0% found this document useful (0 votes)
63 views56 pages

Mthmto 25

The document appears to be a mathematical examination or problem set for the year 2024, containing various equations and problems to solve. It includes questions on algebra, geometry, and trigonometry, with specific values and conditions provided for each problem. The format suggests it is intended for students to practice or demonstrate their understanding of mathematical concepts.

Uploaded by

Shilpi Rani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
63 views56 pages

Mthmto 25

The document appears to be a mathematical examination or problem set for the year 2024, containing various equations and problems to solve. It includes questions on algebra, geometry, and trigonometry, with specific values and conditions provided for each problem. The format suggests it is intended for students to practice or demonstrate their understanding of mathematical concepts.

Uploaded by

Shilpi Rani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 56

kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 gƒj eBGqi AwZwiÚ Ask 1

kxlÆÕ©vbxq Õ•zGji wbeÆvPwb cixÞvi cÉk²cò c†Ó¤v 2-56


m†Rbkxj eüwbeÆvPwb
2 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ

347 kwn` exi-Dîg ˆj. AvGbvqvi MvjÆm KGjR, XvKv



MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
. wPGò DE || BC nGj ADE ‰i gvb KZ? 22. ‰KwU wmwj´£vGii DœPZv 8 ˆm.wg. ‰es
1. 
 5.78 msLÅvwUGK mvgvbÅ f™²vsGk cÉKvk
K 50 L 64
Ki| f„wgi eÅvmvaÆ 4 ˆm.wg. nGj
M 66 N 114
78 78 i. ‰i mgMÉZGji ˆÞòdj 301.59 eMÆ ˆm.wg.
K 5 L5 12. ‰KwU wòfzGRi `ywU evüi Š`NÆÅ h^vKÌGg
90 9
4 ‰KK I 6 ‰KK| Z‡Zxq evüi Š`NÆÅ KZ ii. ‰i eKÌZGji ˆÞòdj 201.06 eMÆ ˆm.wg.
71 71 iii. ‰i AvqZb 100.53 Nb ˆm.wg.
M 5 N5 ‰KK nGj wòfzRwU AuvKv hvGe?
90 9
K 11 ‰KK L 7 ‰KK wbGPi ˆKvbwU mwVK?
2. A = {x  ô : 3 ≤ X ≤ 7} nGj
M 2 ‰KK N 1 ‰KK K i I ii L i I iii
i. A ˆmGU ˆgŒwjK msLÅv 3wU
ii. P(A) ‰i Dcv`vb msLÅv 16 13. ˆKvb aiGbi wòfzGRi cwie†Gîi ˆK±`Ê M ii I iii N i, ii I iii
iii. P ˆmGU 3 «¼viv wefvRÅ msLÅv 2wU wòfzRwUi e†nîi evüi Dci AewÕ©Z? 23. 
 ‰KwU mgw«¼evü wòfzGRi cwimxgv
wbGPi ˆKvbwU mwVK? K mgevü L mƒßGKvYx 16 ˆm.wg| ‰i f„wg 6 ˆm.wg., DœPZv KZ?
K i I ii L i I iii M Õ©ƒjGKvYx N mgGKvYx K 12 ˆm.wg. L 8 ˆm.wg.
M ii I iii N i, ii I iii 14. ‰KwU eGMÆi A¯¦e†GÆ îi eÅvmvaÆ 3 ˆm.wg. nGj M 6 ˆm.wg. N 4 ˆm.wg.
eGMÆi evüi Š`NÆÅ KZ? A
 x + = 0 nGj 2  x +
1 1 
3.  ‰i gvb K 3 ˆm.wg. L 6 ˆm.wg. B F N
x  x
M 3 ˆm.wg. N 6 ˆm.wg.
KZ? 15.
C
E M
K 0 L1 S
D
M 2 N4 wPGò ABCDEF ‰KwU mylg lofzR|
DóxcGKi AvGjvGK (4 I 5) bs cÉGk²i Dîi CD = 4 ˆm.wg. ‰es EM = 13 ˆm.wg.
O
`vI: DcGii ZG^Åi AvGjvGK (24 I 25) bs
1 88 Q
P =7 P cÉGk²i Dîi `vI|
P R
wPGò POQ = 88 nGj PRQ = ? 24. 
 mÁ·ƒYÆGÞGòi cwimxgv KZ?
4. P + 1 2 = ? K 44 L 88 K 58 ˆm.wg. L 54 ˆm.wg.
 P
K 53 L 51 M 92 N 136 M 50 ˆm.wg. N 46 ˆm.wg.
M 47 N 45 16.  M ‰i
 NƒYÆb cÉwZmvgÅ ˆKvY KZ? 25. 
 ABCDEF ˆÞGòi ˆÞòdj KZ
5. P
‰i gvb KZ? K 90 L 180 eMÆ ˆm.wg.?
P2  6P  1 M 270 N 360 24
1 1 17. ‰KwU mylg cçfzGRi kxlÆ ˆKvY KZ wWMÉx? K L 24 3
K L 3
12 2 K 60 L 90 M 108 N 120
M 1 N2 4
18. wPGò MN || XY nGj L M 4 3 N
1 3
6. log x = log y nGj log x2 ‰i gvb KZ? wbGPi ˆKvbwU mwVK?
2 X Y wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
K x L y Dîi `vI:
M N
M log y N log y K LM:LN = LX:XY 50 Rb wkÞv^Æxi MwYZ welGqi cÉvµ¦ bÁ¼Gii
7. 2x  5 + 3 = 2 ‰i mwVK mgvavb ˆmU L LM:MX = XY:NY
MYmsLÅv wbGekb mviwY wbÁ²i…c:
ˆKvbwU? M LM:LN = LX:LY
N LM:MX = LN:LY ˆkÉwY 91-
K { 3} L {  3}M {  3}N 41-50 51-60 61-70 71-80 81-90
19. sec2 + tan2 = 3 nGj, cosec ‰i gvb eÅvwµ¦ 100
8. hw` ˆKvb eMÆGÞGòi cÉGZÅK evüi Š`NÆÅ
KZ? (hLb  mƒßGKvY) wkÞv^Æxi
20% e†w«¬ cvq ZGe ˆÞòdj kZKiv KZ 6 7 10 12 8 7
2 msLÅv
fvM e†w«¬ cvGe? K L 2
K 36 L 44 M 72 N 80 3 26. 
 gaÅK wbYÆGq Fc ‰i gvb wbGPi ˆKvbwU?
1 K 12 L 23 M 35 N 43
9. 2x  y = 8, x + y = 4 mgxKiY ˆRvU M 1 N
i. mãwZcƒYÆ ii. wbfÆikxj 2 27. 
 cÉPziK wbGPi ˆKvbwU?
iii. mgvavb ˆbB 20. 
 A = 15 nGj, K 74.33 L 77.67
M 81.33 N 86.67
wbGPi ˆKvbwU mwVK? i. tan 3A = 2 sin 3A
K i I ii Li ii. cot 4A =
1 28. cosec A + cot A = 1 nGj
2
M ii N i, ii I iii 3
iii. sin 4A = cos 2A cosec A  cot A = KZ?
10. 
 2 + a + b + c + 162 àGYvîi avivfzÚ
wbGPi ˆKvbwU mwVK? 1 1
K L2 M N 4
nGj mvaviY AbycvZ KZ? K i I ii L i I iii 2 3
K 3 L4 M5 N 6 1
M ii I iii N i, ii I iii 29. 
 cosec A + cot A = nGj sec A = KZ?
11. A 2
21. n evü «¼viv MwVZ mylg eüfzGRi cÉGZÅKwU 5 5 1 1
ˆKvGYi cwigvY KZ? K L M N
D
50
E 3 3 3 2
180 (n2) 180 (n+2)
K
n
L
n
30. 2x  1 = 2 nGj 3x  1 ‰i gvb KZ?
3x 2x
64 90 (n2) 90 (n+2) 2 3
M N K L1 M N 3
B C n n 3 2

1 M 2 L 3 M 4 K 5 M 6 M 7 N 8 L 9 L 10 K 11 M 12 L 13 N 14 N 15 N
Dîi

16 N 17 M 18 M 19 L 20 N 21 K 22 K 23 N 24 M 25 L 26 L 27 K 28 L 29 K 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 3
348 gwZwSj gGWj Õ•zj ‰´£ KGjR, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 (2x + y, 3) = (6, x  y) nGj 11. KqwU Õ¼Z¯¨ Dcvî Rvbv ^vKGj wbw`ÆÓ¡ 20. 
 ‰KwU cZvKvi LuywU ˆfGã, fvãv Ask
(x, y) = KZ? PZzfzÆR AuvKv hvq? f„wgi mvG^ 30 ˆKvY Drc®² KGi| LuywUwUi
K (0, 3) L (3, 0) K `yBwU L wZbwU fvãv AsGki Š`NÆÅ 16 wgUvi nGj `´£vqgvb
M (6, 3) N (1, 4)
M PviwU N cuvPwU AsGki Š`NÆÅ KZ wgUvi?
1
2. (x) = x2  2x + 3 nGj   ‰i gvb 12. `ywU e†î ciÕ·iGK A¯¦tÕ·kÆ KGi| ‰G`i K 4 L 8
2
KZ? ‰KwUi eÅvm 10 ˆm.wg. ‰es AciwUi M 16 N 16 3
7 7 eÅvmvaÆ 4 ˆm.wg. nGj, ‰`i ˆK±`Ê«¼Gqi 21. ‰KwU mgevü wòfzGRi ˆÞòdj 4 3 eMÆwgUvi
K  L nGj cwimxgv KZ wgUvi?
4 4 gaÅeZÆx `ƒiZ½ KZ ˆm.wg.?
11 9 K 1 L 4 K 4 2 L 4 3
M N
4 4 M 5 N 9 M 12 N 12 3
3.  x + y = 5 ‰es x  y = 3 nGj x2 +
 a
13. cosec = b nGj tan ‰i gvb KZ? 22. ‰KwU mylg lofzGRi ˆK±`Ê ˆ^GK ˆKŒwYK
y2 ‰i gvb KZ? we±`yi `ƒiZ½ 6 wg. nGj ‰i ˆÞòdj KZ
K 0 L 1 b 2
a b 2

M 2 N 4 K L
b
eMÆwgUvi?
a2  b 2
4. ABC ‰ C = 30 nGj, A = 2B nGj K 109 3 L 54 3
a2 + b 2 b
B ‰i AGaÆK KZ? M N M 27 3 N 9 3
b a + b2
2

K 45 L 30 23. AebwZ ˆKvGYi gvb KZ wWwMÉ nGj LuywUi


wbGPi ZG^Åi AvGjvGK (14 I 15) bs cÉGk²i
M 25 N 22.5 Š`NÆÅ Qvqvi Š`GNÆÅi 3 àY nGe?
5. wòfzR AuvKGZ cÉGqvRb@ Dîi `vI:
K 30 L 45
PQR mgGKvYx wòfzGR R mgGKvY|
i. wZbwU evü M 60 N 90
ii. `ywU evü ‰es ZvG`i A¯¦fzÆÚ ˆKvY 3 tanP = 1 24. 'H'-‰i NƒYÆb ˆKvY KZ?
iii. `ywU ˆKvY I ‰G`i msj™² ‰KwU evü
14. 
 P-‰i gvb KZ? K 90 L 180
K 30 L 45
wbGPi ˆKvbwU mwVK? M 270 N 360
M 60 N 90
K i I ii L i I iii 25. 
 ˆK±`Êxq cÉeYZvi cwigvc nGjv@
15.  DcGii Z^Å AbymvGi@

MvwYwZK Mo
M ii I iii N i, ii I iii i.
i. sin(P + Q) = 1
6. ˆKvGbv e†Gî AwaPvGci A¯¦wjÆwLZ ˆKvY gaÅK
ii.
ii. PQ = 1 + 3
nGœQ@ iii. cosP + sinQ = tan 60 cÉPziK
iii.
K mƒßGKvY L mgGKvY wbGPi ˆKvbwU mwVK? wbGPi ˆKvbwU mwVK?
M Õ©ƒjGKvY N cÉe†«¬ ˆKvY K i I ii L i I iii K i I ii L i I iii
7. O e†Gîi ˆK±`Ê nGj x A
M ii I iii N i, ii I iii M ii I iii N i, ii I iii
‰i gvb KZ? x+10 16. `ywU msLÅvi AbycvZ 5 : 7 ‰es ZvG`i wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
O
M.mv.à 4 nGj, j.mv.à. KZ? Dîi `vI:
x+80
B C K 60 L 80 X 61-65 66-70 71-75 76-80 81-85
K 20 L 30 M 120 N 140  2 8 20 7 3
M 40 N 60 17. 
 3x  5y = 7, 6x  10y = 15 ‰B 26. mviwYi gaÅK KZ?
8. 
 2x  5 + 3 = 2 ‰i mwVK mgvavb ˆmU mgxKiY ˆRvUwU@ K 68.5 L 68.6
M 73.4 N 73.5
ˆKvbwU? i. Amgém
K {} L {3} 27. cÉPziK ˆkÉwYi gaÅgvb/gaÅwe±`y KZ?
ii. ‰KwU gvò mgvavb AvGQ
M {3} N {3} K 22.28 L 68
iii. ciÕ·i AwbfÆikxj M 73 N 78
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i wbGPi ˆKvbwU mwVK?
Dîi `vI: 28. ˆKvGbv NbGKi c†Ó¤ZGji KGYÆi Š`NÆÅ
K i I ii L i I iii 6 2 ˆm.wg. nGj AvqZb KZ?
`yB AâwewkÓ¡ ‰KwU msLÅvi `kK Õ©vbxq
M ii I iii N i, ii I iii K 112 L 144
Aâ ‰KK Õ©vbxq AGâi wZbàY|
18. 1 + 3 + 5 + ... ... ... + 101 avivwUi c` M 216 N 432
9. ‰KK Õ©vbxq Aâ x nGj msLÅvwU KZ
msLÅv KZ? 29.  wbGPi
 ˆKvbwU wewœQ®² PjGKi D`vniY?
nGe?
K x L 3x
K 51 L 101 K Zvcgvòv L e†wÓ¡cvZ
M 30x N 31x M 201 N 204 M cixÞvi bÁ¼i N evqyPvc
1
10.  A⫼q
 Õ©vb wewbgq KiGj msLÅvwU 19.  1 + 3 ... ... ... avivwUi 8g c` KZ? 30. A = {1, 3, 5, 7} nGj A ‰i cÉK‡Z DcGmU
3
KZ nGe? KqwU?
K 11x L 13x K  27 3 L  27 K 4 L 8
M 30x N 31x M 27 N 27 3 M 15 N 16

1 L 2 N 3 N 4 M 5 N 6 K 7 N 8 K 9 N 10 L 11 N 12 K 13 K 14 K 15 L
Dîi

16 N 17 L 18 K 19 L 20 L 21 M 22 L 23 M 24 L 25 N 26 N 27 M 28 M 29 M 30 M
4 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
349 ˆm´Ÿ ˆhvGmd DœP gvaÅwgK we`Åvjq, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
.
 0.3  0.6 = KZ?
.
9. 
a a2 + b2
 = 2 nGj, 2 2 ‰i gvb wbGPi ˆKvbwU? 23. 
 avivwUi 2n + 1 msLÅK cG`i mgwÓ¡
b a b
. . . . KZ?
K 0.2 L 0.4 M 0.5 N 0.1 K 2/3 L 4/3 M 5/3 N 3/2
K 0 L4 M 4 N 8
. . 10. cosec(90  ) = 2 nGj, cos = KZ? 24. mgvb f„wgwewkÓ¡ `yBwU wòfzGRi DœPZv
2. 15.3 I 14.7 f™²vsk `yBwU@
1 3 1
i.m`†k I gƒj` K 2 L M
2
N
2
h^vKÌGg 2 ˆm.wg. I 8 ˆm.wg. nGj, ZvG`i
2
ii. àYdj Ave†î `kwgK nGZI cvGi bvI
ˆÞòdj ‰i AbycvZ wbGPi ˆKvbwU?
11. tan245sin260 = KZ? K 2:3 L 1:4 M 3:8N 4:3
nGZ cvGi 3 1 3 3 3
K L M N 25. A
iii. fvM cÉwKÌqvi ˆÞGò fvMdj me mgqB 4 2 2 4
1
Ave†î `kwgK nGe 12. 
 logx  =  2 nGj, x = KZ?
D E

wbGPi ˆKvbwU mwVK?


25 
B C
1 1
K i I ii L i I iii K 5 L M N 5
5 5 AD : BD = AE : CE nGj@
M ii I iii N i, ii I iii 13. 
 wbw`ÆÓ¡ PZzfzÆR AâGb cÉGqvRb@ i. BC = DE
3. 
 NbGKi c†Ó¤ZGji ˆÞòdj 600 eMÆ ‰KK i. PviwU evü I ‰KwU ˆKvY ii. BC || DE
iii. BED = CDE
nGj, ‰i avi KZ ‰KK? ii. PviwU evü `ywU KYÆ
wbGPi ˆKvbwU mwVK?
K 5 L 10 M 15 N 20 iii. wZbwU ˆKvY I `yBwU evü
K i I ii L i I iii
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi wbGPi ˆKvbwU mwVK?
M ii I iii N i, ii I iii
`vI: K i I ii L i I iii
26. wPGò AOC ˆK Kx ˆKvY ejv nq?
ABC mgevü wòfzGR AB = AC = BC = 2 ˆm.wg., M ii I iii N i, ii I iii
A
AE  BC| 14. 2x  y = 8 ‰es x  2y = 4 nGj, C O
D
A
x + y = KZ?
B
K 1 L2 M4 N 8
15. wbGPi ˆKvb we±`ywU x AÞGiLvi Dci KcÉe†«¬ ˆKvY L Õ©ƒjGKvY
D
B E C
AewͩZ? MmgGKvY N mħGKvY

K (0, 6) L (5, 0) M (0, 4) N (5, 5) 27. O ˆK±`ÊwewkÓ¡ e†Gî@ C


4. 
 ABC-‰i cwimxgvi mgvb cwimxgv
8
wewkÓ¡ eGMÆi KGYÆi Š`NÆÅ KZ ˆm.wg.? 16. p  = 2 nGj, p = ?
p A O B

K 2 3 L 3 2 K 1 L2 M3 N 4 i. ACB = AaÆe†îÕ© ˆKvY


5 3 3 2
17. 
 ( 5)x+1 = ( 5)2x+1 nGj, x = KZ?
3 ii. BAC + ABC = ACB
M N
2 2 iii. AO = BO
5. 
 AE ‰i gvb KZ ˆm.wg.? K 1 L 2 M5 N 5
wbGPi ˆKvbwU mwVK?
18. 3y2 + 2y  1 ‰i Drcv`K ˆKvbwU?
K 3 L 2 K i I ii L i I iii
K y1 L y+1
M 3 2 N 2 3 M ii I iii N i, ii I iii
M 3y  2 N 3y + 1
6. cÉ`î wPGò@ 28. 
 e†Gîi `yBwU RÅv ciÕ·iGK mgvb fvGM
C 19. 500 UvKvi 2 eQGii mij gybvdv 20 nGj,
B D fvM KiGj ˆQ`we±`yi AeÕ©vb e†Gîi@
25 gybvdvi nvi KZ?
A
30
K 2% L 3% M 4% N 5% K IcGi L evBGi
O E
wbGPi ZG^Åi AvGjvGK (20 I 21) bs cÉGk²i M cwiwa N ˆKG±`Ê
i. BOA + BOC = 90 Dîi `vI: 29. 36 wgUvi jÁ¼v MvGQi x wgUvi `ƒiGZ½ D®²wZ
ii. BOC = DOE = 60 7, 10, 12, 11, 8, 14, 9, 6, 7, 13, 10, 8 ˆKvY 30, x-‰i gvb ˆKvbwU?
iii. BOC + COD = 85 20. DcvGîi cwimi KZ? K 30 L 36 M 36 3 N 36 2
wbGPi ˆKvbwU mwVK? K 3 L4 M8 N 9 30. 
 wPGò CD || EF ‰es AB ZvG`i ˆQ`K
K i I ii L i I iii 21. DcvGîi gaÅK KZ? nGj, x = KZ?
M ii I iii N i, ii I iii K 9 L 10 M 9.5 N 10.5 D F
7. hw` (x) = x3  4x + 8 nq, ZGe (2) = KZ? wbGPi ZG^Åi AvGjvGK (22 I 23) bs cÉGk²i x+20

K 2 L0
M4 N 8 Dîi `vI: A
O M
B

8. 3 + 10 + 17 + 24 + ... ... ... avivi AÓ¡g c` 4  4 + 4  4 + ... ... ... ‰KwU àGYvîi aviv| C
x+10
E

KZ nGe? 22. avivwUi mvaviY AbycvZ KZ?


