) = 2)
x x 2
10(10 + x ) 10 + x
\ f(x) must be in the form xn + 1 or –xn + 1. = log = 2 log = 2f(x)
10(10 − x)
10 − x
∵ f(4) = 65, f(x) = x3 + 1 ⇒ f 1(x) = 3x2.
1 200 x 1
\ f(x) = f ⇒k= = 0.5.
2 100 + x 2 2
7 7
11. (a, b, c, d) : f = –0.5, g = 0.5, g(3) = 0,
2 2 Putting x = 1, f(1) = ek ⇒ 2 = ek. Hence from (i), f(x) = 2x.
f(0) = 23; f(2) = –1, g(2) = –1; f(4) = 0; g(4) = 26 This can also be obtained by putting y = 1 so that
2 F(x + 1) = f(x) f(1) = 2f(x) ⇒ f(x) = 2f(x – 1).
12, 13, 14 Putting successively x – 1, x – 2, x – 3, ...., 2 for x in the
above and multiplying them, we get f(x) = 2x.
n
Now, ∑ f (c + r ) = f(c + 1) + f(c + 2) +...+ f(c + n)
r =1
= 2c + 1 + 2c + 2 +...+ 2c + n
= 2c 2 + 2c 22 +...+ 2c 2n
= 2c 2{1 + 2 + 22 +... to n terms}
1(2n −1)
= 2c 2 = 2c 2(2n – 1)
2 −1
⇒ 16(2n – 1) = 2c + 1(2n – 1)
⇒ 2c + 1 = 16 = 24 ⇒ c + 1 = 4 \ c = 3.
15. (3) : From the given equation
f(x + y) = f(x) f(y), we have f(x) = ekx
Where k is a constant.
integral
17. 5
Sol. Suppose k 2 log2 a 3 log3 b log6 a b , then we have
1 1 ab 6k
a 2k2 , b 3k3 , a b 6k , and therefore, k 2 k 3 22 33 .
a b ab 2 3
x
18 (4) The period of sin is 24
12
x 24 x 24 x
as sin
sin sin 2 sin
12 12 12 12
x x 2
Similarly, the period of tan
3
is 3 and the period of cos is 8.
4
4
Hence, the period of the given function LCM of (24, 8, 3) = 24.
19 1
x
19. sin 1 x 2 2x
2
x
sin 1 x
2
2
LHS 0 and RHS 0 .
Then solution is obtained if LHS = RHS = 0 and x satisfies both.
20. (3) : f(1, 1) = f(0, f(1, 0)) = f(0, f(0, 1)) = f(0, 2) = 3