K 36 L 52 M 62 N 86 K 0 L1 M 1 N 4 K 30 L 45 M 60 N 75

1 2 K 3 4 5 6K 7 8 L9 10 11
N 12 13
K 14 M 15 L
L N L M N K N L
Dîi

16 N 17 K 18 L 19 K 20 N 21 M 22 M 23 L 24 L 25 M 26 K 27 N 28 N 29 M 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 5
350 bÅvkbvj AvBwWqvj Õ•zj, wLjMuvI, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.2̇34̇ ‰i mvgvbÅ f™²vsk ˆKvbwU? 10. 
1
 x2  2 = KZ? 21. `ywU msLÅvi AbycvZ 3 : 4 ‰es ZvG`i
x
K
211
L
234 j.mv.à. 180| msLÅv `ywU KZ?
900 909 K 6 4 L 4 6
K 30, 45 L 45, 60
234 26 M 2 3 N 8 6 M 45, 75 N 45, 70
M N
900 111 11. 
 cwimxgv I ‰KwU ˆKvGYi gvb Rvbv 22. mgevü wòfzGRi DœPZv 6 ˆm.wg. nGj, evüi
2. 
 10% nvi gybvdvq 6000 UvKvi 3 eQGii cÉGqvRb ˆKvbwU AuvKGZ? Š`NÆÅ KZ?
PKÌe†w«¬ gybvdv I mij gybvdvi cv^ÆKÅ K eMÆ L iÁ¼m K 12 3 L 4 3
KZ? M AvqZ N mvgv¯¦wiK M 6 3 N 24 3
K 186 L 1800 12. 60 ˆKvGYi mÁ·ƒiK ˆKvGYi AGaÆK wbGPi 23. 
 ˆKvb eMÆGÞGòi ˆÞòdj Zvi KGYÆi
M 1986 N 6000 ˆKvbwU? Dci AwâZ eMÆGÞGòi ˆÞòdGji KZàY?
3. ‰KwU msLÅvGK a  10n AvKvGi ˆjLvi RbÅ K 30 L 60 1 1
kZÆ ˆKvbwU? M 90 N 120 K L
4 2
K 1 < a < 10 L 1  a  10 13. mgGKvYx wòfzGRi mƒßGKvY«¼Gqi A¯¦i 4 M
1
N 2
3
M 1  a < 10 N 1 < a  10 nGj, ‰i e†nîg ˆKvYwUi gvb KZ?
wbGPi ZG^Åi AvGjvGK (24 I 25) bs cÉGk²i
4. 2x  3 =  3 ‰i mgvavb ˆmU KZ? K 47 L 43
M 76 N 86 Dîi `vI:
K {} L {} B

M {1} N { 3} 14. ˆKvbwU mylg PZzfÆyR? 60


S
A
5. 6x  y = 5 ‰es 5x  2y = 2 nGj, K AvqZGÞò L mvgv¯¦wiK C
O

x + y = KZ? M iÁ¼m N eMÆGÞò


K 2 L 3 15. ˆKvb e†Gîi AwaPvGc A¯¦wbÆwnZ ˆKvYwU Kx OˆK±`ÊwewkÓ¡ e†Gî AC = 12 cm
M 4 N 5 aiGbi ˆKvY? 24. AB PvGci Š`NÆÅ KZ?
K mħGKvY L mgGKvY K 40.48 cm L 12.57 cm
6. 
 a, b, c KÌwgK mgvbycvZx nGj
M 6.28 cm N 3.14 cm
i. b2 = ac M Õ©ƒjGKvY N cËe†«¬ ˆKvY
a+c wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i 25. e†îKjvi AOB ‰i ˆÞòdj KZ?
ii. b = K 150.80 cm2 L 75.40 cm2
2 Dîi `vI: A M 40.84 cm2 N 18.85 cm2
a+b b+c
iii. =
b c x 26. 
 ‰KwU NbGKi ‰K c†GÓ¤i KGYÆi Š`NÆÅ
wbGPi ˆKvbwU mwVK? O
8 2 ˆm.wg.| NbKwUi KYÆ KZ ˆm.wg.?
B C
K i I ii L i I iii x + 60
K
8
L
8
3 2
M ii I iii N i, ii I iii
1
wPGò O e†Gîi ˆK±`Ê M 8 3 N 24
7. ,  1, 7,..... AbyKÌgwUi mvaviY AbycvZ 16. 
 BAC = KZ? 27. wbGPi ˆKvbwU wewœQ®² PjGKi D`vniY?
7
K 30 L 45 K eqm L Zvcgvòv
ˆKvbwU?
M 60 N 120
1 1 M RbmsLÅv N IRb
K L  17. 
 cËe†«¬ BOC ‰i gvb KZ?
7 7 28. 1 ˆ^GK 23 chƯ¦ ˆgŒwjK msLÅvàGjvi gaÅK
K 120 L 180
M 7 N  7 KZ?
M 240 N 280
8. BsGiwR S eGYÆi NƒYÆb ˆKvY KZ? K 7 L 11
18. ˆKvb wòfzGR KqwU ewne†î AuvKv hvq?
K 90 L 180 M 13 N 17
K 1 L 2
M 270 N 360 M 3 N 4
29. 
 DcvîmgƒnGK mviwYfzÚ Kiv nGj cÉwZ
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i Dîi ˆkÉwYGZ hZàGjv Dcvî A¯¦fÆyÚ Kiv nq,
19. sec 1  cos2 = KZ?
`vI: K sin L cos
Zvi wbG`ÆkK wbGPi ˆKvbwU?
x2  5  2 6 = 0 M tan N cot K ˆkÉwYmxgv L ˆkÉwYi gaÅwe±`y
9. 
 x ‰i gvb ˆKvbwU? 3 M ˆkÉwYmsLÅv N ˆkÉwYi MYmsLÅv
20. cos = 2 nGj,  ‰i gvb KZ?
K 3+ 2 L 3 2 30. 31  40 ˆkÉwYeÅvwµ¦i DœPmxgv KZ?
K 90 L 60 K 40 L 45.5
M ( 3 + 2)2 N 3 2 M 45 N 30 M 35 N 31

1 N 2 K 3 M 4 L 5 L 6 L 7 N 8 L 9 K 10 L 11 L 12 L 13 K 14 N 15 K
Dîi

16 M 17 M 18 M 19 M 20 N 21 L 22 L 23 L 24 M 25 N 26 M 27 M 28 L 29 N 30 K
6 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
351 ‰m I ‰m nvigÅvb ˆgBbvi KGjR, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. wbGPi ˆKvbwU gƒj` msLÅv? 11. 5x + 3y = 4 ‰es 2x + 7y = 9 ‰B mgxKiY 21. 
 eGMÆi evüi Š`NÆÅ KZ ˆm.wg.?
K 3 L
3
7 ˆRvUwU@ K 2 2 L4 2 M3 2N 8
i. msMwZcƒYÆ 22. ‰KwU eMÆGÞGòi cwimxgv ‰i KGYÆi
3
M 27 N 19 ii. AmsLÅ mgvavb AvGQ Š`GNÆÅi KZ àY?
1 iii. ciÕ·i AwbfÆikxj K L 2 2
2. 
 x = 5+2 6 nGj, x + x ‰i gvb 2
wbGPi ˆKvbwU mwVK? M 3 N 3 2
KZ?
K i I ii L i I iii 23. mgGKvYx wòfzGRi 30 ˆKvY AâGbi
RbÅ
K 2 3 L2 2
M ii I iii N i, ii I iii wbGPi ˆKvbwU mwVK?
M 3 2 N2 5
12. 
1+
1 1
avivwUi ˆKvb K f„wg > jÁ¼ L f„wg < jÁ¼
wbGPi ZG^Åi AvGjvGK (3 I 4) bs cÉGk²i Dîi  + ............
3 3 M f„wg = jÁ¼ N f„wg = AwZfzR
`vI: 1 24. AaÆe†Gî A¯¦wjÆwLZ ˆKvY@
c` ?
5% nvi gybvdvq 500 UvKv 3 eQGii RbÅ eÅvsGK 9 3 K 60 L 90
ivLv nGjv| K 6 L5 M 120 N 180
3.   PKÌe†w«¬ gybvdv KZ UvKv? M 7 N8
25. 
 wPGò, ECD = KZ?
K 78.81 L 75.81 13. sin4 + sin2 = 1 nGj, wbGPi ˆKvbwU A D
M 500 N 578.81 mwVK?
100
4.  mij gybvdv
 I PKÌe†w«¬ gybvdvi cv^ÆKÅ K tan.cosec = 2 L sin2 = cos
KZ UvKv? M sin = cos2 N cot.sec = 2
K 2.81 L 1.81 1 + x2 E
M 3.81 N 78.81
14. cosec =
x
nGj, sec = KZ? B
C
5. A = {1, 2, 3, 6, 9, 18} ˆmUwUGK
ˆmU MVb K 80 L 90
K x L 1 + x2
M 100 N 120
c«¬wZGZ cÉKvk KiGj wbGPi ˆKvbwU nGe? M
1
N 1
x 26. e†îÕ© UÇvwcwRqvGgi ZxhÆK evü«¼Gqi ŠewkÓ¡Å
K A = {x : x ˆgŒwjK msLÅv}
15. cot (  30) = 3 nGj, sin = KZ? Kxi…c?
L A = {x : x  ô ‰es x > 18}
1 1 K ciÕ·i Amgvb L ciÕ·i jÁ¼
M A = {x : x, 18 ‰i àwYZK} K L
2 2 M ciÕ·i mgv¯¦ivj N ciÕ·i mgvb
N A = {x : x, 18 ‰i àYbxqK}
3 27. 
 e†Gîi ˆK±`Ê ˆ^GK RÅv ‰i `ƒiZ½ 5 ˆm.wg.
6. F(x) = x  5 nGj@ M N1
2 ‰es e†Gîi eÅvmvaÆ 9 ˆm.wg. nGj, RÅv ‰i
i. ˆWvg F = {x  Ñ : x  5} 16. hw` ‰KwU LyuwUi Qvqvi Š`NÆÅ kƒbÅ nq, ZGe Š`NÆÅ KZ?
ii. dvskGbi ˆjLwPò ‰KwU mijGiLv D®²wZ ˆKvY KZ? K 7.48 ˆm.wg. (cÉvq)
iii. ˆié F = {x  Ñ : x  0} K 30 L 45 M 60 N 90 L 6.23 ˆm.wg. (cÉvq)
wbGPi ˆKvbwU mwVK? 17. 
 wPGò M 14.97 ˆm.wg. (cÉvq)
A 60 D
K i I ii L i I iii i. ACB = 60 N 12.46 ˆm.wg. (cÉvq)
M ii I iii N i, ii I iii ii. BC = 18 36
28. 
 A
7. 324 ‰i jM 4 nGj, wfwî KZ? iii. AB = 3 BC B C
K 2 3 L 4 3
wbGPi ˆKvbwU mwVK? 80

M 4 2 N 3 2 K i I ii L i I iii D E
F
50
8. 0.000835 ‰i jGMi cƒYÆK KZ? M ii I iii N i, ii I iii
B
K 4 L4 18. 
 ABC mgevü wòfzGRi evüi Š`NÆÅ C
6 ˆm.wg. nGj, gaÅgvi Š`NÆÅ KZ?
wPGò BD || CF ‰es BC || DE
M 3 N 3
DBC + EFC = KZ?
9. 
 3x  5 + 7 = 2 ‰i mgvavb ˆmU K 3 3 L2 3 M 3 N 2
K 100 L 120
ˆKvbwU? 19. 
 mylg eüfzGRi cÉGZÅKwU kxlÆGKvGYi
M 150 N 180
K 5 L5 cwigvY 108| eüfzGRi evüi msLÅv KqwU? 29. 3, 7, 15, 5, 8, 6, 19, 16, 12, 14 msLÅvàGjvi
M 1 N{ } K 4 L5 M6 N 8
gaÅK KZ?
10. 
x:y=3:2 ‰es y : z = 3 : 2 nGj@ wbGPi ZG^Åi AvGjvGK (20 I 21) bs cÉGk²i K 8 L 10
i. x, y, z KÌwgK mgvbycvZx Dîi `vI : M 12 N 14
ii. y : x = 2 : 3 iii.
x y
= 4 ˆm.wg. eÅvmvaÆ wewkÓ¡ e†Gî ‰KwU eMÆ 30. ˆkÉwY eÅvwµ¦ 21-30 31-40 41-50 51-60
y z
A¯¦wjÆwLZ| MYmsLÅv 4 12 8 10
wbGPi ˆKvbwU mwVK? 20. 
 e†Gîi eÅvm KZ ˆm.wg.? cÉ`î DcvGîi cÉPziK KZ?
K i I ii L i I iii K 6 L7 K 37.67 L 37.67̇
M ii I iii N i, ii I iii M 8 N9 M 41.25 N 42.25

1 M 2 K 3 K 4 M 5 N 6 L 7 N 8 K 9 N 10 N 11 L 12 K 13 L 14 L 15 M
Dîi

16 N 17 N 18 K 19 L 20 M 21 L 22 L 23 K 24 N 25 M 26 N 27 M 28 K 29 L 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 7

352 KÅvgweËqvb Õ•zj ‰´£ KGjR, XvKv



MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. A = {1, 2, 3, 4} nGj, ˆmU A ‰i cÉK‡Z 11. 
 cos2B ‰i gvb KZ? 22. cot = 3 nGj@
DcGmU KqwU? 2 2 10 i. tan =
1
K L 3
K 4 L 14 M 15 N 16 3 3
3x + 1 f(1) + 1 8 10 ii. sec = 2 tan
2. f(x) =
3x  1
nGj, f(1)  1 = KZ? M
9
N
9 iii. 4 sin = sec 2
K 0 L1 12. wZbwU evüi Š`NÆÅ ˆ`Iqv AvGQ| wbGPi ˆKvb wbGPi ˆKvbwU mwVK?
M 2 N3 ˆÞGò ‰KwU wòfzR AuvKv mÁ¿e? K i I ii L i I iii
3. A = {3, 5, 7}, B = {4, 5, 7} nGj@ K 2, 3, 5 L 4, 5, 10 M ii I iii N i, ii I iii
i. AB = {5, 7} M 6, 7, 8 N 7, 5, 2 23.  1 + 3  9 + ...... avivwUi PZz^Æ c` KZ?
ii. P(AB) ‰i Dcv`vb msLÅv 16 13. 
 mgevü ABC ‰i cwiGK±`Ê O nGj, K  27 L  12 M 12 N 27
iii. A\B = {3, 4} AOB ‰i gvb KZ? 4n  1
wbGPi ˆKvbwU mwVK? 24. 2n  1 ‰i gvb wbGPi ˆKvbwU?
K 120 L 90 M 60 N 30
K i I ii L i I iii 14. 
 wPGò, O e†Gîi ˆK±`Ê K 2n + 1 L 2n  1
n+1
M ii I iii N i, ii I iii
O 5cm M 2 N 2n  1
‰es BD = 4 ˆm.wg.|
1
4. x + y = 6, x  y = 4 nGj, xy ‰i gvb AOB ‰i ˆÞòdj KZ
A
D
B 25. 
 logx  =  2 nGj, x ‰i gvb KZ?
25 
wbGPi ˆKvbwU? eMÆ ˆm.wg.? K ±5 L 5
K 2 L 5 K 12 L 20 M 24 N 30 1 1
M 24 N 26 M ± N
15. KgcGÞ KqwU evüi Š`NÆÅ ˆ`Iqv ^vKGj 5 5
5. S = {(3, 1), {3, 2), (4, 2)} A®¼Gqi ˆié eMÆ Aâb Kiv mÁ¿e? 26. (34  40) I (41  47)
ˆKvbwU? K 4wU L 3wU M 2wU N 1wU i. ‰i ˆkÉwY eÅeavb 7
K {3, 4} L {1, 2} 16. 
 O e†Gîi ˆK±`Ê nGj, A ii. ˆkÉwYeÅvwµ¦«¼q AwewœQ®²
M {1, 2} N {3, 4} iii. ‰i cÉ^g ˆkÉwYi Ea»Æmxgv 40
x ‰i gvb KZ? x+10
wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi wbGPi ˆKvbwU mwVK?
K 20 L 30 C
`vI: M 40 N 60
B x+80
K i I ii L i I iii
2
a  5a  1 = 0
17. `yBwU e†î ciÕ·iGK ˆQ` KiGj ZvG`i M ii I iii N i, ii I iii
1
6.  a2 + 2 ‰i gvb KZ?
a gGaÅ mGeÆvœP KqwU mvaviY Õ·kÆK Aâb wbGPi ZG^Åi AvGjvGK (27 I 28) bs cÉGk²i Dîi `vI:
K 23 L 25 M 27 N 29 Kiv mÁ¿e? 10, 9, 8, 6, 11, 12, 9, 14, 7, 9
1 K 1 L2 M3 N 4 27. cÉ`î DcvîàGjvi cÉPziK KZ?
7.  a + ‰i gvb KZ? K 14 L 9
a 18. 
 11 + 7 + 3 + ....  49 avivwUi@
M 7 N 6
K 29 L 27 M 23 N 21 i. mvaviY A¯¦i  4
1 28. cÉ`î DcvîàGjvi gaÅK ˆKvbwU?
8. x + = 5 nGj@ ii. 9 Zg c`  43
x K 11.55 L 11
iii. c`msLÅv 16 M 9 N 8.5
i. x2 + 5x + 1 = 0
1 wbGPi ˆKvbwU mwVK? 29. AwRf ˆiLv AâGb x-AÞ eivei ˆKvbwUGK
ii. x  = 1
x K i I ii L i I iii aiv nq?
1
iii. x2 + 2 = 3 M ii I iii N i, ii I iii K MYmsLÅv
x
19. 
 wPGò, O ˆK±`ÊwewkÓ¡ S L gaÅgvb
wbGPi ˆKvbwU mwVK?
e†Gî PQRS A¯¦wjÆwLZ R
M ˆkÉwYi DœPmxgv
K i I ii L i I iii O 80
nGqGQ| SPQ = KZ? P N KÌgGhvwRZ MYmsLÅv
M ii I iii N i, ii I iii Q
K 80 L 90 M 180 N 360 30. 
 7.5 wg. Š`NÆÅwewkÓ¡ ‰KwU AvqZGÞGòi
9. 2sin = 1 nGj, cot ‰i gvb KZ? cÉÕ© Š`GNÆÅi ‰K-Z‡Zxqvsk nGj@
1
20. 
 ˆKvGbv wòfzGRi `yB evüi Š`NÆÅ 9 ˆm.wg.
K 0 L M 3 N 2 I 10 ˆm.wg. ‰es ‰G`i A¯¦fzÆÚ ˆKvY 60| i. cÉÕ© 2.5 wg.
3
wòfzRwUi ˆÞòdj KZ eMÆ ˆm.wg.? ii. cwimxgv 20 wg.
wbGPi ZG^Åi AvGjvGK (10 I 11) bs cÉGk²i
K 22.5 L 38.97 M 45 N 77.94 iii. KYÆ 55.25 wg.
Dîi `vI:
21. 
 ABCD e†Gî A¯¦wjÆwLZ ‰KwU PZzfzÆR| wbGPi ˆKvbwU mwVK?
tan(2A  45) = 1 = 3sinB
BAD = 95 nGj, BCD = KZ? K i I ii L i I iii
10. 
 A ‰i gvb KZ?
K 30 L 45 M 60 N 90 K 85 L 90 M 95 N 105 M ii I iii N i, ii I iii

1 M 2 N 3 K 4 L 5 L 6 M 7 K 8 M 9 M 10 L 11 M 12 M 13 K 14 K 15 N
Dîi

16 N 17 L 18 L 19 K 20 L 21 K 22 N 23 N 24 K 25 L 26 L 27 L 28 M 29 M 30 K
8 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
353 DBj&m wjU&j dÑvIqvi Õ•zj ‰´£ KGjR, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
. 11. wòfzGRi evüi Š`NÆÅ wbG`Æk KiGj ˆKvbwU 20. cot 1  cos2 = KZ?
1. 
 2.02 ‰i `kwgK f™²vsk ˆKvbwU?
182 200 182 200
«¼viv wòfzR MVb mÁ¿e bq? K sec L cos
K L M N K 4, 5, 8 L 13, 15, 10 M sin N tan
9 9 90 90
M 7, 11, 4 N 12, 16, 27 21. ˆKvb e†Gîi eÅvm 28 ˆm.wg. nGj, ‰i cwiwa
2. A = {0} nGj, A ‰i cÉK‡Z DcGmU KZwU?
wbGPi ZG^Åi AvGjvGK (12 I 13) bs cÉGk²i KZ ˆm.wg.?
K 1 L0 M2 N bvB
Dîi `vI: K 42.48 L 48.94
3. 
 hw` (x) = x + 9x + 11kx + 5k nq
7 4
C B M 44.43 N 87.96
ZGe k ‰i ˆKvb gvGbi RbÅ (1) = 0 22. 
 3 ˆm.wg. aviwewkÓ¡ NbGKi c†Ó¤ZGji
O
nGe? KGYÆi Š`NÆÅ KZ?
A E D
3 4 2 3 K 6 ˆm.wg. L 3 2 ˆm.wg.
K L M N
4 3 3 2
O ˆK±`ÊwewkÓ¡ ABCD e†Gî AB = 10cm M 6 ˆm.wg. N 9 ˆm.wg.
4. a2  2a + 1 = 0 nGj, a2 + 3a + 4 ‰i gvb
OEAD, OE = 3 ˆm.wg. ACBC 23. H eYÆwUi NƒYÆb cÉwZmgZvi gvòv KZ?
ˆKvbwU nGe?
12. 
 ACB ‰i cwimxgv KZ ˆm.wg.? K 1 L2 M 2 N 2 2
K 2 2 L 3 2 24. 0.0035 ‰i mvaviY jGMi cƒYÆK KZ?
K 20.14 L 22.14
M 4 2 N 2 M 24.14 N 26.14 . .
K 3 L1 M2 N 3
5. hw` x + y = 6 ‰es x2  y2 = 12 nq 13. 
 OED ‰i ˆÞòdj KZ eMÆ ˆm.wg.?
25. ˆKvb kGZÆ ax = bx nGj, a = b nGe?
ZvnGj@ K 20 L 15 M 12 N 6
K a = 0, b = 0, x  0
1 2 3 4 ... ... ...
i. (x  y)2 = 4 14.  +  +
2 3 4 5
AbyKÌGgi mvaviY L a > 0, b > 0, x  1
ii. x = 4 M a > 1, b > 0, x  1
c` ˆKvbwU?
iii. xy = 8 N a > 0, b > 0, x  0
n n
wbGPi ˆKvbwU mwVK? K (1)n+1 L (1)n+1 1
n+1 n1 26. x = 5 + 4 nGj x + x = KZ?
K i I ii Li I iii M (1)n1
n
N (1)n+1
n1
n+1 n+1 K 2 5 L 4
M ii I iii N i, ii I iii
15. mgevü wòfzGRi ˆÞòdj 6 3 eMÆwgUvi M 52 N 5+2
6. (3a1 + 2b1)1 ‰i gvb wbGPi ˆKvbwU?
nGj ‰i cwimxgv KZ? 3
27. x  x = 2 nGj
10
‰i gvb KZ?
ab 2a + 3b x2  2x + 2
K L K 4.89 L 14.69
2a + 3b ab K 2 L3 M5 N 10
M 19.56 N 72
2a + 3b 6ab
M N 16. ˆKvbwU wewœQ®² PjK? 28. Dcvîmgƒn mviwYfzÚ Kiv nGj cÉwZ ˆkÉwYGZ
6ab 3a + 2b
K Zvcgvòv L cvwLi msLÅv
hZàGjv Dcvî A¯¦fzÆÚ nq Zvi wbG`ÆkK
7. 
 ˆKvb wòfzGR ‰KwU ewne†Æî AuvKGj e†îwU
M eqm N DœPZv
wbGPi ˆKvbwU?
KqwU evüGK Õ·kÆ KiGe?
K ˆkÉwY mxgv L ˆkÉwYi gaÅwe±`y
K 1 L2 M3 N 0 17. mgGKvYx wòfzGRi mgGKvY eÅZxZ Aci `yB
M ˆkÉwYmsLÅv N ˆkÉwYi MYmsLÅv
8. sin3 = cos nGj  gvb KZ? ˆKvGYi AbycvZ 3 : 2 nGj, ˆKvb `yBwU
wbGPi ˆKvbwU? 29. 
 AwRf ˆiLvi ˆÞGò wbGPi ˆKvbwU
K 60 L 45 M 30 N 15
K 54, 36 L 55, 35 mwVK?
9. tan(  30) = 3 nGj sin ‰i gvb KZ?
M 50, 40 N 45, 45 K Ea»ÆMvgx L wbÁ²Mvgx
1
K 0 L
2 18. ‰KwU mgevü wòfzGRi evüi Š`NÆÅ 2 wgUvi M mgv¯¦ivj N DjÁ¼

3 nGj, ‰i ˆÞòdj KZ? 30. 1 + 3 + 5 + 7 + ... ... ... avivi cÉ^g


M N1
2 K 2 eMÆwgUvi L 3 eMÆwgUvi n msLÅK cG`i mgwÓ¡ KZ?
10. 
 mgGKvYx wòfzGRi mƒÞGKvY«¼q mgvb M 5 eMÆwgUvi N 7 eMÆwgUvi  n(n + 1) 2
K n2 L  
nGj ˆKvYàwji AbycvZ wbGPi ˆKvbwU? 19. 
 ‰KwU mylg cçfzGRi cÉwZwU kxlÆ  2 
K 2:3:4 L 2:2:3 ˆKvGYi cwigvb KZ? M 
 n(n + 1) 
 N
n
M 1:1:2 N 1:2:4 K 60 L 90 M 108 N 120  2  2

1 M 2 K 3 L 4 K 5 N 6 K 7 L 8 L 9 N 10 M 11 M 12 M 13 N 14 K 15 L
Dîi

16 L 17 K 18 L 19 M 20 L 21 N 22 L 23 L 24 N 25 N 26 K 27 K 28 N 29 K 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 9
354 we‰‰d kvnxb KGjR, KzwgÆGUvjv, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. `yBwU KÌwgK ˆRvo msLÅvi àYdj KZ «¼viv 11. 
 ‰KwU mgw«¼evü wòfzGRi mgvb mgvb 20. 
 13 + 20 + 27 + ... ... ... + 111 avivwUi
wefvRÅ? evüi Š`NÆÅ 50 ˆm.wg. ‰es ˆÞòdj 1200 c` msLÅv KZ?
K 8 L 7 eMÆ ˆm.wg. nGj, mgvb mgvb evüi gaÅeZÆx K 10 L 13
M 6 N 5 ˆKvY KZ? M 15 N 20
2. nGj,
A = {1, 3, 5, 7, 9}, B = {5, 7} K 63.74 L 65.74 21. ‰KwU àGYvîi avivi w«¼Zxq c` 32 ‰es
P(AB) ‰i Dcv`vb msLÅv wbGPi ˆKvbwU? M 73.74 N 74.73 PZz^Æ c` 8 nGj AÓ¡g c` KZ?
K 3 L 4 12. ˆKvGbv e†Gîi@ 1 1
K L
M 8 N 16 2 4
i. AwaPvGc A¯¦wjÆwLZ ˆKvY mƒßGKvY
3. a2 + b2 = 9 ‰es ab = 3 nGj@ 1 1
ii. DcPvGc A¯¦wjÆwLZ ˆKvY Õ©ƒjGKvY M
8
N
16
i. (a  b)2 = 3
ii. (a + b)2 = 15 iii. A¯¦wjÆwLZ mvgv¯¦wiK ‰KwU AvqZ AB AC BC
22. ABC I DEF ‰i = = nGj@
iii. a2 + b2 + a2b2 = 18 wbGPi ˆKvbwU mwVK? DE DF EF
wbGPi ˆKvbwU mwVK? K i I ii L i I iii K A = E L A =  B
M A = F N A = D
K i I ii L i I iii M ii I iii N i, ii I iii
M ii I iii N i, ii I iii 13. 
 cos9B = sinB ‰es B < 10 nGj cot5B
23. H AÞiwUi NƒYÆb ˆKvY KZ wWMÉx?
K 108 L 120
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi ‰i gvb KZ?
M 180 N 360
`vI: 1
K 0 L
3
24. 
 ABC ‰KwU mgw«¼evü mgGKvYx wòfzR|
2
y+
y
=3
M 1 N 3
BC ‰i AwZfzR ‰es P, BC ‰i Dci
4 14. sin3A = cos3A nGj tan4A = KZ? ˆhGKvGbv we±`y| ZvnGj 2PA2  PC2 = KZ?
4.  y + 2 = KZ?
 2
y K PB2 L AB2
K 3 L 1
K 5 L 7 M AC2 N BC2
M 11 N 13 3 1
M
2
N 25. ‰KwU mgevü wòfzGRi cwimxgv 18 ˆm.wg.
3 3
5. 
y 3 2
+   ‰i gvb ˆKvbwU? nGj wòfzRwUi DœPZv KZ ˆm.wg.?
y 15. ‰KwU ˆ`qvGj mƒGhÆi AvGjv coGj ˆ`qvGji
K 3 L 3 3
K 9 L 15 cv`G`k nGZ 2 wgUvi `ƒiGZ½ 45 D®²wZ
M 3 5 N 6
M 18 N 45 ˆKvY ŠZwi KGi| ˆ`qvjwUi DœPZv KZ
26. 
 ‰KwU iÁ¼Gmi ˆÞòdj 40 eMÆ wgUvi
6. hw` abvñK msLÅv ô ‰i ŠeævwbK i…c wgUvi?
‰es ‰KwU KYÆ 8 wgUvi nGj, Aci KYÆ KZ
a  10n nq ZGe logN = KZ? K 2 L 4
K a + logn L nloga M 6 N 8 wgUvi?
M n + loga N logan 16. mgGKvYx wòfzGRi@ K 5 L 8
M 10 N 20
7. wbGPi ˆKvb kGZÆ ax2 + bx + c = 0 ‰KwU i. jÁ¼ > f„wg, hLb D®²wZ ˆKvY 60
w«¼NvZ mgxKiY? 27. mylg cçfzGRi ‰KwU kxlÆ ˆKvY KZ wWMÉx?
ii. jÁ¼ > f„wg, hLb D®²wZ ˆKvY 30
K 108 L 120
K a0 L b0 iii. jÁ¼ = f„wg, hLb D®²wZ ˆKvY 45
M a>0 N b<0 M 180 N 360
wbGPi ˆKvbwU mwVK? 28. wbGPi ˆKvbwU wbYÆGqi RbÅ KÌgGhvwRZ
8. `yBwU mÁ·ƒiK ˆKvY mw®²wnZ nGj Drc®² K i I ii L i I iii
nq@ MYmsLÅv mviwY cÉGqvRb?
M ii I iii N i, ii I iii
K cƒiK ˆKvY L wecÉZxc ˆKvY K MvwYwZK Mo L eÅewa
17. 
 ˆKvGbv eGMÆi evüi Š`NÆÅ 10% nËvm ˆcGj
M ŠiwLK hyMj ˆKvY N ‰Kv¯¦i ˆKvY M cÉPziK N gaÅK
‰i ˆÞòdj kZKiv KZ nËvm cvGe?
9. ABC mgevü wòfzGRi B I C ‰i wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
K 10% L 19%
mgw«¼L´£K«¼q O we±`yGZ wgwjZ nGj, M 21% N 30% Dîi `vI:
BOC ‰i gvb wbGPi ˆKvbwU? 18. 6x  y = 5 ‰es 5x  2y = 2 nGj, ˆkÉwYeÅwµ¦ 21-25 26-30 31-35 36-40 41-45
K 60 L 90 x + y = KZ? MYmsLÅv 3 6 6 7 4
M 120 N 150 K 2 L 3 29. cÉPziK ˆkÉwYi gaÅgvb KZ?
10.  ˆKvGbv
 e†Gîi ‰KB PvGci Dci M 4 N 5 K 28 L 33
`´£vqgvb e†îÕ© I ˆK±`ÊÕ© ˆKvGYi gvb 19.
x 2
hw` y = 3 nq, ZGe
6x + y
‰i gvb KZ? M 38 N 43
3x + 2y 30. gaÅK wbYÆGqi RbÅ Fc ‰i gvb wbGPi
h^vKÌGg (2y + 10) ‰es (y + 110) nGj,
4 14
y ‰i gvb KZ? K
5
L
15 ˆKvbwU?
K 30 L 45 5 20 K 6 L 7
M 60 N 90 M N M 9 N 15
4 13

1 K 2 M 3 N 4 K 5 K 6 M 7 K 8 M 9 M 10 K 11 M 12 N 13 M 14 K 15 K
Dîi

16 L 17 L 18 L 19 M 20 M 21 K 22 N 23 M 24 K 25 L 26 M 27 K 28 N 29 M 30 M
10 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
355 eËvBU Õ•zj AÅv´£ KGjR, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
4
1. cot + cosec = 3 nGj, cot – cosec = KZ? 9. wbGPi ˆKvbwU gƒj` msLÅv wbGPi ˆKvbwU mwVK?
5 27 6 8 K i I ii L i I iii
3 –3 1 2 K L M N
K
4
L
4
M
3
N
3
10 48 3 7 M ii I iii N i, ii I iii

2. 3x – 5y = 7, 6x – 10y = 15 ‰B mgxKiY 10. 8 cm eÅvm I 3 cm eÅvmvaÆwewkÓ¡ `ywU e†î 21. logxa = 3 ‰es logay = 2 nGj, logxy ‰i
ˆmUwU@ ciÕ·iGK A¯¦Õ·kÆ KiGj ZvG`i gvb KZ?
ˆK±`Ê«¼Gqi gaÅeZÆx `ƒiZ½ KZ? K 1 L5 M6 N 9
i. Amgém
K 1 cm L 5 cm M 11 cm N 7 cm wbGPi ZG^Åi AvGjvGK (22 I 23) bs cÉGk²i
ii. ‰KwU gvò mgvavb AvGQ
11. f(x) =x4 + 5x + 3 nGj, f(– 2) ‰i gvb KZ? Dîi `vI:
iii. ciÕ·i AwbfÆikxj K – 23 L – 17 M 1 N 9 7 + 13 + 19 + 25 + ....... ‰KwU aviv|
wbGPi ˆKvbwU mwVK? 12.  ‰KwU AvqZGÞGòi Š`NÆÅ 10% e†w«¬ I
 22. avivwUi 20Zg c` ˆKvbwU?
K i I ii L i I iii cÉÕ© 10% nËvm ˆcGj AvqZGÞGòi ˆÞòdj K 26 L 121 M 133 N 139
M ii I iii N i, ii I iii kZKiv KZ e†w«¬ ev nËvm cvGe? 23. avivwUi 1g 30wU cG`i mgwÓ¡ KZ?
3. 
 A K 1% nËvm L 1% e†w«¬ K 3225 L 3000 M 2820 N 1880

6m 30 M 21% nËvm N 21% e†w«¬ 24. E


F D
B C 13. O
A C
wPGò AB ‰KwU MvQ nGj, MvGQi Qvqvi 3
 B
Š`NÆÅ KZ wgUvi? 1 wPGò, ABCDEF eüfzGRi ˆK±`Ê O|
K 2 3 L6 2 M6 3N 6 eüfzRwUi kxlÆGKvY KZ?
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi wPò nGZ sin.sec ‰i gvb KZ?
1 2 K 60 L 70 M 110 N 120
`vI: K
3
L 3 M1 N
3 25. ˆKvGbv ˆmU A ‰i cÉK‡Z DcGmU msLÅv
cÉvµ¦ bÁ¼i 51-60 61-70 71-80 81-90 91-100 14. 
 wPGò PQRS iÁ¼Gmi 31 nGj, H ˆmGUi Dcv`vb msLÅv KqwU?
MYmsLÅv 8 12 15 7 8 cwimxgv 20 cm ‰es
P
S K 4wU L 5wU M 6wU N 3wU
4. gaÅK ˆkÉwYi KÌgGhvwRZ MYmsLÅv wbGPi PR = 6 cm nGj@
O 26. b, a, c wZbwU KÌwgK mgvbycvZx nGj@
ˆKvbwU? i. QO = 4 cm i. b : a = a : c
R ii. a2 = bc iii. b2 = ac
K 42 L 35 M 20 N 15 ii. PO = 3 cm Q
iii. iÁ¼mwUi ˆÞòdj = 24 cm
wbGPi ˆKvbwU mwVK?
5. cÉ`î DcvGîi@
K i I ii L i I iii
i. cÉPziK ˆkÉwY (71-80) wbGPi ˆKvbwU mwVK?
M ii I iii N i, ii I iii
ii. cÉPziK = 77.54 (cÉvq) K i I ii L i I iii
27. (x – y + z)2 = KZ?
iii. gaÅK wbYÆGq fm = 15 M ii I iii N i, ii I iii
K x2 – y2 + z2 – 2xy – 2yx +2xz
wbGPi ˆKvbwU mwVK? 15. DcPvGci Abye®¬x PvGc A¯¦wjÆwLZ ˆKvY L x2 + y2 – z2 + 2xy + 2yz – 2zx
K i I ii L ii I iii wbGPi ˆKvbwU? M x2 + y2 + z2 – 2xy – 2yz +2zx
K 180 L 80 M 110 N 120 N x2 + y2 + z2 – 2xy – 2yz – 2zx
M i I iii N i, ii I iii
6. ‰KwU wòfzGRi KqwU ewnteƆî AuvKv hvq? 16. 
 cot( – 60) = 3 nGj, cos = KZ? 28. 
 A D
E
20
1 3
K 2wU L 3wU M 4wU N 1wU K 0 L M1 N 105
2 2
7. 
 kZKiv evwlÆK 7 UvKv mij gybvdvq
17. e†Gîi cÉwZmvgÅ ˆiLv KqwU? B C
ˆKvGbv gƒjab 2 eQGi me†w«¬gƒj 912 UvKv wPGò DCE = KZ?
K 0 L1 M2 N AmsLÅ
nGj, gƒjab KZ? K 60 L 55 M 125 N 65
18. mgGKvYx wòfzGRi cwiGK±`Ê@ wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
K 894.11 UvKv L 852.33 UvKv
K wòfzGRi evBGi L wòfzGRi Afů¦Gi Dîi `vI: P
M 796.57 UvKv N 800.00 UvKv M AwZfzGRi Dci N AwZfzGRi evBGi x
1
8. x + x = 5 nGj@ 19. 0.0000525 ‰i ŠeævwbK i…c wbGPi ˆKvbwU?
O
K 5.25  105 L 5.25  10– 5
i. x2 – 5x + 1 = 0
M 5.25  10– 4 N 52.5  10– 5
1 1
iii. x2 + 2 = 5 wPGò, O e†Gîi ˆK±`Ê| Q x + 55
R
ii. x – = 1
x x 20. – 3 + 3 – 3 + 3 – 3 + .............
29. 
 QPR =
wbGPi ˆKvbwU mwVK? i. ‰wU ‰KwU àGYvîi aviv K 60 L 110 M 120 N 55
K i I ii L i I iii ii. mvaviY AbycvZ 1 30. 
 cÉe†«¬ QOR ‰i gvb KZ?
M ii I iii N i, ii I iii iii. cÉ^g 11wU cG`i mgwÓ¡ – 3 K 250 L 360 M 110 N 260
1 L 2 L 3 K 4 L 5 M 6 L 7 N 8 K 9 L 10 K 11 N 12 K 13 L 14 N 15 L
Dîi

16 K 17 N 18 M 19 L 20 L 21 M 22 L 23 M 24 N 25 L 26 K 27 M 28 L 29 N 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 11
356 ‰UwgK ‰bvwRÆ wimvPÆ ‰Õ¡vweÐmGg´Ÿ Õ•zj ‰´£ KGjR, XvKv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 0.00336 ‰i ŠeævwbK i…c ˆKvbwU? 11. mgGKvYx wòfzGRi 70 ˆKvY AâGbi 20. 3  4 secA.sinA = 0 nGj, tanA KZ?
K 3.36  104 L 33.6  103 ˆÞGò wbGPi ˆKvbwU mwVK? K
3
L
3
7 4
M 3.36  103 N 336  105 K jÁ¼ = f„wg L jÁ¼ > f„wg 4 7
2. (21 + 31)1 ‰i gvb KZ? M N
M f„wg > jÁ¼ N AwZfzR = jÁ¼ 3 3
6 5 21. (90  x) ˆKvGYi cƒiK ˆKvY KZ?
K
5
L
6 12. 
 wPGòi O ˆK±`ÊwewkÓ¡ e†Gî cÉe†«¬
POR ‰i gvb KZ? Q K 90 L x
2 1
M N M x + 90 N x + 180
3 6 K 60
3. A ˆmGUi cÉK‡Z DcGmU 15 wU nGj, L 120
x
22. 
 wòGKvYwgwZK AbycvGZi ˆÞGò
O
P(A) ‰i Dcv`vb KqwU? M 240 i. sin + cos > 1
x + 60 ii. cosec2  cot2 = 1
K 3 L 4 N 360 P R
iii. tan2  sec2 =  1
M 16 N 32 13. 32 x = 8 nGj, x ‰i gvb KZ?
(64) wbGPi ˆKvbwU mwVK?
4. ‰KwU AvqGZi mw®²wnZ evü«¼q 5 ˆm.wg.
1 1 K i I ii L i I iii
‰es 7 ˆm.wg.| evü«¼Gqi A¯¦fzÆÚ ˆKvY KZ K  L
3 3 M ii I iii N i, ii I iii
nGj AvqZwU Aâb mÁ¿e? M 4 N 4 23. ‰KwU mylg lofzGRi cÉwZwU kxlÆGKvY KZ?
K 30 L 45 14. evwlÆK kZKiv 5 UvKv nvi gybvdvq 500 K 60 L 90
M 60 N 90
UvKvi 3 eQGii mij gybvdv KZ UvKv? M 105 N 120
8
5. 
 x2 + 2 = 3x nGj, x3 + 3 ‰i gvb KZ? K 15 L 45 24. sin3A = tan45 nGj, cos2A = KZ?
x
M 60 N 75 1
K 9 L 18 K 0 L
15. 5 ˆm.wg. eÅvmvaÆ ‰es 6 ˆm.wg. eÅvmwewkÓ¡ 2
M 21 N 27
3
wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi `yBwU e†î ciÕ·i A¯¦tÕ·kÆ KiGj, M
2
N 1

`vI: ˆK±`Ê«¼Gqi gaÅeZÆx `ƒiZ½ KZ ˆm.wg.? 25. f(x) = x4  ax2 + 5 ‰es f(1) = 0 nGj,
K 1 L 2
6 + x + y + 162 àGYvîi avivfzÚ| a ‰i gvb KZ?
M 3 N 4
6. avivwUi mvaviY AbycvZ KZ? K 6 L 4
1
16. 
 Õ©ƒjGKvYx wòfzGRi cwiGK±`Ê ˆKv^vq M 1 N 6
K 2 L
3 AewÕ©Z? 26. 
 ‰KwU mgGKvYx wòfzGR KqwU ewne†Æî
M 3 N 6 K wòfzGRi Afů¦Gi AuvKv hvq?
7. (y  x) ‰i gvb ˆKvbwU? L AwZfzGRi Dci K 1 L 2
K 6 L 18 M 3 N 4
M e†nîi evüi Dci
M 36 N 54 27. e†Gîi DcPvGc A¯¦wjÆwLZ ˆKvY Kxi…c?
N wòfzGRi ewnfÆvGM
2sinA
8. 
 A = 30 nGj, ‰i gvb KZ? K mƒßGKvY L Õ©ƒjGKvY
1  sin2A 17. ‰KwU eGMÆi cwimxgv 16 wgUvi nGj, eMÆwUi
M mgGKvY N mij ˆKvY
K 2 2 L
2 KGYÆi Dci AwâZ eGMÆi cwimxgv KZ wgUvi?
3 28. 3 + 3  3 + 3  ... ... ... avivwUi
K 4 2 L 4 3
4 15-Zg c` KZ?
M N 1 M 12 2 N 16 2
3 K 30 L 15
9. ˆKvb kGZÆ a = 1 nq?
0 18. A = {x  ô : x2  5x  6 = 0} ˆmGUi M 3 N 3
K a>0 L a<0 ZvwjKv c«¬wZ ˆKvbwU? 29. wbGPi ˆKvbwU AwewœQ®² PjGKi D`vniY?
M a1 N a0 K {1, 6} L {1, 6} K Qvòx msLÅv L Zvcgvòv
10. 
 1 ˆ^GK 17 ‰i gaÅeZÆx Õ¼vfvweK M {6} N  M RbmsLÅv N cixÞvi bÁ¼i
msLÅvàGjvi gGaÅ 3 ‰i àwYZKmgƒGni 19. 
 ‰KwU NbGKi c†Ó¤ZGji ˆÞòdj 30. 
 ‰KwU ˆkÉwYi DœPmxgv 50 ‰es gaÅgvb
gaÅK KZ? 216 eMÆwgUvi nGj, ‰i AvqZb KZ NbwgUvi? 48 nGj, H ˆkÉwYi wbÁ²mxgv KZ?
K 9 L 12 K 216 L 144 K 41 L 45
M 15 N 18 M 36 N 6 6 M 46 N 49.5

1 M 2 K 3 L 4 N 5 K 6 M 7 M 8 M 9 N 10 K 11 L 12 M 13 L 14 N 15 L
Dîi

16 N 17 N 18 M 19 K 20 L 21 L 22 M 23 N 24 L 25 K 26 M 27 L 28 M 29 L 30 M
12 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
357 KvwbR dvGZgv MvjÆm Õ•zj ‰´£ KGjR, gvwbKMé

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. ˆKvGbv Dcvî mviwYfzÚ KiGZ nGj cÉ^Gg 12. (x2  3)2 = 0 mgxKiGYi KZwU gƒj AvGQ? 22. P

ˆKvbwU wbaÆviY KiGZ nq? K 4 L2 M1 N 3


K cwimi L ˆkÉwY eÅeavb 13. 
 ˆKvGbv eMÆGÞGòi cÉGZÅK evüi Š`NÆÅ O
M
30 M
M
M ˆkÉwY msLÅv N gaÅK 10% e†w«¬ ˆcGj ˆÞòdj kZKiv KZ e†w«¬
Q
wbGPi ZG^Åi AvGjvGK 2 bs cÉGk²i Dîi `vI: cvGe?
wPGò, POQ = KZ?
ˆkÉwYeÅvwµ¦ 41-50 51-60 61-70 71-80 K 10% L 11% M 21% N 44%
1 K 60 L 120
MY msLÅv 7 10 12 11 14. cos2  sin2 = nGj, cos4  sin4
3
‰i M 108 N 150
2. 
 gaÅK ˆkÉwYi wbÁ²mxgv KZ? gvb KZ? 23. Õ©ƒjGKvYx wòfzGRi cwie†Gîi ˆK±`Ê ˆKv^vq
K 71 L 51 M 61 N 70 1
K 3 L2 M1 N AewÕ©Z?
3. 
 cot(  60) = 3 nGj, cos  = KZ? 3
K wòfzGRi Afů¦Gi L wòfzGRi ewnfÆvGM
1 3 15. ˆKvGbv e†Gîi AwaPvGci A¯¦wjÆwLZ ˆKvY@
K 0 L M1 N M jGÁ¼i Dci N AwZfzGRi Dci
2 2 K Õ©ƒjGKvY L mƒßGKvY
4. 0.0035 ‰i mvaviY jGMi cƒYÆK KZ? M mgGKvY N mijGKvY
24. A

K 2̄ L 1 M3 N 3̄ 1 2a
16. a + a = 3 nGj, 3a2  2a + 3 ‰i gvb KZ?
5. kƒbÅ gvòvi mîv ejv nq KvGK?
2 2 108
K ˆiLv L we±`y K L B x d
11 7 C
M ˆKvY N ˆiLvsk 2 2
M  N  O ˆK±`ÊwewkÓ¡ e†Gîi x ‰i gvb KZ?
6. ‰KwU eMÆGÞGòi@ 7 11
K 72 L 126 M 108 N 54
i. NƒYÆb ˆKvY 90 17. A = {x  ô : 3  x  7} nGj, P(A) ‰i
25. wbGPi ˆKvbwU Av`kÆ cÉwZmg wPò?
ii. cÉwZmvgÅ ˆiLvi msLÅv 4 Dcv`vb msLÅv KZ?
K 8 L 16 M 32 N 64 K mgevü wòfzR L eMÆ
iii. NƒYÆb cÉwZmgZvi gvòv 6
18. 
 ‰KwU wòfzGRi `yBwU evüi Š`NÆÅ h^vKÌGg M iÁ¼m N e†î
wbGPi ˆKvbwU mwVK?
K i I ii L i I iii 4 ˆm.wg. I 9 ˆm.wg. nGj, Z‡Zxq evüi Š`NÆÅ 26. 
 mge†îf„wgK wmwj´£vGii f„wgi eÅvmvaÆ 5

M ii I iii N i, ii I iii KZ ˆm.wg.? ˆm.wg. ‰es DœPZv 12 ˆm.wg. nGj,


K 4 L5 M6 N 13 wmwj´£vGii eKÌZGji ˆÞòdj KZ eMÆ
7. 
 `yBwU msLÅvi AbycvZ 5 : 7 ‰es ZvG`i
1 2 3
M.mv.à. 4 nGj, msLÅv `yBwUi j.mv.à. KZ? 19. , , , ... ... ... AbyKÌGgi mvaviY
2 3 4
c` ˆm.wg.?
K 120 L 140 M 35 N 28 K 120 L 60
ˆKvbwU?
8. ˆKvb kGZÆ loga1 = 0 nGe? 1 n M 17 N 24
K L
K a > 0, a  1 L a>1 n n+1 27. mƒGhÆi D®²wZ ˆKvY 90 nGj, ˆKvGbv MvGQi
M a=1 N a>0 1 n1 Qvqvi Š`NÆÅ KZ wgUvi nGe?
M n N
2 n+1
9. a : b = x : y nGj, a : x = b : y K 90 L0 M 30 N 45
mgvbycvGZi ‰B agÆGK eGj@ 20. evwlÆK 10% nvGi 3000 UvKvi 3 eQGii
28. wbGPi ˆKvbwU gƒj` msLÅv?
K AvoàYb L eÅÕ¦KiY
mij gybvdv KZ UvKv?
3 5
K 180 L 600 K L
M ‰Kv¯¦iKiY N ˆhvRb 3 5
M 900 N 1800
10. 
 GKvGbv wòfzGRi `yBwU evüi Š`NÆÅ
21. 
 3x  5y  7 = 0 ‰es 6x  10y  15 = 0
7 9
M N
h^vKÌGg 9 ˆm.wg. I 10 ˆm.wg. ‰es ‰G`i 3 4
mgxKiY ˆRvUwU@
A¯¦fzÆÚ ˆKvY 60| wòfzRwU ˆÞòdj KZ 29. 10 ˆm.wg. eÅvm I 4 ˆm.wg. eÅvmvaÆ wewkÓ¡
i. Amgém
eMÆ ˆm.wg.? `ywU e†î ciÕ·iGK A¯¦tÕ·kÆ KiGj ZvG`i
ii. ciÕ·i AwbfÆikxj
K 38.97 L 22.5 ˆK±`Ê«¼Gqi `ƒiZ½ KZ ˆm.wg. nGe?
iii. ‰i ‰KwU mgvavb AvGQ
M 77.94 N 45 K 1 L9 M 14 N 6
11. 2  2 + 2  2 + ... ... ... avivwUi 17 Zg c` wbGPi ˆKvbwU mwVK?
30. (2x  y, 3) = (6, x  y) nGj, (x, y) = KZ?
K i I ii L i I iii
ˆKvbwU? K (0, 0) L (3, 0)
K 2 L2 M 34 N 34 M ii I iii N i, ii I iii M (0, 3) N (3, 3)

1 K 2 M 3 K 4 N 5 L 6 K 7 L 8 K 9 M 10 K 11 L 12 L 13 M 14 N 15 L
Dîi

16 L 17 M 18 M 19 L 20 M 21 K 22 N 23 L 24 L 25 N 26 K 27 L 28 N 29 K 30 L
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 13
358 mwdDwób miKvi ‰KvGWwg Õ•zj ‰´£ KGjR, MvRxcyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. (x) = x2  2x + 3 nGj, 2  ‰i gvb
1 11. (21 + 31)1 ‰i gvb KZ? 3
22. sin2 = 2 nGj,  ‰i gvb KZ?
  K
1
L
2
M
5
N
6
KZ? 6 3 6 5 K 30 L 45 M 60 N 90
1 1 + tan2A
K 
7
L
7
M
9
N
11 12.  x = 625 nGj, x ‰i gvb KZ?

5 23. 
4
 tanA = nGj, ‰i gvb
4 4 4 4 3 tan2A
K 4 L 5 KZ?
2. 
 (p + 5,  5) = (5, q  5) hw` nq, ZGe
M 25 N 125 5 4 25 16
(p, q) = KZ? K L M N
13. e†Gîi@ 4 5 16 25
K (10, 10) L (10, 10)
i. eÅvmB e†nîg RÅv 24.  1  1 + 1  1 + 1  1 + ... ... ... àGYvîi

M (0, 0) N (1, 1)
ii. mKj mgvb RÅv ˆK±`Ê ˆ^GK mg`ƒieZÆx avivwUi cÉ^g (2n + 1) msLÅK cG`i mgwÓ¡
3. P = {x, y} ‰es Q = {y, x} nGj, P  Q
iii. ˆK±`Ê ˆ^GK mg`ƒieZÆx mKj RÅv KZ?
ˆKvbwU?
K {} L {0}
M {} N {x, y}
ciÕ·i mgvb K 0 L1 M2 N 4
2 wbGPi ˆKvbwU mwVK? 25. cÉ^g n msLÅK Õ¼vfvweK msLÅvi NGbi
1
4. x  x + 1 = 0 nGj, x +  ‰i gvb
4 2
x K i I ii L i I iii mgwÓ¡ wbGPi ˆKvbwU?
  n2(n + 1)2
M ii I iii N i, ii I iii K Sn =
KZ? 4
K 4 L3 M2 N 1 14. 5, 11, 13, 6, 13, 6, 11, 9, 6 msLÅvàGjvi n2(n + 1)2
gGaÅ cÉPziK ˆKvbwU? L Sn =
5. 
 x = 7 + 4 3 nGj, x = KZ? 8
K 6 L9 M 11 N 13 n(n + 1)(2n + 1)
K 2+ 3 L 2 3 M Sn =
15. 2x+1 = 8 nGj, x ‰i gvb KZ? 6
M 3+ 3 N 3 3 n
K 1 L1 M2 N 3 N Sn = {2a + (n  1)d}
1 6a 2
6. a + a = 5 nGj, a2 + a + 1 = KZ? 16. log2 2 64 ‰i gvb wbGPi ˆKvbwU?
26. ‰KwU e†Gîi eÅvmvaÆ 5 ˆmw´ŸwgUvi ‰es
K 5 L5 M0 N 1 1
K
4
L1 M2 2N 4 ‰KwU e†îPvc ˆKG±`Ê 60 ˆKvY Drc®²
wbGPi ZG^Åi AvGjvGK (7 I 8) bs cÉGk²i Dîi KGi| e†îKjvi ˆÞòdj KZ?
17. 
 log42  log 3 27 = KZ?
`vI: K 13.09 eMÆ ˆmw´ŸwgUvi
2 K 3 L6 M9 N 27
x + 2 = 3x
18. e†Gîi Afů¦iÕ© ‰KwU we±`y ‰es ewntÕ© L 78.54 eMÆ ˆmw´ŸwgUvi
2
7. x + x ‰i gvb KZ? ‰KwU we±`yi msGhvRK ˆiLvsk e†îwUGK M 31.42 eMÆ ˆmw´ŸwgUvi
K 3 L 2 M 3 N 4 KZwU we±`yGZ ˆQ` KGi? N 47124 eMÆ ˆmw´ŸwgUvi
8 K AmsLÅ 27. ‰KwU PvKv 720 wgUvi c^ ˆhGZ 18 evi
8. x + x3 ‰i gvb wbGPi ˆKvbwU?
3 L 1
M 2 N 3 ˆNvGi, PvKvwUi cwiwa KZ?
K 9 L 18 M 21 N 27 K 40 wgUvi L 738 wgUvi
19. 4 ˆmw´ŸwgUvi ‰es 5 ˆmw´ŸwgUvi
9. 
 x2 + 1= 2x nGj@ M 702 wgUvi N 1298 wgUvi
1
eÅvmvaÆwewkÓ¡ `ywU e†î ciÕ·i A¯¦tÕ·kÆ
i. x+ =2
x KiGj ZvG`i ˆK±`Ê«¼Gqi `ƒiZ½ KZ? 28. 35, 40, 42, 50, 56, 42, 50, 64, 42, 35, 40
1 1 K 1 ˆmw´ŸwgUvi L 4 ˆmw´ŸwgUvi bÁ¼iàGjvi Mo KZ?
ii. x + = x2 + 2 K 41.09 L 45.09
x x M 5 ˆmw´ŸwgUvi N 9 ˆmw´ŸwgUvi
1 1 M 49.09 N 50.09
iii. x2 + 2 = x3 + 3 20. mgevü ABC ‰i cwiGK±`Ê O nGj,
x x 29. gaÅK wbYÆGqi mƒò ˆKvbwU?
AOB ‰i gvb KZ?
wbGPi ˆKvbwU mwVK? K
n
gaÅK = L +  2 + Fc  f
h
K 120 L 90
K i I ii L i I iii   m
M 60 N 30 n h
M ii I iii N i, ii I iii 21. wbGPi Z^ÅàGjv jÞÅ Ki: L gaÅK = L +   fm 
1  2  Fc
10. a + a = 5 nGj@ i. e†Gîi ˆhGKvGbv RÅv ‰i jÁ¼w«¼L´£K n h
M gaÅK = L +   Fc 
2 ˆK±`ÊMvgx  2  fm
i. a  1a  = 21 ii. ˆhGKvGbv mijGiLv ‰KwU e†îGK `yGqi n h
  N gaÅK = L    Fc 
ii. a2  5a + 1 = 0 AwaK we±`yGZ ˆQ` KiGZ cvGi bv  2  m f
1 iii. wòfzGRi ˆhGKvGbv `yB evüi Š`GNÆÅi 30. 
 wbGPi ˆKvbwU AwewœQ®² PjK?
iii. a3 + 3 = 25
a A¯¦i Z‡Zxq evüi ˆPGq Þz`ËZi K ˆkÉwYi gaÅgvb
wbGPi ˆKvbwU mwVK? wbGPi ˆKvbwU mwVK? L ˆkÉwYi MYmsLÅv
K i I ii L i I iii K i I ii L i I iii M ˆkÉwYmsLÅv
M ii I iii N i, ii I iii M ii I iii N i, ii I iii N KÌgGhvwRZ MYmsLÅv

1 M 2 M 3 K 4 L 5 K 6 N 7 M 8 K 9 N 10 K 11 N 12 K 13 N 14 K 15 M
Dîi

16 N 17 K 18 L 19 K 20 K 21 N 22 K 23 K 24 L 25 K 26 K 27 K 28 L 29 M 30 K

14\\E:\Data 2024-25\SSC Made Easy 2025\General Math\Link\mthmto25.doc 2nd proof 14.11.24


14 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
359 Uãx cvBjU Õ•zj ‰´£ MvjÆm KGjR, MvRxcyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. gƒj` msLÅvi ˆÞGò@ 9. 
 H ˆkÉwYi ˆeç msLÅv KZ? 18. 
 sin.cos = KZ?
i. cÉGZÅK cƒYÆ msLÅvB gƒj` msLÅv K 60 L 15 M 12 N 18 4 3 4 1
K L M N
ii. a I b `yBwU gƒj` msLÅv nGj a + b, a  b wbGPi ZG^Åi AvGjvGK (10 I 11) bs cÉGk²i 3 4 3 3
‰es ab gƒj` msLÅv Dîi `vI: 19. Þz`Z
Ë g ˆgŒwjK msLÅv wbGPi ˆKvbwU?
A
a K 1 L2 M3 N 4
iii.
b
gƒj` msLÅv, hLb b  0 ‰es a, b cƒYÆ 20. 18 wgUvi jÁ¼v ‰KwU gB ‰KwU ˆ`qvGji
70
msLÅv Qv` eivei ˆVm w`Gq f„wgi mvG^ 30 ˆKvY
wbGPi ˆKvbwU mwVK? D
E
F
Drc®² KGi| ˆ`qvGji DœPZv KZ wgUvi?
K i I ii L i I iii
40
K 9 2 L 9
B C
M ii I iii N i, ii I iii M 9 3 N 18
2. A I B `yBwU ˆmGUi RbÅ@ DE || BC ‰es BD || CF 21. 1 Nb ˆm.wg.
KvGVi IRb 7
ˆWwm MÉvg|
i. A  B ‰i cÉwZwU m`mÅ KÌgGRvo bq
10. BDE = KZ? KvGVi IRb mgAvqZb cvwbi IRGbi
K 70 L 135 M 100 N 110 kZKiv KZ?
ii. n(A) = a I n(B) = b nGj n(A  B) = ab
11. ABC + ACB = KZ? K 80% L 50%
iii. A  B = {(x, y) : x  A ‰es y  B} K 70 L 135 M 60% N 70%
wbGPi ˆKvbwU mwVK? M 100 N 110 22. 
 wbGPi ˆKvb mgxKiY ˆRvUwUi mgvavb ˆbB?
K i I ii L i I iii 12. ÷ay ‰KwU evüi Š`NÆÅ ˆ`Iqv ^vKGj AuvKv K 3x + 6y = 2 L 2x + y = 13
M ii I iii N i, ii I iii hvq@ 3x + 4y = 2 4x + 2y = 5
3. x+
1
=2
1
nGj, x + x ‰i gvb KZ? i. eMÆGÞò M 3x  5y = 7 N x  2y = 0
x ii. iÁ¼m 6x  10y = 14 2x  4y = 0
K 2 L 2 2 iii. mgevü wòfzR 23. 1 + 3 + 5 + 7 + ... ... ... avivwUi n Zg c`
M 4 N 2 3 wbGPi ˆKvbwU mwVK? KZ nGe?
1 1 K i I ii L i I iii K 2n  1 L 2n + 1
4. 
 2x 
3x
=5 nGj, 8x 3
27x3
‰i gvb M n2 N n2 + 1
M ii I iii N i, ii I iii
KZ? 13. RÅvwgwZK Dccv`Å cÉgvGY mvaviYZ KqwU 24. 4  4 + 4  4 + ... ... ... àGYvîi avivi 2n
K 25 L 135 M 145 N 110
avc ^vGK? msLÅK cG`i mgwÓ¡ KZ?
5. 
 (a) = a3 + 3a + 36 ‰es (a + 3), K 4 L 3 K 0 L 4n2 M n2 N 4
(a) ‰KwU Drcv`K nGj@ M 2 N 1 25. mylg lofzGRi KqwU cÉwZmvgÅ ˆiLv nGqGQ?
i. (3) = 0 nGe 14.  128 + 64 + 32 + ... ... ... avivwUi
 KZ K 0 L3 M 12 N 6

ii. (a  4), (a) ‰i ‰KwU Drcv`K nGe 1 26. 4 + a + b + 32 + ... ... ... avivwUi mvaviY
Zg c` 2|
iii. a2  3a + 12, (a) ‰i ‰KwU Drcv`K
AbycvZ@
K 9 Zg L 8 Zg K 1 L2 M3 N 4
nGe
M 7 Zg N 6 Zg 27. 
 ‰KwU iÁ¼Gmi ˆÞòdj 1944 eMÆ ‰KK|
wbGPi ˆKvbwU mwVK?
15.
3
nGj, tan ‰i gvb KZ? ‰i ‰KwU KYÆ 54 ‰KK nGj, Aci KGYÆi
K i I ii L i I iii sin =
2 Š`NÆÅ KZ ‰KK?
M ii I iii N i, ii I iii 3 1 K 48 L 54 M 72 N 96
K 3 3 L 3 M N
6. ‰KwU `ËeÅ 20% ÞwZGZ weKÌq Kiv nGjv, 7 3 28. AvqZGjL AâGbi RbÅ ˆkÉwYeÅvwµ¦ ˆKgb
KÌqgƒjÅ I weKÌqgƒGjÅi AbycvZ ˆKvbwU? 16.
5
cosec + cot = nGj, nGZ nGe?
6
K 4:5 L 5:4 K wewœQ®² L AwewœQ®²
M 5:6 N 6:5 cosec  cot = KZ?
1 5 6 M abvñK cƒYÆmsLÅv N cƒYÆmsLÅv
7. wbGPi ˆKvbwU msLÅvi ŠeævwbK i…c? K
6
L
6
M1 N
5 wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
K a + 10n L a  10n wbGPi ZG^Åi AvGjvGK (17 I 18) bs cÉGk²i Dîi `vI:
M a  10n N + 10n
Dîi `vI: ˆkÉwY 11-20 21-30 31-40 41-50
wbGPi ZG^Åi AvGjvGK (8 I 9) bs cÉGk²i Dîi A

`vI: 2
MYmsLÅv 4 16 20 25
29. cÉPziK ˆkÉwY ˆKvbwU@
‰KwU ˆkÉwYi cÉwZ ˆeGç 4 Rb KGi emGj 3wU
B  K 11-20 L 21-30
ˆeç Lvwj ^vGK| Avevi cÉwZ ˆeGç 3 Rb KGi 3
C
M 31- 40 N 41-50
emGj 6 Rb QvòGK `uvwoGq ^vKGZ nq| 17. tan = KZ? 30. cÉPziK ˆkÉwYi gaÅgvb ˆKvbwU?
8.   H ˆkÉwYi Qvò msLÅv KZ?
K 3 L
1
M
2
N
1 K 25.5 L 15.5
K 60 L 15 M 12 N 18 2 3 3 M 45.5 N 35.5

1 N 2 M 3 K 4 L 5 L 6 L 7 M 8 K 9 N 10 N 11 N 12 L 13 K 14 K 15 L
Dîi

16 N 17 N 18 L 19 L 20 L 21 N 22 L 23 K 24 K 25 N 26 L 27 M 28 L 29 N 30 M
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 15
360 BKevj wmwóKx Õ•zj AÅv´£ KGjR, MvRxcyi

E:\Data 2024-25\SSC Made Easy 2025\General Math\Link\mthmto25.doc 2nd proof 23.10.24


16 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
361 bvivqYMé miKvwi evwjKv DœP we`Åvjq, bvivqYMé

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. evÕ¦e msLÅvi eMÆ meÆ`vB ˆKvb aiGbi 10. ˆQvU msLÅvi 5 àY ˆ^GK msLÅv«¼Gqi 19. evwowUi DœPZv KZ wgUvi?
msLÅv? mgwÓ¡i A¯¦i wbGPi ˆKvbwU? K 2.31 L 4
K 100 L 105 M 6.93 N 8
K Õ¼vfvweK L ˆgŒwjK
M evÕ¦e N cƒYÆ
M 110 N 120 20. f„wg ˆ^GK AebwZ ˆKvY Drc®²Kvwi we±`yi
.. . 11. `ywU mgv¯¦ivj mijGiLvGK Aci ‰KwU `ƒiZ½ KZ wgUvi?
2. 5.12  3.45 = KZ? ˆiLv ˆQ` KiGj ‰es A¯¦tÕ© ˆKvY«¼Gqi K 14.93 L 9.93
.. .
‰KwU ˆKvY 135 nGj Aci ˆKvGYi M 2.12 N 1.42
K 1.665 L 1.665
.. . wecÉZxc ˆKvY KZ wWMÉx? 21. 10000 UvKv 3 : 4 : 5 : 6 : 7 AbycvGZ fvM
M 1. 67 N 1.68 KiGj e†nîi I Þz`ËZi AsGki cv^ÆKÅ KZ
K 40 L 45 M 50 N 55
3. B ˆmGUi cÉK‡Z DcGmU A nGj- UvKv nGe?
12. ‰KwU wòfzGRi wZbwU ˆKvGYi AbycvZ
i. A  B = A K 1600 L 800 M 400 N 200
1 : 1 : 2| wòfzRwU ˆKvb aiGbi?
ii. A  B = B
K mgevü L mgw«¼evü 22. 
 ˆKvGbv e†Gîi eÅvmvaÆ x nGZ (x + y) Kiv
iii. A  B = 
M mgGKvYx mgw«¼evü N welgevü nGj, e†nîg RÅv ‰i Š`NÆÅ Kx cwigvY e†w«¬
wbGPi ˆKvbwU mwVK?
13. mvgv¯¦wiGKi `ywU mw®²wnZ ˆKvGYi cvGe?
K i I ii L i I iii
K 2x L 2x + y
M ii I iii N i, ii I iii mgw«¼L´£GKi A¯¦fzÆÚ ˆKvY KZ wWMÉx?
M 2y N x + 2y
K 60 L 70 M 80 N 90
4. A = {x  ô : x  1 + 2 = 1} ˆmUwUi 23. `ywU abvñK cƒYÆmsLÅvi eGMÆi A¯¦i 3 ‰es
14. ‰KwU mgGKvYx mgw«¼evü wòfzGRi mgvb
ZvwjKvi…c wbGPi ˆKvbwU? àYdj 2| ‰G`i eGMÆi mgwÓ¡ KZ?
K (1) L {0}
evü«¼Gqi Š`NÆÅ 18 ˆm.wg. nGj, wòfzRwUi
K 2 L3 M4 N 5
M {} N {2} ˆÞòdj KZ eMÆ ˆm.wg.?
K 36 L 81 M 162 N 324
24. 
 3 + 12 + 48 + ... + 768 àGYvîi
5. a3 + b3 = 2, a2  ab + b2 = 4 nGj- avivwUGZ KqwU c` iGqGQ?
15. 1 ‰KK eÅvmvaÆwewkÓ¡ e†Gîi cwiwa I
(a + b)2 ‰i gvb wbGPi ˆKvbwU? K 4 L5 M6 N 8
1 1 1 ˆÞòdGji A¯¦i wbGPi ˆKvbwU? 1 2 3
K 2 L
4
M
5
N
8  3 25. 2 , 3 , 4 , ..... AbyKÌgwUi mvaviY c` wbGPi
K L M N 2
2 2
6. 
 4a + 12a + 7a  3a  2 ‰i
4 3 2
ˆKvbwU?
16. ‰KwU e†Gîi-
Drcv`K- 1 n1 1 n
i. NƒYÆb ˆK±`Ê `ywU eÅvGmi ˆQ`we±`yGZ K L M n N
i. a + 2 ii. 2a  1 n n+1 2 n+1
iii. 2a + 1 AewÕ©Z wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
wbGPi ˆKvbwU mwVK? ii. NƒYÆb cÉwZmgZvi gvòv Amxg Dîi `vI:
K i I ii L i I iii iii. ˆK±`ÊMvgx ˆhGKvGbv ˆiLvB ‰i cÉwZmvgÅ ABC-‰, B = 90, AB = BC, AC = 3 2
M ii I iii N i, ii I iii ˆiLv ‰es AC I BC ‰i gaÅwe±`y h^vKÌGg D I E|
7. 
 0.000289 msLÅvwUi ŠeævwbK i…c wbGPi wbGPi ˆKvbwU mwVK? 26. 
 AB ‰i Š`NÆÅ KZ?
ˆKvbwU? K i I ii L i I iii K 12 L9 M6 N 3
K 0.0289  10 4
L 0.289  10 4 M ii I iii N i, ii I iii 27. 
 DE ‰i Š`NÆÅ KZ?
M 2.89  104 N 28.9  104 17. sin3A = cos3A nGj, A ‰i gvb wbGPi K 1.5 L2
8. 
 x = log232, y = log5625 nGj (x + y) ˆKvbwU? M 2.5 N 3.5

‰i gvb wbGPi ˆKvbwU? K 15 L 20 M 25 N 45 28. 


 PQRS iÁ¼Gmi `ywU KGYÆi AGaÆK
K 7 L 9 1  tan260 h^vKÌGg 5 ˆm.wg. I 12 ˆm.wg. nGj, PQ
18. 

1 + sin260
+ 2sin260 ‰i gvb wbGPi
M 10 N 12 ‰i Š`NÆÅ KZ ˆm.wg.?
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i ˆKvbwU? K 11 L 12
3 5 9 13 M 13 N 14
Dîi `vI: K
14
L
14
M
14
N
14
2 29. 7, 15, 6, 9, 7, 11, 8, 14 DcvîàGjvi gaÅK
‰KwU msLÅv Aci msLÅvi 3 àY| msLÅv `ywUi wbGPi ZG^Åi AvGjvGK (19 I 20) bs cÉGk²i KZ?
mgwÓ¡ 100 Dîi `vI: K 10.5 L 8.5 M 7.5 N 6.5
9. eo msLÅvwU ˆQvU msLÅvwU AGcÞv KZ ‰KwU evwoi ˆ`qvj ˆ^GK f„ZjÕ© 4 wgUvi 30. wZbwU msLÅvi Mo 20 ‰es Aci 5wU
ˆewk? `ƒGii ‰KwU we±`yi D®²wZ ˆKvY 60 ‰es Qv` msLÅvi Mo 24 nGj, 8wU msLÅvi Mo wbGPi
K 15 L 20 ˆ^GK 3 wgUvi DcGii ˆKvGbv we±`yi AebwZ ˆKvbwU?
M 25 N 30 ˆKvY 45| K 21.5 L 22 M 22.5 N 23

1 M 2 K 3 N 4 M 5 L 6 N 7 M 8 L 9 L 10 K 11 L 12 M 13 N 14 M 15 L
Dîi

16 N 17 K 18 L 19 M 20 L 21 K 22 M 23 N 24 L 25 N 26 N 27 K 28 M 29 L 30 M
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 17
362 we±`yevwmbx miKvwi evjK DœP we`Åvjq, UvãvBj

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. a, b, c evÕ¦e msLÅv; a < b ‰es c > 0 nGj, z2 1
11. z  1 = 2  z  1 ‰i mgvavb ˆmU wbGPi 21. ˆKvGbv eMÆGÞGòi ˆÞòdj Zvi KGYÆi Dci
wbGPi ˆKvbwU mZÅ? AwâZ eMÆGÞGòi ˆÞòdGji@
K ac = bc L ac > bc ˆKvbwU? K AGaÆK L mgvb
M ac < bc N ac e bc K {1} L {0} M w«¼àY N PviàY
2. ˆmU C nGZ ˆmU B-‰ ‰KwU mÁ·KÆ R M {} N {2}
wbGPi ZG^Åi AvGjvGK (22 I 23) bs cÉGk²i
nGj, wbGPi ˆKvbwU mwVK? 12. 20 ˆKvGYi mÁ·ƒiK ˆKvGYi AGaÆK KZ? Dîi `vI:
B
K RC L RB K 35 L 70
M RCB N CBR M 80 N 160 60
C A
3. A = {a, b, c, d} nGj, A ‰i cÉK‡Z DcGmU 13. wbGPi ˆKvb ˆÞòwU mvgv¯¦wiK bq? O

KqwU? K AvqZGÞò L iÁ¼m


K 14 L 15
M eMÆGÞò N UÇvwcwRqvg wPGò e†Gîi ˆK±`Ê O ‰es AC = 12 cm
M 16 N 4
14. e†Gîi A¯¦wjÆwLZ ABCD PZzfzÆGRi 22. 
 AB PvGci Š`NÆÅ KZ cm?
4. 
 (x) = x3 + px2  6x  9 nGj, P ‰i
B = 60 nGj, D = KZ? K 4084 L 12.57
ˆKvb gvGbi RbÅ f(3) = 0 nGe? M 6.28 N 3.14
K 4 L 2 K 40 L 90
23. 
 AOB e†îKjvi ˆÞòdj KZ cm2?
M 2 N 6 M 120 N 110
K 150.80 L 75.40
wbGPi ZG^Åi AvGjvGK (5 I 6) bs cÉGk²i Dîi 15. 
 `yBwU e†Gî mGeÆvœP KqwU Õ·kÆK AuvKv M 40.84 N 18.85
`vI: hvq? 24. ˆKw±`Êq cÉeYZvi cwigvc nGjv@
a2  3a + 1 = 0; ˆhLvGb, a > 1 K 1 L 2 i. Mo
1 M 3 N 4 ii. AvqZGjL
5. 
 a2 + 2 ‰i gvb wbGPi ˆKvbwU?
a 16. 
 sec(90  ) = 2 nGj, tan ‰i gvb iii. gaÅK
K 6 L 7
wbGPi ˆKvbwU? wbGPi ˆKvbwU mwVK?
M 9 N 10
1 K i I ii L i I iii
1 K L 1
6. 
 a2  2 ‰i gvb wbGPi ˆKvbwU?
a 3 M ii I iii N i, ii I iii
K 45 L 40 M 3 N AmãvwqZ 25. wbGPi ˆKvbwU wewœQ®² PjK?
M 3 5 N 3 3
17.
1
cos   sin  = nGj, cos4  sin4
2 2
‰i K Zvcgvòv L RbmsLÅv
3
7. y UvKvi y% nvi mij gybvdvq 4 eQGii M eqm N DœPZv
gybvdv y UvKv nGj, y ‰i gvb wbGPi gvb KZ? 26. 
 wbGPi mviwYi cÉPziK KZ?
K 3 L 2
ˆKvbwU? ˆkÉwYeÅvwµ¦ 21-23 24-26 27-29 30-32
1
K 25 L 50 M 1 N MYmsLÅv 3 5 7 5
3
M 75 N 100 K 25.5 L 27.5
18. 
 18 wg. jÁ¼v ‰KwU gB ˆ`qvGji Qv`
8. wbw`ÆÓ¡ PZzfzÆR AuvKvi RbÅ KZwU Õ¼Z¯¨ M 28 N 28.5
DcvGîi cÉGqvRb? eivei ˆVm w`Gq f„wgi mvG^ 30 ˆKvY
27. logaa = 1 wbGPi ˆKvb kGZÆ?
K 2 L 3 Drc®² KGiGQ| ˆ`qvGji DœPZv KZ wgUvi? K a>0 L a1
M 4 N 5 K 9 L 12.72 M a > 0, a  1 N a  0, a > 1
9. e†Gîi@ M 36 N 9.72 28. log5p2 = 2 nGj, P ‰i gvb KZ?
i. mgvb mgvb RÅv ˆK±`Ê nGZ mg`ƒieZÆx 19. 
 `yB AsK wewkÓ¡ ˆKvb msLÅvi AsK«¼Gqi 1
K 5 L
5
ii. AaÆe†îÕ© ˆKvY 180 mgwÓ¡ 13 ‰es àYdj 40 nGj, AsK«¼q
M 2 N 10
iii. AwaPvGc A¯¦wÆ jwLZ ˆKvY mƒßGKvY KZ?
29. 0.0037 ‰i mvaviY jGMi cƒYÆK KZ?
wbGPi ˆKvbwU mwVK? K 7, 6 L 9, 4
K 3 L 2
K i I ii L i I iii M 5, 8 N 3, 10
M 3 N 2
M ii I iii N i, ii I iii 4 4
20. 
 12 + 4  + .... avivwUi ˆKvb c`  ?
3 27
30. 
 26 cm eÅvm wewkÓ¡ e†Gîi ˆK±`Ê ˆ^GK
10. (x  4)2 = 0 mgxKiGYi gƒj KqwU? 5 cm `ƒGi AewÕ©Z RÅv ‰i Š`NÆÅ KZ cm?
K 4 Zg L 5 Zg
K 1 L 2 K 12 L 18
M 3 N 4 M 6 Zg N 7 Zg M 20 N 24

1 M 2 M 3 L 4 M 5 L 6 M 7 K 8 N 9 L 10 L 11 K 12 M 13 N 14 M 15 N
Dîi

16 L 17 N 18 K 19 M 20 L 21 K 22 M 23 N 24 L 25 L 26 N 27 M 28 L 29 M 30 N
18 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
363 NvUvBj KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, UvãvBj

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. f(x) = x3  6x + 3 nGj, f(3) = KZ? 11. 
 mgevü wòfzGRi ‰KwU evüGK Dfqw`GK 21. 
 eMÆGÞGòi ‰K evüi cwigvc x ‰KK
K 6 L  12 ewaÆZ KiGj ˆh ewntÕ© ˆKvY«¼q Drc®² nq nGj, Dnvi cwimxgv I KGYÆi Š`GNÆÅi AbycvZ
M 18 N 42 ZvG`i mgwÓ¡ KZ? KZ?
1
2. x + = 5 nGj
x
K 120 L 180 K 2 2:4 L 2 2:3
M 240 N 270 M 2 2:2 N 2 2:1
1
i. x2  2 = 5 21 12. 
 1 + tan2 = 4 nGj,  ‰i gvb KZ?
x 22. 1 + 4 + 16 + .......... avivi ˆKvb c` 1024?
1 K 0 L 30 K 5g L 6Ó¤ M 10g N 11Zg
ii. x3 + 3 = 110
x M 45 N 60 23. ABC mgGKvYx wòfzR nGe, hw` ‰i evüàGjvi
iii. x2  5x + 1 = 0 wbGPi ZG^Åi AvGjvGK A
wbGPi ˆKvbwU mwVK? x cwigvc nq
(13 I 14) bs cÉGk²i i. 5, 12, 13 ‰KK
K i I ii L i I iii Dîi `vI:
O
ii. 6, 8, 10 ‰KK
M ii I iii N i, ii I iii wPGò O e†Gîi ˆK±`Ê| B
x + 60
C
3. 
 (x  2y, 3x + 2y) = (1, 19) nGj, (x, y) iii. 14, 16, 20 ‰KK
13. BAC = KZ? wbGPi ˆKvbwU mwVK?
‰i gvb ˆKvbwU?
K 30 L 45 K i I ii L i I iii
K (5, 2) L (2, 5) M (9, 4) N (4, 9)
M 60 N 120 M ii I iii N i, ii I iii
4. ˆhGKvGbv abvñK msLÅvi ŠeævwbK i…c a  10n
14. cÉe†«¬ ˆKvY BOC ‰i gvb KZ? 24. ˆKvbwU wewœQ®² PjK?
‰i ˆÞGò a ‰i mxgv wbGPi ˆKvbwU?
K 120 L 180
K 1 < a < 10 L 1 < a  10 K Zvcgvòv L cvwLi msLÅv
M 240 N 280
M 1  a < 10 N 1  a  10 M eqm N DœPZv
15. a = 5 , b = 3 nGj (a + b)2  2ab ‰i
5.   8  3 + 2 + 7 + ... ... ... avivwUi
 wbGPi ZG^Åi AvGjvGK (25 I 26) bs cÉGk²i
gvb KZ?
15 Zg c` KZ? Dîi `vI: C
K 62 L 67 K 2 L 15 2x
M 78 N 83 M 2 15 N 8 4 cm

1 16. log2 2 64 ‰i gvb KZ? x


6. 

25x
= 125 nGj, x ‰i gvb KZ? B
AB = 4 ˆm.wg.
A
K 2 L 3
3 2
K 3 L M1 N M 4 N 8 25. ACB ˆKvGYi gvb KZ?
2 3
17. 1 + 3 + 5 + 7 + ............. avivi cÉ^g n K 15 L 30 M 45 N 60
wbGPi ZG^Åi AvGjvGK (7 I 8) bs cÉGk²i Dîi 26. AC = KZ?
msLÅK cG`i mgwÓ¡ KZ?
`vI: n(n + 1) 2 K 2 2 ˆm.wg. L 2 3 ˆm.wg.
50 Rb wkÞv^Æxi MwYZ welGqi cÉvµ¦ bÁ¼Gii K n2 L 
 2 
  M 4 2 ˆm.wg. N 4 3 ˆm.wg.
MYmsLÅv wbGekb mviwY wbGÁ²i…c: n(n + 1) n2 27. `yBwU e†Gî mGeÆvœP KqwU mvaviY Õ·kÆK
M N
ˆkÉwYeÅvwµ¦ 41-50 51-60 61-70 71-80 81-90 91-100 2 2
AuvKv hvq?
wkÞv^Æxi 6 7 10 12 8 7 wbGPi ZG^Åi AvGjvGK (18 I 19)bs cÉGk²i
K 1wU L 2wU M 3wU N 4wU
msLÅv Dîi `vI: C 28. 
 tan(  30) = 3 nGj sin ‰i gvb KZ?
7. 
 gaÅK wbYÆGq Fc ‰i gvb wbGPi ˆKvbwU? O ˆK±`ÊwewkÓ¡ ACBD e†Gî B 1 3
K 12 L 23 K 0 L M N1
AB = 10 ˆm.wg., OE  AD, O 10
2 2
M 35 N 43 3
OE = 3 ˆm.wg., AC  BC. A D 29. `yBwU e†î ciÕ·iGK ewntÕ·kÆ KGi| ‰G`i
8. 
 cÉPziK wbGPi ˆKvbwU? E

K 74.33 L 77.67 ‰KwUi eÅvm 10 ˆm.wg. ‰es AciwUi


M 81.33 N 86.67
18. 
 OAE ‰i ˆÞòdj KZ?
eÅvmvaÆ 4 ˆm.wg.| e†î«¼Gqi ˆKG±`Êi gaÅeZÆx
K 6 eMÆ ˆm.wg. L 12 eMÆ ˆm.wg. `ƒiZ½ KZ?
9. A = (a, b, c) ‰es B = (a, b) nGj
i. B  (AB) = A  B M 15 eMÆ ˆm.wg. N 20 eMÆ ˆm.wg. K 1 ˆm.wg. L 6 ˆm.wg.
ii. (A  B)  B = A 19. 
 ACB ‰i cwimxgv KZ?
M 9 ˆm.wg. N 14 ˆm.wg.
iii. A = A  (A  B) K 15.14 ˆm.wg. (cÉvq) 30. mge†îf„wgK ˆejGbi f„wgi eÅvmvaÆ 3 ˆm.wg.
wbGPi ˆKvbwU mwVK? L 20.14 ˆm.wg. (cÉvq) ‰es DœPZv 7 ˆm.wg. ‰i eKÌZGji ˆÞòdj
K i I ii L i I iii M 24.14 ˆm.wg. (cÉvq) KZ?
M ii I iii N i, ii I iii N 30.14 ˆm.wg. (cÉvq) K 131.95 eMÆ ˆm.wg.
1 a b 2
10. sec2A  1
= KZ? 20. 
 = = nGj, a : c ‰i gvb KZ?
b c 3
L 188.50 eMÆ ˆm.wg.
K cotA L tanA K 2:3 L 3:4 M 197.95 eMÆ ˆm.wg.
M cosA N sinA M 4:9 N 9:4 N 395.84 eMÆ ˆm.wg.

1 K 2 N 3 K 4 M 5 K 6 L 7 L 8 K 9 M 10 K 11 M 12 N 13 M 14 M 15 N
Dîi

16 M 17 K 18 K 19 M 20 M 21 N 22 L 23 K 24 L 25 N 26 M 27 N 28 N 29 M 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 19
364 Avéygvb Av`kÆ miKvwi DœP we`Åvjq, ˆbòGKvYv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 wbGPi ˆKvbwU gyj` msLÅv bq? 11. 
5
 hw` sec + tan = nq, ZGe 21. A
2
K 0.4̇ L 9
M 5. 6̇39̇ N 11
sec  tan ‰i gvb KZ? B

5 3 D
2. {x  ô : x ˆgŒwjK msLÅv ‰es x ≤ 5) K
2
L
5
C

ˆmUwUi ZvwjKv c«¬wZ wbGPi ˆKvbwU? ADC : BDC = ?


5 2 i. AD : BD ii. CD : CD
K {1, 3, 5} L {5, 7, 11} M N
3 5 iii. AD2 : CD2
M {2, 3, 5} N {3, 5, 7} 12. A = 15 nGj wbGPi ˆKvbwU mwVK?
1 y K i L iii
3.  y + = 5 nGj, 2
 = KZ? i. tan 3A = 2 sin 3A
y y - 3y + 1 M i I iii N ii I iii
1 1 1
K L ii. cot 4A =
3
22. ‰KwU eGMÆi cwimxgv 16 wgUvi nGj ‰i
8 2
KYÆ KZ wgUvi?
M 2 N 8 iii. sin 4A = cos 2A
K 4 2 L 4 3
1 1 wbGPi ˆKvbwU mwVK?
4. x + = 2 nGj, x3 + 3 = ? M 8 2 N 8 3
x x K i I ii L i I iii 23. 5 ˆm.wg. avi wewkÓ¡ NbGKi KGYÆi Š`NÆÅ
K 3 L 2 M ii I iii N i, ii I iii KZ ˆm.wg.?
M 1 N 0
13. AebwZ ˆKvGYi gvb KZ wWMÉx nGj, K 3.87 L 7.07
5.  wòfzGRi
 wZbwU evüi Š`NÆÅ ˆm.wg. ‰KGK M 8.66 N 15.03
1wU Lywu Ui Š`NÆÅ I Qvqvi Š`NÆÅ mgvb nGe?
ˆ`Iqv nGjv| wbGPi ˆKvb ˆÞGò wòfzR 24. wbGPi ˆKvbwU AwewœQ®² PjK?
K 30 L 45
AsKb Kiv hvq? K ˆkÉwYi gaÅgvb
M 60 N 90 L ˆkÉwYi MYmsLÅv
K 5, 6, 18 L 6, 7, 19
M 7, 8, 17 N 9, 6, 13
14. 3 : 8 :: y : 32 nGj, y ‰i gvb KZ? M ˆkÉwY msLÅv
K 3 L 12 N KÌgGhvwRZ MYmsLÅv
6. M 4cm Q M 24 N 48 25. 10g ˆkÉwYi wkÞv^ÆxG`i MwYGZ meÆwbÁ² bÁ¼i
3cm 15. ax  cy = 0, ay  cx = a2  c2 mgxKiYwUi 35 I cwimi 56 nGj mGeÆvœP bÁ¼i KZ?
mgvavb ˆKvbwU? K 80 L 85
N P M 96 N 90
K (a, c) L (2, y)
‰i cwimxgv KZ cm? 26. KÌgGhvwRZ MYmsLÅv cÉGqvRb
MNPQ M (c, a) N ( c,  a)
i. cÉPziK wbYÆGq
K 7 L 8 wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i
M 12 N 14 ii. gaÅK wbYÆGq
Dîi `vI: iii. AwRf ˆiLv wbYÆGq
wbGPi ZG^Åi AvGjvGK (7 I 8) bs cÉGk²i Dîi
2 + 1 + 4 + 7 +  ‰KwU aviv| wbGPi ˆKvbwU mwVK?
`vI:
E 16. avivwUi mvaviY c` KZ? K i I ii L i I iii
A
K 3n  1 L 3n + 1 M ii I iii N i, ii I iii
4cm M 3n  5 N 3n + 5
27. ˆkÉwY webÅÕ¦ DcvGîi cÉPziK wbYÆGqi mƒò :
f1 f1
17. 
 avivwUi 1g `k cG`i mgwÓ¡ KZ? K L+ h L L h
60 50 (f1 + f2) (f1  f2)
B
6cm C
D K 115 L 125 f1 f1
M L+ h N L h
M 145 N 155 (f1  f2) (f1 + f2)
7. BA||CE nGj, ACE ‰i gvb KZ? 18. ABC I DEF m`†k ‰es 28. e†Gîi eÅvm I cwiwai AbycvZ KZ?
K 50 L 60 K :1 L 1:
AB : DE = 2 : 3 nGj, DEF : ABC = KZ?
M 70 N 110 M 2: N :2
K 4:9 L 9:4 29. avivwUi 1g n msLÅK
8. ABC ‰i ˆÞòdj KZ eMÆ ˆm.wg.? 1 + 3 + 5 +…..
M 2:3 N 3:2 cG`i ˆhvMdj ˆKvbwU?
K 6 3 L 12
19. ‰KwU AvqZGÞGòi NƒbÆb ˆKvGYi cwigvY n(n + 1) n(n + 1)
2
M 24 N 12 3 K L 
 2 
KZ? 2  
9. `yBwU KGYÆi Š`NÆÅ ˆ`Iqv ^vKGj wbGPi
K 360 L 180 n2
ˆKvbwU AuvKv mÁ¿e? M
2
N n2
M 90 N 45
K UÇvwcwRqvg L iÁ¼m 3
20. ‰KwU mgevü wòfzGRi cÉGZÅK evüi Š`NÆÅ 30. sin = 2 nGj, tan ‰i gvb KZ?
M AvqZ N mvgv¯¦wiK
10 ˆm.wg. nGj ‰i gaÅgvi Š`NÆÅ KZ ˆm.wg.? K L 3 3
10. eGMÆ A¯¦wjÆwLZ e†Gîi Õ·kÆGKi msLÅv KZ? 3
K 1 L 2 K 5 3 L 3 5 3 1
M N
M 3 N 4 M 75 N 125 7 3

1 N 2 M 3 L 4 L 5 N 6 N 7 M 8 K 9 L 10 N 11 N 12 N 13 L 14 L 15 M
Dîi

16 M 17 K 18 L 19 L 20 K 21 K 22 K 23 M 24 K 25 N 26 M 27 K 28 L 29 N 30 K
20 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
365 Rvgvjcyi miKvwi evwjKv DœP we`Åvjq, Rvgvjcyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 ˆKvb ˆmGUi kwÚ ˆmGUi Dcv`vb msLÅv ii. (x) = 1 +
1 1
nGj, x  = x + 1 20. ‰KwU eGMÆ A¯¦wjÆwLZ e†Gîi KqwU Õ·kÆK
64 nGj, H ˆmGUi Dcv`vb msLÅv KZ? x   AvGQ?
K 5 L6 M7 N 8 iii. mKj A®¼qB dvskb K 1 L2 M3 N 4
2. A = {x  ô : x, 42 ‰i àYbxqK} nGj, wbGPi ˆKvbwU mwVK? 21. 
 A D
i. A = {1, 2, 3, 6, 7, 14, 21, 42} K i I ii L i I iii
ii. B = {x  ô : x, 21 ‰i àYbxqK} M ii I iii N i, ii I iii 40 15 40 15
6 6
A ‰i ‰KwU cÉK‡Z DcGmU 11. 
 4x + y = 2 ‰es 2x + 3y = 4 mgxKiY
iii. A/B =  ˆRvGUi mgvavb (x, y) ˆKvbwU? 70 70
wbGPi ˆKvbwU mwVK? B 70 70 C E F
K (2, 1) L (1, 2) 4 10
K i I ii L i I iii M (1, 3) N (1, 2)
M ii I iii N i, ii I iii wbGPi ZG^Åi AvGjvGK (12 I 14) bs cÉGk²i DcGii wPGò ABC ‰i ˆÞòdj: DEF
2
Dîi `vI: ‰i ˆÞòdj = KZ?
3. p + p1  = 3 nGj,
1
p3 + 3 KZ?
p log3 + log9 + log27 + ... ... ...
K 6 : 15 L 4 : 10
  M 15 : 6 N 4 : 25
K 2 L0 M2 N 3 12. avivwUi mvaviY A¯¦i ˆKvbwU?
K 3 L9 M log3 N 2 log3
22. ˆKvYGKi eKÌZj I f„wgi ˆÞòdj mgvb
4. (x) = x3 + kx2  4x  8 nGj, k ‰i ˆKvb nGj, mgMÉZGji I eKÌZGji ˆÞòdGji
gvGbi RbÅ (2) = 0 nGe? 13. avivwUi mµ¦g c` KZ?
K log81 L log243 AbycvZ KZ?
K 2 L1 M2 N 3 M log729 N log2187 K 2:1 L 1:2 M 2:3N 3:2
5. wbGPi Z^ÅàGjv jÞÅ Ki: 14. avivwUi cÉ^g 7wU cG`i mgwÓ¡ KZ? 23. sin230 + cos2 = 1 nGj,  ‰i gvb KZ?
i. jGMi AskK meÆ`v abvñK K 4 log3 L 7 log3 K 15 L 30 M 45 N 90
ii. Ave†î `kwgGKi àYdj meÆ`v Ave†î M 28 log3 N 32 log3 24. ‰KwU UvIqvGii cv`G`k ˆ^GK 75 wg. `ƒGi
iii. mKj exRMwYZxq mƒòB AGf` 15. a, b, c evÕ¦e msLÅv nGjv@ f„ZjÕ© ˆKvb we±`yGZ UvIqvGii kxGlÆi
wbGPi ˆKvbwU mwVK? i. (a + b) + c = a + (b + c) D®²wZ ˆKvY 30 nGj, UvIqvGii DœPZv KZ?
ii. (a + b) + c = ac + bc
K i I ii L ii I iii K 43.30 wg. (cÉvq) L 44.30 wg. (cÉvq)
iii. (ab)c = a(bc)
M i I iii N i, ii I iii wbGPi ˆKvbwU mwVK? M 45.30 wg. (cÉvq) N 46.30 wg. (cÉvq)
6. mvgv¯¦wiGKi NƒYÆb cÉwZmgZvi gvòv KZ? K i I ii L i I iii
25. D®²wZ ˆKvY@
i. 60 nGj jÁ¼ < f„wg
K 1 L2 M3 N 4 M ii I iii N i, ii I iii
7. 
 16. 
 ii. 30 nGj f„wg > jÁ¼
A F
P iii. 45 nGj f„wg = jÁ¼
B
A
135 wbGPi ˆKvbwU mwVK?
C Q D K i I ii L i I iii
B D C
E M ii I iii N i, ii I iii
ABC ‰ D, BC ‰i gaÅ we±`y| ABC wPGò, CQE = KZ? wbGPi ZG^Åi AvGjvGK (26-28) bs cÉGk²i Dîi
K 60 L 30 M 45 N 35 `vI:
‰i ˆÞòdj 60 eMÆ ˆm.wg. nGj, ABD 17. ˆh wòfzGRi@
‰i ˆÞòdj KZ? AvqZvKvi ‰KwU NGii ˆgGSi Š`NÆÅ, cÉÕ©
i. wZbwU ˆKvY mgvb Zv ‰KwU mgevü AGcÞv 2 wg. ˆewk ‰es ˆgGSi cwimxgv 20
K 60 eMÆ ˆm.wg. L 45 eMÆ ˆm.wg. wòfzR
M 30 eMÆ ˆm.wg. N 25 eMÆ ˆm.wg.
wg.| NiwUi ˆgGS ˆgvRvBK KiGZ cÉwZ eMÆ wg.
ii. wZbwU ˆKvY mƒßGKvY ZvGK mƒßGKvYx 900 UvKv LiP nq|
wbGPi ZG^Åi AvGjvGK (8 I 9) bs cÉGk²i Dîi wòfzR eGj 26.  NiwUi ˆgGSi Š`NÆÅ KZ wg.?
`vI: iii. ‰KwU ˆKvY mgGKvY ZvGK mgGKvYx K 4 L6 M8 N 10
p, q, r, s PviwU ivwk ˆhLvGb p I q ‰K RvZxq wòfzR eGj 27. 
 NiwUi ˆgGSi ˆÞòdj KZ eMÆ wg.?
‰es r I s AbÅ ‰K RvZxq ‰es p : q = m : n wbGPi ˆKvbwU mwVK? K 80 L 48 M 32 N 24
8. cÉ`î ivwkàGjv mgvbycvZ MVb KiGj K i I ii L i I iii 28.  NiwUi ˆgGS ˆgvRvBK KiGZ ˆgvU KZ
ˆKvbwU mwVK? M ii I iii N i, ii I iii LiP nGe?
K
r m
= L
r 2m
=
18. 
 D C K 21600 UvKv L 28800 UvKv
s n s 3n
p r 75
M 43200 UvKv N 72000 UvKv
M 
q s
N pm = qr A B wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
q wPGò, ABCD ‰KwU mvgv¯¦wiK| A = 75 Dîi `vI:
9. m ‰i gvb n ‰i wZbàY nGj ‰i gvb
p nGj, B + D = KZ? ˆkÉwYeÅvwµ¦ 30-39 40-49 50-59 60-69
ˆKvbwU? K 150 L 180 M 210 N 220 MYmsLÅv 6 16 30 14
K
1
L
1
M3 N 32 19. e†îÕ© UÇvwcwRqvGgi wZhÆK evü«¼Gqi ŠewkÓ¡Å 29. gaÅK ˆkÉwYi MYmsLÅv KZ?
32 3
wKi…c? K 8 L 14 M 16 N 30
10.  (i) `yB ev ZGZvwaK PjGKi gaÅKvi
 K ciÕ·i mgv¯¦ivj L ciÕ·i Amgvb 30. DcvGîi cÉPziK KZ?
mÁ·KÆB dvskb M ciÕ·i mgvb N ciÕ·i jÁ¼ K 45.33 L 50.53 M 54.67N 55.33

1 L 2 K 3 L 4 M 5 M 6 K 7 M 8 K 9 L 10 K 11 L 12 M 13 N 14 M 15 L
Dîi

16 M 17 N 18 M 19 M 20 N 21 N 22 K 23 L 24 K 25 M 26 L 27 N 28 K 29 N 30 M
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2022 21
366 Mft jÅveGiUix nvB Õ•zj, ivRkvnx

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. wbGPi ˆKvbwU gƒj` msLÅv? 12. a1x + b1y = c1 ‰es a2x + b2y = c2 23. 
1
 128 + 64 + 32 + ............. + avivwUGZ
2
K 0.4 L 0.9 mgxKiY ˆRvGUi Amgém I ciÕ·i
KZwU c` AvGQ?
M 0.04 N 0.025 AwbifÆkxj nIqvi kZÆ ˆKvbwU?
K 10 L 9
2. ( 3x  2y) ‰i eMÆ wbGPi ˆKvbwU? a1 b 1 c1 a1 b 1 c1
K   L  = M 8 N 7
K  9x2  12xy  4y2 a2 b 2 c2 a2 b 2 c2
L 9x2  12xy  4y2 a1 b 1 c1 a1 b 1 c1 24. a, b, c KÌwgK mgvbycvZx nGj
M = = N =  i. b2 = ac
M 9x2  12xy + 4y2 a2 b 2 c2 a2 b 2 c2
ii. 2b = a + c
N 9x2 + 12xy + 4y2 13. x ‰i ˆKvb gvGbi RbÅ lnx msævwqZ? a+b b+c
× × K x0 L x<0 iii. =
3. 0.3  0.6 = KZ? b c
× ×× M x>0 N x0 wbGPi ˆKvbwU mwVK?
K 0.18 L 0.18
×
14.  = 90 ‰i RbÅ wbGPi ˆKvbàwj msævwqZ? K i I ii L i I iii
M 0.2 N 0.2 K cot, sec L sin, tan M ii I iii N i, ii I iii
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi M cosec, sec N cot, cos
wbGPi ZG^Åi AvGjvGK (25 I 26) bs cÉGk²i
`vI: 15. ˆKvb kGZÆ logaa = 1 nGe? Dîi `vI:
A = {1, 1, 2, 3} ‰es B = {x : x2  x  2 = 0} K a>0 L a1
4. wbGPi ˆKvb ˆmUwU A  B ˆmUGK wbG`Æk ˆkÉwY 31-40 41-50 51-60 61-70 71-60
M a > 0, a  1 N a  0, a >  1
KGi? MYmsLÅv 5 8 12 9 6
3
K {1, 2} L {1, 3} 16. hw` 2sinAcosA = 2 nq, ZGe A ‰i gvb 25. 
 cÉPziK ˆkÉwYi gaÅgvb KZ?
M {1, 3} N {1, 2} K 45.5 L 51.5
KZ?
5. A  B ‰i Dcv`vb msLÅv KZ? M 55.5 N 65.5
K 30 L 45
K 4 L 5
M 60 N 90
26. 
 gaÅK wbYÆGqi ˆÞGò
M 6 N 8 i. Fc = 13
17.  r eÅvmvaÆ
 wewkÓ¡ ‰KwU e†î ‰es H
6. mKj cƒYÆ ‰es f™²vsk msLÅvGK ejv nq ii. fm = 12
e†îÕ© eGMÆi ˆÞòdGji AbycvZ ˆKvbwU? n
K Agƒj` msLÅv L gƒj` msLÅv iii. = 20
2
K 4: L :2
M AFYvñK msLÅv N Õ¼vfvweK msLÅv
M 2:r N r:2 wbGPi ˆKvbwU mwVK?
7. (x  5)2 = x2  10x + 25 nGj 18. 
 AebwZ ˆKvGYi gvb KZ wWMÉx nGj, K i I ii L i I iii
i. ‰KwU AGf` M ii I iii N i, ii I iii
LuywUi Š`NÆÅ, Zvi Qvqvi Š`GNÆÅi 3 àY nGe?
ii. ‰KwU mgxKiY 27. ˆKvGbv e†Gîi eÅvmvaÆ r nGZ r + x Kiv nGj,
K 30 L 45
iii. x ‰i wbw`ÆÓ¡ gvGbi RbÅ mZÅ
M 60 N 90 e†nîg RÅv ‰i Š`NÆÅ Kx cwigvY evoGZ
wbGPi ˆKvbwU mwVK? 19. 
 Z eYÆwUi NƒYÆb cÉwZmgZvi gvòv ˆKvbwU? cvGi?
K i I ii L i I iii K 1 L 2 K 2r + x L x
M ii I iii N i, ii I iii M 3 N 4 M 2r N 2x
8. (21 + 31) = KZ? 20. 
 ABC ‰i AB I AC
evüi gaÅwe±`y 28. 
 5  2cosecAcosA = 0 nGj, tanA = ?
K 1/6 L 5/6 2 2
M 6/5 N 6
h^vKÌGg D I E nGj BDE: ABC = K L
7 5
9.  4x2 + 2
 ‰i mvG^ KZ ˆhvM KiGj KZ? 5 7
M N
ˆhvMdj cƒYÆeMÆ nGe? K 1: 2 L 1:2 2 2
1 2
M 1:3 N 1:4 29. 
 log3 + log9 + log27 + ...........
K  L  4x
4x 21. cvGki wPGòi Mvp wPwn×Z AsGki ˆÞòdj i. avivi cieZÆx c` log81
1 KZ eMÆ ˆm.wg.?
M x 2
N
4x2
ii. avivwU ‰KwU mgv¯¦i aviv
K 4.2 7 ˆm.wg. iii. avivi mvaviY A¯¦i log6
10. ‰KwU eGMÆi evüGK wZbàY Kiv nGj L 2.15 wbGPi ˆKvbwU mwVK?
4 ˆm.wg.

cwiewZÆZ ˆÞòdj cƒeÆvGcÞv KZàY e†w«¬ M 11.49


cvGe? K i L i I ii
N 15.43
K 3 L 6 M i I iii N i, ii I iii
M 8 N 9 22. RwgwUi KZ eMÆ ˆm.wg. RvqMv w`Gq ivÕ¦v 30. 
 wPGò BCD ‰i gvb KZ wWwMÉ?
C
11. 3x + 2y = 1 mgxKiGY x =  3emvGj ˆMGQ? 20 ˆm.wg. K 70
D
mgxKiGYi ˆjGLi we±`ywU ˆKvb PZzfÆvGM K L
8 ˆm.wg.

20 60
10 ˆm.wg.

cGo? L 16 M 55 20

O
K 1g L 2q M 10 N 50 E 110
N 5 15 ˆm.wg. ivÕ¦v B
M 3q N 4^Æ A

1 M 2 N 3 M 4 N 5 N 6 L 7 K 8 L 9 N 10 M 11 L 12 N 13 M 14 N 15 M
Dîi

16 K 17 L 18 M 19 L 20 N 21 N 22 N 23 L 24 L 25 M 26 N 27 N 28 L 29 L 30 N
22 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
367 miKvwi cÉg^bv^ evwjKv DœP we`Åvjq, ivRkvnx

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
1
 p2  3p + 4 ‰i Drcv`GK weGkÏwlZ 10. x + y = 0 ‰es x  y = 2 mgxKiY ˆRvGUi wbGPi ZG^Åi AvGjvGK (22 I 23) bs cÉGk²i
2
mgvavb we±`y ˆjLwPGòi ˆKvb PZzfÆvGM Dîi `vI:
i…c wbGPi ˆKvbwU? AewÕ©Z? ˆkÉwYeÅvwµ¦ 15-19 20-24 25-29 30-34
1 1
K
2
(p  4)(p + 2) L
2
(p + 4)(p  2) K cÉ^g fvGM L w«¼Zxq fvGM MYmsLÅv 2 8 10 6
1 M Z‡Zxq fvGM N PZz^Æ fvGM 22. cÉPziK wbYÆGq (f1 + f2) ‰i gvb KZ?
M (p  4)(p  2) N (p  4)(p + 2)
2 11. ( 2)x+1 = 16 nGj, x ‰i gvb KZ? K 4 L6 M8 N 10
2. x2 = x 3 mgxKiYwUi mgvavb ˆmU wbYÆq K 7 L8 M9 N 16 23. Dcvî mgƒGni gaÅK ˆKvbwU?
Ki| 12. P = {3, 2, 1, 0, 1, 2}, K 36.5 L 31.0 M 26.5 N 25.0
K {0, 3} L {0,  3} Q = {3, 2, 0, 1, 3} nGj Q  P = KZ? 24. 128 + 64 + 32 + ............... avivwUi KZ
M {0, 3} N { 3} K {3, 2, 1, 0, 1, 3} 1
Zg c` 2 ?
3. wPGò BC || DE ‰es AB = 8 ˆm.wg.‰es L {3, 2, 0, 1}
M {1, 2} N {3} K 9 Zg L 8 Zg
BC = 6 ˆm.wg. nGj A
13. 35  2y  y2 ‰i Drcv`K ˆKvbwU? M 7 Zg N 6 Zg
i. DE = 3 ˆm.wg. D E
K 5+y L y5 25. 
 wPGò AB : AD = AC : AE ‰es ADE
ii. AD = 4 ˆm.wg.
M 7+y N 7y ‰i ˆÞòdj 16 eMÆ ‰KK nGj
iii. ABC I ADE m†`k B C
14.  wPGò QR = KZ ˆm.wg.?
 i. DE ‰i `ƒiZ½ 4 ‰KK A
wbGPi ˆKvbwU mwVK? K 1 P ii. ABC I ADE m`†k
K i I ii L i I iii L 2 8
AF AB D E
1 ˆm.wg.

60
M ii I iii N i, ii I iii iii. = G
2
M 3 AG AD
4. wPGò ABCD AvqZGÞGòi KYÆ«¼Gqi N 2 R
wbGPi ˆKvbwU mwVK? B F C
Q
ˆQ`we±`y O, OP = 4 ˆm.wg. ‰es OA = 5 15.
1
, 1, 3 ......... ‰i cieZÆx c`wU KZ K i I ii L i I iii
ˆm.wg. nGj BC KZ? 3 M ii I iii N i, ii I iii
K 2 ˆm.wg. A B nGe? 26. 
 ‰KwU e†Gîi KZwU NƒYÆvqb cÉwZmvgÅ
L 4 ˆm.wg. O P K 3 3L3 3 M 3 N 3 ˆiLv ^vGK?
M 6 ˆm.wg. 3m + n
D C
16. n  m = 9 nGj, m : n = ? K 2 L 3
N 8 ˆm.wg. M 8 N AmsLÅ
K 1:5 L 5:1
5.  2x  y = 13 ‰es 5x + 6y = 7
 M 2:3 N 3:2 wbGPi ZG^Åi AvGjvGK (27 I 28) bs cÉGk²i
mgxKiY«¼q 17. ‰KwU UÇvwcwRqvGgi mgv¯¦ivj evü«¼Gqi Dîi `vI: A
Q

i. ciÕ·i wbfÆikxj Š`NÆÅ 18 ˆm.wg. I 14 ˆm.wg. ‰es ˆÞòdj wPGò AB > AC y y

ii. ‰i ‰KwU mgvavb AvGQ 128 eMÆ ˆm.wg. nGj mgv¯¦ivj evü«¼Gqi ‰es AP || CQ B
P
C

iii. ciÕ·i mgém gaÅeZÆx `ƒiZ½ KZ? 27. wbGPi ˆKvbwU mwVK?
wbGPi ˆKvbwU mwVK? K 8 L 16 M 32 N 64 K AC : AB = PC : PB
L BP = PC
K i I ii L i I iii 18. 
x x
 + 3 =  2 nGj, x ‰i gvb KZ?
4 3 M AP : BP = AP : PC
M ii I iii N i, ii I iii
K 120 L 60 M 36 N 6 N ABP @ APC
6. kZKiv evwlÆK 7 UvKv mij gybvdvi ˆKvb 2
19. 39 ‰i Ave†î `kwgK f™²vsGki i…c ˆKvbwU? 28. wPòvbymvGi
gƒjab 2 eQGii me†w«¬gƒj 912 UvKv nGj i. ACQ = CAP
gƒjab KZ? ×× × ×
K 0. 63 L 0.16 M 3.2 N 0.22
× ii. BAP = AQC
K 894.50 UvKv L 852.33 UvKv iii.  ˆÞò APB   ˆÞò ACP
20. wPGò PA I PB `ywU Õ·kÆK ‰es PAB =
M 800 UvKv N 796.57 UvKv wbGPi ˆKvbwU mwVK?
30 nGj AOB = ?
7. a = 3 ‰es b = 12 nGj wbGPi ˆKvbwU K 120 A K i I ii L i I iii
Agƒj` msLÅv? L 90 O 30
P M ii I iii N i, ii I iii
K a + b L ab M
a
N
b M 60 29. 
 ˆKvb mgevü wòfzGRi ‰Kevü a ˆm.wg.
b a B
N 30 nGj, Zvi DœPZv KZ ˆm.wg.?
(1  cot260)
8. 
 ‰i gvb ˆKvbwU? 21. 
 wPGò AvqZGÞòwUi Mvp wPwn×Z AsGki 3 2
(1 + cot260) K a L a
1 4 2 ˆÞòdj KZ eMÆ ˆm.wg.? 2 3
K 2 L M N K 28.27
2 3 3 2 3
6 ˆm.wg.

L 31.73 M a N a
× 3 2
9. 2.05 ˆK mvgvbÅ f™²vsGk cÉKvk Ki? M 33.27
205 203 37 41 N 60
30. log42  log 27 = KZ?
K L M N 10 ˆm.wg. 3
100 90 18 20 K 27 L9 M6 N 3
1 M 2 K 3 N 4 M 5 M 6 M 7 K 8 L 9 M 10 N 11 K 12 N 13 M 14 M 15 N
Dîi

16 M 17 K 18 L 19 M 20 M 21 L 22 L 23 M 24 K 25 N 26 N 27 K 28 N 29 K 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 23
368 ivRkvnx KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, ivRkvnx

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. a, b, c  Ñ; a > b > 0 ‰es c < 0 nGj, 12. `yBwU e†î ciÕ·iGK ewntÕ·kÆ KiGj ZvG`i 21. 
 sin + cos = 1 nGj, (sin – cos)2 = ?
wbGPi ˆKvbwU mwVK? gGaÅ mGeÆvœP KqwU mvaviY Õ·kÆK Aâb K 2 L1
K ac = bc L ac > bc Kiv mÁ¿e? M 0 N–1
M ac < bc N ab < bc
K 1wU L 5wU 22. sin4 + sin2 = 1 nGj,
2. B = {a} nGj, P(B) ‰i Dcv`vb msLÅv M 3wU N 2wU
i. sin2 = cos
ˆKvbwU? wbGPi ZG^Åi AvGjvGK (13 I 14) bs cÉGk²i
ii. tan = cosec
K 2 L3 M1 N 0 iii. tan.cosec = 2
Dîi `vI: P
wbGPi ˆKvbwU mwVK?
3. f(x) = 2x2 + kx + 3 nGj, k ‰i ˆKvb gvGbi
RbÅ f(– 1) = 0 nGe?
3x K i I ii L i I iii
O
K 2 L3 M5 N –1 M ii I iii N i, ii I iii
Q S
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi 2x + 60
3
23. sin2 = 2 nGj, tan2 = ?
`vI: R
1 1 1
x– =7 K  L M N 3
2
x 13. 
 QRS ‰i gvb KZ? 3
1 K 60 L 120 24. e†Gîi eÅvm 12 ˆm.wg. nGj ‰i cwimxgv KZ
4. 
 x2 – 2 = ?
x M 45 N 135 ˆm.wg.?
K 53 L 7 53 M 7 N 49 14. 
 OQR + OSR = ? K 37.69 L 36.69
x M 24.69 N 18.69
5. 
 2
x – 6x – 1
‰i gvb KZ? K 120 L 135
M 145 N 45 25. ‰KwU mge†îf„wgK wmwj´£vGii f„wgi eÅvmvaÆ
K 1 L2 M3 N 4
15. mgw«¼evü wòfzGRi cÉwZmvgÅ ˆiLv KqwU? 4 ˆm.wg. ‰es DœPZv 12 ˆm.wg. nGj
6. 33 ‰i 3 wfwîK jM KZ?
3 2 1
K 0 L2 M1 N 3 eKÌZGji ˆÞòdj KZ eMÆ ˆm.wg.?
K 3 L M N 16. 
 P K 201.59 L 301.59
2 3 3
M 80.59 N 48.59
7. 
 log2 + log4 + log8 + ......... avivi 6Ó¤ y y

c` KZ? 26. 
 eGMÆi KGYÆi Š`NÆÅ 6 2 ˆm.wg. nGj, Zvi
K log2 L 3log2 Q R cwimxgv KZ?
S K 24 ˆm.wg. L 12 ˆm.wg.
M 5log2 N 6log2
8.
a b
+ = 2 nGj, a – b ‰i gvb KZ? wbGPi ˆKvbwU mwVK? M 18 ˆm.wg. N 20 ˆm.wg.
b a K QS : RS = PQ : PR 27. e†Gîi cwiwa : eÅvm = ?
K 0 L1 M ab N a + b L QS : RS = PQ : PS  
2 3 M K 1: L :1 M :1N 1:
9. =
x + 1 2x – 1
mgxKiGYi gƒj ˆKvbwU? QS : RS = PR : PS 2 2
N PQ : SR = QS : PQ 28. 
 AebwZ ˆKvGYi gvb KZ nGj LuywUi Š`NÆÅ
K –5 L –3 M 3 N 5
17. 4 ‰i NƒYÆb ˆKvY KZ? Qvqvi Š`GNÆÅi 3 àY nGe?
10. 
 A
K 90 L 120 M 360 N 180 K 60 L 30
18. ‰KwU wòfzRGK Aci ‰KwU wòfzGRi Dci M 45 N 90
D E
(x + 2) cm
Õ©vcb KiGj hw` wòfzR `ywU meÆGZvfvGe wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
B C wgGj hvq ZGe@ Dîi `vI:
(5x – 2) cm
i. wòfzR `ywU meÆmg ˆkÉwY 31-40 41-50 51-60 61-70 71-80
ABC ‰i AB I AC ‰i gaÅwe±`y h^vKÌGg
ii. wòfzR `ywUi Abyi…c evü mgvb MYmsLÅv 5 8 12 9 6
D I E nGj, BC ‰i Š`NÆÅ KZ ˆm.wg.?
iii. Abyi…c ˆKvY mgvb 29. gaÅK wbYÆGqi ˆÞGò?
K 6 L 8
M 4 N 2 wbGPi ˆKvbwU mwVK? n
i. = 20
11. 
 K i I ii L i I iii 2
A ii. fm = 12
D M ii I iii N i, ii I iii
80 E iii. Fc = 15
19. 
 tan 1 – sin2 = ?
wbGPi ˆKvbwU mwVK?
K cos L tan
K i I ii L i I iii
B M sec N sin
C
5 M ii I iii N i, ii I iii
20. 
 cosec(90 – ) = nGj, cot = ?
3 30. cÉPziK ˆkÉwYi DœPmxgv KZ?
wPGò ABC = KZ? 3 4 3 4 K 70 L 60
K 80 L 90 M 100 N 180 K L M N
5 3 4 5 M 50 N 55.5
1 M 2 K 3 M 4 L 5 K 6 L 7 N 8 K 9 N 10 L 11 K 12 M 13 N 14 L 15 M
Dîi

16 K 17 N 18 N 19 N 20 M 21 L 22 K 23 N 24 K 25 L 26 K 27 L 28 K 29 K 30 L
24 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
369 bvGUvi miKvwi evwjKv DœP we`Åvjq, bvGUvi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
.
1. 0.71 ‰i mvaviY f™²vsk ˆKvbwU?
4
11. y2  y2 = 0 mgxKiYwUi- wbGPi ZG^Åi AvGjvGK (20 I 21) bs cÉGk²i
71 64 Dîi `vI:
K L i. PjGKi mGeÆvœP NvZ 4
99 99 ‰KwU avivi cÉ^g c` a, mvaviY AbycvZ r, PZz^Æ
32 71 ii.`yBwU gƒj ( 2  2 )
M
45
N
90 c` 2
iii. a˂e c` 4
2. S = {(5, 3), (5, 6), (7, 6), (8, 9)} ‰i ˆié 20. 
 beg c` 8 2 nGj, r = KZ?
wbGPi ˆKvbwU mwVK?
ˆKvbwU? K  2 L 2
K i I ii L i I iii
K {5, 5, 7, 8} L {5, 7, 8} M 2 N 2
M {3, 6, 6, 9} N {3, 6, 9} M ii I iii N i, ii I iii
21. 
 cÉ^g c`wU KZ?
3.
1
  =
2x + 3
nGj, (2) ‰i gvb ˆKvbwU? 12. 
 8 ˆmw´ŸwgUvi I 10 ˆmw´ŸwgUvi 1
x  6x  1 eÅvmwewkÓ¡ `yBwU e†î ciÕ·i A¯¦:Õ·kÆ K  L 2
2
7 KiGj ZvG`i ˆK±`Ê«¼Gqi `ƒiZ½ KZ nGe?
K L 1 1
11 M N  2
K 1 L 2 2
M 2 N 4
M 4 N 5 22. cçfzGRi ˆKvYàGjvi mgwÓ¡ KZ?
4. x2 + 3x ‰i mvG^ KZ ˆhvM KiGj ˆhvMdj
13. 
 wbGPi wPGò POM = KZ? K 450 L 540
cƒYÆeMÆ nGe? P
9 4 K 60 M 630 N 360
K L L 90
4 9 O 23. cÉwZmvgÅ ˆiLv ˆbB ˆKvbwUi?
3 M 120
M 9x2 N 60 K mgevü wòfzGRi L welg evü wòfzGRi
2 N 150 M N
5. 
 ‰KwU eBGqi gƒjÅ 72 UvKv| ‰B gƒjÅ M e†Gîi N eMÆGÞGòi
eB ŠZwii gƒGjÅi 90%| evwK UvKv miKvi 24. 
 ‰KwU NbGKi mÁ·ƒYÆ c†GÓ¤i ˆÞòdj
wbGPi ZG^Åi AvGjvGK (14 I 15) bs cÉGk²i
fZzwÆ K ˆ`b| miKvi cÉwZ eBGq KZ UvKv 384 eMÆ ˆmw´ŸwgUvi nGj KGYÆi Š`NÆÅ KZ
Dîi `vI:
fZzwÆ K ˆ`b? ˆmw´ŸwgUvi?
O
K 8 UvKv L 10 UvKv K 8 3 L 6
3
M 18 UvKv N 28 UvKv A C B M 64 N 8
1
6. m + m = 2 ˆhLvGb m > 0 nGj- 25. 
 ‰KwU iÁ¼Gmi `yBwU KGYÆi Š`NÆÅ 12
wPGò O e†Gîi ˆK±`Ê
1 ˆmw´ŸwgUvi I 16 ˆmw´ŸwgUvi nGj, evüi
i. m3 + =2 14. 
 OA = 5 ˆmw´ŸwgUvi nGj, e†Gîi AB RÅv
m3 Š`NÆÅ KZ ˆmw´ŸwgUvi?
1 ‰i Š`NÆÅ KZ ˆmw´ŸwgUvi? K 4 L 6
ii. m5  5 = 0
m K 8 L 16
M 8 N 10
1 M 20 N 25
26. 1 ˆ^GK 10 chƯ¦ ˆgŒwjK msLÅvàGjvi Mo
3
iii. m + 4 = 2
m
15. 
 OAB = 50 nGj, AB PvGci Dci
wbGPi ˆKvbwU mwVK? KZ?
ˆK±`ÊÕ© ˆKvGYi gvb KZ?
K i I ii L i I iii K 4.50 L 4.25
K 60 L 80
M ii I iii N i, ii I iii M 5.5 N 10
M 100 N 120
7. 4a2 + 1 ‰i Drcv`K ˆKvbwU? 27. wbGPi ˆKvbwU wewœQ®² PjK?
16. sin45 = 2A nGj, A ‰i gvb KZ?
K (2a2 + 2a + 1) (2a2  2a + 1) K Zvcgvòv L cÉvYxi msLÅv
L (4a2 + 4a + 1) (4a2  4a + 1) 1 1 3
K 1 L
2
M N
2 M eqm N DœPZv
M (2a2  2a  1) (2a2 + 2a + 1) 2
N (4a2 + 4a + 1) (4a2  4a  1) 17. 
 sin3 = cos3 nGj, tan2 ‰i gvb KZ?
28. AebwZ ˆKvGYi gvb KZ wWMÉx nGj, LuywUi
8. 0.00000045-‰i mvaviY log ‰i cƒYÆK KZ? 1 Š`NÆÅ Qvqvi Š`GNÆÅi 3 àY nGe?
K 1 L
  3 K 30 L 45
K 5 L6
  M 3 N2 3 M 60 N 90
M 7 N8
18. 
 `yBwU msLÅvi AbycvZ 5 : 4 ‰es ‰G`i 29. wbGPi ˆKvb evüàGjv «¼viv wòfzR AuvKv
9. log93 = KZ?
j.mv.à 120 nGj, M.mv.à KZ? mÁ¿e?
1
K L3 K 4 L5 K 4, 5, 9 L 3, 5, 10
2
M 6 N9 M 6 N9 M 6, 8, 11 N 5, 5, 12
10. 2logx = log(2x  1) nGj, x ‰i gvb KZ? 19.
a b 2
 = = nGj, a : c ‰i gvb
 KZ? 30. 
 (31 + 21)1 ‰i mij gvb KZ?
K 1 L0 b c 3 5 6
K 2:3 L 3:4 K L
1 6 5
M N1 M 4:9 N 9:4
2 M 5 N 6

1 M 2 N 3 M 4 K 5 K 6 N 7 K 8 M 9 K 10 N 11 K 12 K 13 N 14 K 15 L
Dîi

16 L 17 L 18 M 19 M 20 K 21 M 22 L 23 L 24 K 25 N 26 L 27 L 28 M 29 M 30 L
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 25
370 eàov wRjv Õ•zj, eàov

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. wbGPi ˆKvb Z^Å (ˆmw´ŸwgUvi) «¼viv wòfzR 12. AwRf ˆiLvi ˆÞGò wbGPi ˆKvbwU mwVK? 22. Px = N, (P > 0, P  1) nGj, N ‰i P
Aâb Kiv hvq? K Ea»ÆMvgx L wbÁ²Mvgx wfwîK jM KZ?
K ‰KwU ˆKvY 30, f„wg = 2.4, `yB evüi M mgv¯¦ivj N DjÁ¼ K N = logxP L X = logpN
mgwÓ¡ 2.2 M N = logpX N P = logxN
13. 
 mylg eüfzGRi cÉwZwU A¯¦tÕ© ˆKvY
L f„wg = 2.4, `yB evüi mgwÓ¡ 4.2 23. KÌgGhvwRZ MYmsLÅv cÉGqvRb@
150 nGj, KGYÆi msLÅv KZ?
M ‰KwU ˆKvY 30, f„wg = 2.4, `yB evüi i. gaÅK wbYÆGq ii. Mo wbYÆGq
K 72wU L 54wU
mgwÓ¡ = 4.5 iii. AwRfGiLv AâGb
M 32wU N 16wU
N ‰KwU ˆKvY 30, `yB evüi mgwÓ¡ = 4.2 wbGPi ˆKvbwU mwVK?
14. ˆKvGbv eGMÆ A¯¦e†Æî AuvKGZ KqwU avc
2. ‰KwU Mvwoi PvKvi eÅvm 10cm nGj, ‰i K i I ii L i I iii
AbymiY KiGZ nq? M ii I iii N i, ii I iii
ˆÞòdj KZ?
K 1wU L 2wU 24. {x  N : x3 > 25 ‰es x4 < 264} ‰i
K 25cm L 16cm2
M 32cm 2
N 25cm2 M 3wU N 4wU ZvwjKv c«¬wZ wbGPi ˆKvbwU?
3. 
 45, 46, 36, 35, 43, 33, 38, 43, 40, 50 15. 
 kZKiv evwlÆK 5 UvKv nvi gybvdvq KZ K {2, 3, 4} L {3, 4, 5}
DcvGîi cwimi KZ? UvKvi 12 eQGi me†w«¬gƒj 1280 UvKv nGe? M {4, 5, 6} N ˆKvGbvwUB
bq
K 10 L 12 K 600 UvKv L 800 UvKv wbGPi ZG^Åi AvGjvGK (25 I 26) bs cÉGk²i
M 16 N 18 M 1000 UvKv N 1080 UvKv Dîi `vI: C
4. ˆKvGbv wòfzGRi AuvKv hvq@ 3
16. cosec + cot = 2 nGj, cot  cosec =?
i. ‰KwU A¯¦e†Æî ii. wZbwU ewne†Æî O
iii. wZbwU cwie†î K 
3
L
2
M
2
N
3
2 3 3 2
wbGPi ˆKvbwU mwVK? A P B
K i L i I ii
17. e†Gîi ˆKvGbv Pvc «¼viv Drc®² ˆK±`ÊÕ© ˆKvY
M i I iii N i, ii I iii H e†îPvGci@
O ˆK±`ÊwewkÓ¡ ABC e†Gî OA = 10 cm ‰es
5. 
 ‰KwU mylg mµ¦fzGRi kxlÆ ˆKvGYi gvb K mgvbycvwZK L eÅÕ¦vbycvwZK
OP = 6 cm, OPAB.
cÉvq KZ wWwMÉ? M mgvb N ˆKvGbvwUB bq 25. 
 AB ‰i Š`NÆÅ wbGPi ˆKvbwU?
K 120 L 128.6 18. ABC mgGKvYx wòfzGRi AwZfzR AC = 2, K 6 cm L 8 cm
M 130.5 N 107 AB = 1. M 10 cm N 16 cm
A
wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi 26. 
 e†Gîi cwiwa KZ ˆmw´ŸwgUvi?
`vI: 1 2 K 31.42 L 52.42
ˆkÉwYeÅvwµ¦ 31-40 41-50 51-60 61-70 71-80 81-90 91-100 M 62.83 N 125.64
MYmsLÅv 6 12 16 24 12 8 2 27. ‰KwU AbyKÌGgi mvaviY c`
6. cÉPziK ˆkÉwYi gaÅgvb ˆKvbwU? B C
(1)n1 
1 
K 55.5 L 65.5 i. cosA = sinC  n + 1  nGj@
M 75.5 N 85.5 5 1 1 1 1
7. cÉPziK KZ? ii. cosA + secA = i. AbyKÌgwU 2 ,  3 , 4 ,  5 ......
2
K 55 L 65 1 1
M 75 N 85 iii. tanC = ii. `kg c` = 20
3
8. 1 + 3 + 5 + 7 + .... avivwUi cÉ^g n msLÅK wbGPi ˆKvbwU mwVK? iii. 11 I 12 Zg cG`i ˆhvMdj = 156
1
cG`i mgwÓ¡ KZ? K i L i I iii
 n(n + 1) 2 n(n + 1) wbGPi ˆKvbwU mwVK?
K   L M ii I iii N i, ii I iii K i L i I ii
 2  2
19. KqwU Dcvî ˆ`Iqv ^vKGj wòfzR AuvKv
n2 M i I iii N ii I iii
M
2
N n2 hvq? 28. wbGPi ˆKvbwU wewœQ®² PjK?
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i K 1 L 2 K Zvcgvòv L Qvò-Qvòxi msLÅv
M 3 N 4
Dîi `vI: M eqm N DœPZv
2cos(A  B) = 1, 2sin(A + B) = 3 nGj,
20. ‰KwU wòfzGRi ˆKvYàGjvi AbycvZ 1 : 1 : 2 1
nGj, wòfzRwU wK aiGbi? 29. sin2  cos2 = 2 nGj,
9.  (A + B) = KZ?
K 15 L 30 K Õ©ƒjGKvYx L mgGKvYx sin4  cos4 = KZ?
M 45 N 60 M mƒßGKvYx N welgevü 1 3
K L
10.  A ‰i gvb KZ?
 21. `yBwU e†î ciÕ·iGK ewntÕ·kÆ KGi| ‰G`i 2 2
3 1
K 7
1
L 23
1 1
M 52 N 77
1 ‰KwUi eÅvm 10 cm ‰es AciwUi eÅvmvaÆ M N
2 2 2 2 2 4
4 cm nGj, ˆK±`Ê«¼Gqi gaÅeZÆx `ƒiZ½ KZ 12
11. 0.00573 msLÅvwUGZ jGMi cƒYÆK KZ?
cm nGe? 30. A ‰i ˆKvb gvGbi RbÅ, secA = 5 ?
K 3 L2
K 9 L 10 K 65.37 L 55.37
 
M 3 N2 M 14 N 7 M 45.37 N ˆKvGbvwUB bq
1 2 M 3 4 N 5 6 7
N 8 9
L 10 11
L 12 13
L 14 L15 L N N M M K L M
Dîi

16 L 17 K 18 N 19 M 20 L 21 K 22 L 23 L 24 N 25 N 26 M 27 M 28 L 29 K 30 K
26 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
371 eàov KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, eàov

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.00000456 ‰i jGMi cƒYÆK KZ? 11. e†Gîi cÉwZmgZvi gvòv KZ? wbGPi ZG^Åi AvGjvGK (23 I 24) bs cÉGk²i
K 6 L
5 K 2 L6 Dîi `vI:
M 2 N
4 M AmsLÅ N4 1 + 3 + 5 + 7 + ...... ‰KwU mgv¯¦i aviv|
wbGPi ZG^Åi AvGjvGK (2 I 3) bs cÉGk²i Dîi 12. 
 ‰KwU LuywUi DœPZv I Qvqvi Š`GNÆÅi 23.  avivwUi r-Zg c` KZ?
`vI: AbycvZ 3 : 3 nGj, mƒGhÆi D®²wZ ˆKvY KZ K 2r – 1 L 2r + 1
ˆkÉwY 11-20 21-30 31-40 41-50
wWwMÉ? M 2r N 2r – 3
MYmsLÅv 4 18 22 16 K 50 L 45 24. 
 avivwUi cÉ^g 10wU cG`i mgwÓ¡ KZ?
2. DcvGîi gaÅK ˆkÉwY ˆKvbwU? M 60 N 30
K 50 L 100
K 41- 50 L 31- 40 13. 
 ‰KwU eGMÆi cÉwZ evüi Š`NÆÅ 10% e†w«¬
M 21- 30 N 11- 20 M 110 N 90
ˆcGj ‰i ˆÞòdj kZKiv KZ e†w«¬ cvGe?
3. gaÅK wbYÆGq fm = ? 25. a3 + 3 3 ‰i Drcv`K ˆKvbwU?
K 20% L 23%
K 4 L 16 K a2 + 3a + 9 L a2 + a 3 + 3
M 19% N 21%
M 22 N 18
14. ˆKvbwU mgGKvYx wòfzGRi ˆKvYàGjvi AbycvZ? M a+ 3 N a– 3
x–3
4. 

x
= x – 3 mgxKiGYi mgvavb ˆmU K 4:5:9 L 4:6:7 26. 
 tan( – 30) = 3 nGj, sin ‰i gvb KZ?
KZ? M 1:5:9 N 6 : 13 : 18 3
15. `yBwU e†Gî mGeÆvœP KqwU mvaviY Õ·kÆK K 0 L
K {1, 0} L {1} 2
M {3} N {1, 3} Aâb Kiv hvq? 1
M N1
5. RÅvwgwZGZ Dccv`Å cÉgvGYi avc KqwU? K 4 L2
2
K 4 L2
M 3 N1
27. 
 `yBwU e†î ciÕ·iGK A¯¦tÕ·kÆ KGi ‰es
M 3 N5 ‰G`i eÅvm h^vKÌGg 12 cm, 8 cm| ‰G`i
3
6. 5% nvi gybvdvq 1500 UvKvi 3 eQGii 16. log5( 5. 5) ‰i gvb KZ?
ˆK±`Ê«¼Gqi gaÅeZÆx `ƒiZ½ KZ ˆm.wg.?
mij gybvdv KZ? K
6
L
5
K 2 L1
K 235 L 225 5 6
4 3 M 3 N4
M 275 N 220 M N
7. cwimxgv ˆ`Iqv ^vKGj Aâb Kiv hvq?
3 4 28. ‰KwU mge†îf„wgK wmwj´£vGii eÅvmvaÆ r cm
17. 
 – 8 – 3 + 2 + 7 + ....... avivwUi 15-Zg ‰es DœPZv h cm nGj@
i. eMÆ
c` KZ?
ii. mgevü wòfzR i. f„wgi ˆÞòdj r2 eMÆ ˆm.wg.
K 67 L 78
iii. UÇvwcwRqvg ii. AvqZb = 2r2h Nb ˆm.wg.
M 62 N 83
wbGPi ˆKvbwU mwVK? 18. (a + b, 2) = (4, a – b) nGj (a, b) ‰i gvb KZ? iii. eKÌZGji ˆÞòdj 2r(r + h) eMÆ ˆm.wg.
K i I iii L i I ii K (2, 4) L (4, 2) wbGPi ˆKvbwU mwVK?
M i, ii I iii N ii I iii M (1, 3) N (3, 1)
K i I iii L ii
8. 
 19. 13, 17, 14, 11, 9, 14 msLÅvàGjvi gaÅK KZ?
M i N i I ii
K 13.5 L 13
2 cm
M 12.5 N 14 29. p(x) = x3 – 4x + 3 nGj p(– 1) = ?
20. A = {a, b, c} ‰es B = {a, b} nGj, K 2 L5
Mvp wPwn×Z AsGki ˆÞòdj KZ eMÆ ˆm.wg.?
i. A\B = {c} M 6 N7
K 2.434 L 3.03
M 3.13 N 3.434 ii. A ‰i cÉK‡Z DcGmU B 30. 

iii. n(B) = 3
9. 2x + y = 1 ‰es x = – 4 mgxKiY«¼Gqi P
mgvavb we±`y ˆKvb PZzfÆvGM AeÕ©vb KGi? wbGPi ˆKvbwU mwVK? 3x + 1
K i I ii L i I iii
K 2q L 1g O A
M 3q N 4^Æ M ii I iii N i, ii I iii
. 21. 
 cosec sec2 – 1 = ? 2x + 7
10. 1.13 ‰i mvaviY f™²vsk KZ? K tan L sin M sec N cos
Q
19 17 wPòvbyhvqx, x ‰i gvb KZ?
K
15
L
15 22. e†Gîi eÅvm I cwiwai AbycvZ KZ?
15 18 K 2: L:1 K 4 L7
M N M 5 N6
17 17 M  N1:
1 K 2 L 3 M 4 N 5 K 6 L 7 L 8 N 9 K 10 L 11 M 12 M 13 N 14 K 15 K
Dîi

16 L 17 M 18 N 19 K 20 K 21 M 22 N 23 K 24 L 25 M 26 N 27 K 28 M 29 M 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 27
372 AvgÆW cywjk eÅvUvwjqb cvewjK Õ•zj I KGjR, eàov

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
wbGPi ZG^Åi AvGjvGK (1 I 2) bs cÉGk²i Dîi 11. ‰KwU eGMÆ A¯¦wjÆwLZ e†Gîi eÅvmvaÆ 22. 5 ˆm.wg. I 7 ˆm.wg. eÅvmvGaÆi `ywU e†î
`vI: 3 ˆm.wg. nGj, eGMÆi KGYÆi Š`NÆÅ KZ? ciÕ·iGK A¯¦tÕ©fvGe Õ·kÆ KiGj ‰G`i
a b
+ =2 K 3 ˆm.wg. L 3 ˆm.wg. ˆKG±`Êi `ƒiZ½ KZ?
b a
M 6 ˆm.wg. N 6 2 ˆm.wg. K 2 ˆm.wg. L 5 ˆm.wg.
1. a  b ‰i gvb KZ?
12. ‰KwU mgw«¼evü wòfzGRi cÉwZmvgÅ ˆiLvi M 7 ˆm.wg. N 12 ˆm.wg.
K 0 L1 M ab N ab
msLÅv KqwU? 23. ‰KwU wòfzGRi `ywU evüi Š`NÆÅ 9 ˆm.wg. I
a 3 b 3
2. b  + a  ‰i gvb KZ? 10 ˆm.wg. ‰es evü«¼Gqi A¯¦fzÆÚ ˆKvY 60
    K 4 L3 M2 N 1
K 8 L6 M4 N 2 13. cos3A = sin3A nGj, A ‰i gvb KZ? nGj, ‰i ˆÞòdj KZ?
1 K 0 L 15 M 30 N 60 K 22.5 eMÆ ˆm.wg. L 38.97 eMÆ ˆm.wg.
3. 
 hw` logx  =  6 nq, x ‰i gvb
64  M 45 eMÆ ˆm.wg. N 77.94 eMÆ ˆm.wg.
4 1  tan2A
KZ? 14. tanA = 5 nGj, tan2A
‰i gvb 24. 
 ‰KwU mge†îf„wgK ˆejGbi eÅvmvaÆ
1 1 KZ? 3 ˆm.wg. ‰es DœPZv 7 ˆm.wg. nGj, ‰i
K 2 L M N 2
2 2
5 4 3 16 mgMÉZGji ˆÞòdj KZ?
4. 
 ‰KwU eGMÆi evüi Š`NÆÅ x ‰KK nGj, K L M N
4 5 4 25 K 131.95 eMÆ ˆm.wg.
‰i cwimxgv I KGYÆi Š`GNÆÅi AbycvZ KZ? wbGPi ZG^Åi AvGjvGK (15 I 16) bs cÉGk²i L 188.50 eMÆ ˆm.wg.
K 2 2:4 L 2 2:3 Dîi `vI: M 197.85 eMÆ ˆm.wg.
M 2 2:2 N 2 2:1 R
OS  PQ, PR = 10cm, N 395.84 eMÆ ˆm.wg.
2x + 1 x1 O
5. hw` ( 3) =  3
3 nq, ZvnGj x PQ = 8cm, PQO = 55
25. tan(x + 30) = 3 nGj, x = ?
  S K 0 L 30 M 60 N 90
P Q
‰i gvb KZ? 26. ‰KwU ˆejGbi DœPZv 13 ˆm.wg. ‰es f„wgi
15. 
 QOR ‰i gvb KZ?
5 4 4 5
K 
4
L
5
M
5
N
4 K 60 L 90 M 110 N 145 eÅvmvaÆ 6 ˆm.wg. nGj, ‰i 
1 16. 
 OS ‰i Š`NÆÅ KZ? i. f„wgi ˆÞòdj 113.10 eMÆ ˆm.wg.
6. hw` a2 + a2 = 11 nq, ZvnGj
K 3 ˆm.wg. L 4 ˆm.wg. ii. eKÌZGji ˆÞòdj 490.09 eMÆ ˆm.wg.
1
i. a  = 3 M 5 ˆm.wg. N 6 ˆm.wg. iii. AvqZb 1470.27 Nb ˆm.wg.
a
1 2 17. ABC-‰ C = 1 mgGKvY, B = 2A ‰es wbGPi ˆKvbwU mwVK?
ii. a +  = 13
 a BC = 4 ˆm.wg. nGj, AB ‰i Š`NÆÅ KZ? K i I ii L i I iii
1 M ii I iii N i, ii I iii
iii. a3 
a3
= 18 K 2 ˆm.wg. L 4 ˆm.wg.
27. ‰KwU MvGQi Š`NÆÅ ‰es ‰i Qvqvi Š`GNÆÅi
wbGPi ˆKvbwU mwVK? M 6 ˆm.wg. N 8 ˆm.wg.
AbycvZ 3 : 3 nGj, D®²wZ ˆKvY KZ?
K i I ii L i I iii 18. sin = 21 nGj, sec = ?
K 60 L 45 M 30 N 15
M ii I iii N i, ii I iii K 0 L1 M
2
N 2 28. 
 ‰KwU mylg lofzGRi ˆK±`Ê nGZ
3
7. hw` P = {a, b, c}, Q = {b, d} nq, ZvnGj ˆhGKvGbv kxGlÆi `ƒiZ½ 6 ˆm.wg. nGj, ‰i
P\Q ‰i KqwU cÉK‡Z DcGmU ^vKGe?
19. ‰KwU wbw`ÆÓ¡ PZzfzÆR AuvKGZ KqwU Õ¼Z¯¨
ˆÞòdj KZ eMÆ ˆm.wg.?
K 2 L 3 Dcvî cÉGqvRb?
K 108 3 L 54 3
M 4 N 7 K 5 L4 M3 N 2
M 27 3 N 9 3
8. 
 4 + p + q + 32 ............ ‰KwU àGYvîi 20. 
 ‰KwU mylg cçfzGRi ewntÕ©
wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
aviv nGj, p2 + q2 ‰i gvb KZ? ˆKvYàGjvi ˆhvMdj KZ?
Dîi `vI:
K 80 L 264 M 320 N 576 K 72 L 108
ˆkÉwY eÅeavb 14-18 19-23 24-28 29-33 34-38
9. wbGPi ˆKvbwU gƒj` msLÅv? M 252 N 360
MYmsLÅv 15 20 35 22 18
K
5
L
27
M
6
N
8 21. ‰KwU mgevü wòfzGRi cwimxgv 18 ˆm.wg.
10 48 3 7 29. cÉPziK ˆkÉwYi gaÅgvb KZ?
nGj, ‰i DœPZv KZ?
1 1 K 16 L 21 M 26 N 31
10. = 3 + 2 2 nGj, a  ‰i gvb KZ? K 3 ˆm.wg. L 3 3 ˆm.wg.
a a 30. gaÅK ˆkÉwYi KÌgGhvwRZ MYmsLÅv KZ?
K  4 2 L 4 M0 N 4 2 M 3 5 ˆm.wg. N 6 ˆm.wg. K 35 L 70 M 92 N 110

1 K 2 N 3 N 4 N 5 L 6 K 7 L 8 M 9 L 10 K 11 N 12 N 13 L 14 M 15 M
Dîi

16 K 17 N 18 N 19 K 20 N 21 L 22 K 23 L 24 L 25 L 26 N 27 K 28 L 29 M 30 L
28 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
373 cvebv wRjv Õ•zj, cvebv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. O ˆK±`ÊwewkÓ¡ e†Gî OM ‰KwU eÅvmvaÆ| 10. 
 6 + 12 + 24 + 48 + ........ + 384 avivwUi 21. 
 ‰KwU mgGKvYx wòfzGRi AwZfzR
M we±`yGZ KqwU Õ·kÆK AuvKv hvGe? c`msLÅv KZ? 5 ˆmw´ŸwgUvi ‰es Aci ‰KwU evü 4 ˆmw´ŸwgUvi|
K 2 L 3 K 6 L 7 wòfzRwUi ˆÞòdj KZ eMÆ ˆmw´ŸwgUvi?
M 4 N 1 M 32 N 64 K 6 L 12
2.  3 ˆmw´ŸwgUvi
 I 4 ˆmw´ŸwgUvi 1 1 1 M 10 N 20
11. 1, , , , ....... AbyKÌGgi mvaviY c`
eÅvmvaÆwewkÓ¡ `yBwU e†î ciÕ·iGK A¯¦tÕ·kÆ 3 7 15 22. log625  2log5 = ?
KiGj, e†î«¼Gqi ˆK±`Ê«¼Gqi gaÅeZÆx `ƒiZ½ ˆKvbwU? K log5 L 2log5
KZ ˆmw´ŸwgUvi? 1 1 M log600 N log125
K n L n
K 5 L 7 2 1 2 +1 23. wbGPi ˆKvbwU Agƒj` msLÅv?
M 1 N 12 1 1 5 32
M n N
2 n K 0.5̇ L
3. ˆKvb e†Gîi AwaPvGci A¯¦tÕ© ˆKvY@ 243
K mħGKvY L mgGKvY
12. mgw«¼evü wòfzGR KqwU cÉwZmvgÅ ˆiLv AvGQ?
3 27
M Õ©ƒjGKvY N cƒiK ˆKvY K kƒbÅwU L ‰KwU M N
3
64 5
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi M `yBwU N wZbwU
24. 
 wbGPi ˆKvbwU {x  ô : 11 < x < 13
`vI: 13. 
 ‰KwU eGMÆi KGYÆi Š`NÆÅ 3 2
‰es x ˆgŒwjK msLÅv} ˆmUwUGK ZvwjKv
P ˆmw´ŸwgUvi nGj, ‰i ˆÞòdj KZ eMÆ c«¬wZGZ cÉKvk KGi@
ˆmw´ŸwgUvi? K  L {}
K 18 L 9 M {0} N {11, 12, 13}
M 27 N 36 25. f(x) = x2  12x + 20 ‰es f(x) = 0 nGj,
Q

R 14. 
 ‰KwU e†Gîi cwiwa 6 ‰KK nGj, ‰i x = KZ?
tan = 3 ˆÞòdj KZ eMÆ ‰KK? K  10, 2 L  10,  2
4. 
 PR ‰i gvb KZ? K 3 L 6 M 2, 10 N 10,  2
K 3 L 4 M 9 N 18 26. i. a3  b3 = (a + b) (a2  ab + b2)
M 2 N 1 15. 
 ‰KwU mgevü wòfzGRi cwimxgv 18 ˆmw´ŸwgUvi ii. (a + b)2 = (a  b)2 + 4ab
5. cosec ‰i gvb KZ? nGj, ‰i ˆÞòdj KZ eMÆ ˆmw´ŸwgUvi? iii. 4ab = (a + b)2  (a  b)2
3 2 wbGPi ˆKvbwU mwVK?
K L K 3 3 L 4 3
2 3 K i I ii L ii I iii
M 9 3 N 18 3
1 M i I iii N i, ii I iii
M
2
N 2 16. wbGPi ˆKvbwU AwewœQ®² PjK?
27. 0.0374 ‰i mvaviY jGMi cƒYÆK KZ?
2 K R¯Ãmvj L eqm
6. 
 sec(  60) = nGj, sin(90  ) 
K 3

L 2
3 M wkÞv^Æxi msLÅv N RbmsLÅv
‰i gvb KZ? M 3 N 2
wbGPi ZG^Åi AvGjvGK (17 I 18) bs cÉGk²i
K 0 L 1 28. iÁ¼Gmi@
Dîi `vI:
3 1 i. mw®²wnZ evüàGjv ciÕ·i mgvb
M N ˆkÉwYeÅvwµ¦ 51-60 61-70 71-80 81-90 91-100
2 2 ii. mw®²wnZ ˆKvYàGjv ciÕ·i mÁ·ƒiK
MYmsLÅv 5 10 8 20 5
7. mƒGhÆi D®²wZ ˆKvY 60 nGj, 6 3 wgUvi iii. KYÆ«¼q ciÕ·iGK mgGKvGY ˆQ` KGi
Š`GNÆÅi ‰KwU LyuwUi Qvqvi Š`NÆÅ KZ wgUvi 17. gaÅK ˆkÉwYi DœPmxgv KZ? wbGPi ˆKvbwU mwVK?
K 70 L 71
nGe? K i I ii L ii I iii
M 80 N 90
K 3 3 L 2 3 M i I iii N i, ii I iii
18. cÉPziK ˆkÉwYi wbÁ²mxgv KZ?
M 9 N 6 29. D
K 61 L 71
8. a, b, c, d KÌwgK mgvbycvZx nGj@ C
M 81 N 91
i. c2 = bd
ii. a : b :: c : d 19. 
 `ywU msLÅvi AbycvZ 3 : 5 ‰es ‰G`i
iii. ad = bc M.mv.à. 6| msLÅv `ywUi Mo KZ? 30 30
A B
wbGPi ˆKvbwU mwVK? K 18 L 24
K i I ii L ii I iii M 30 N 36 wPGò ACD = KZ?
M i I iii N i, ii I iii 20. 
 mgevü wòfzGRi ‰KwU evüGK Dfq K 60 L 70
9. 2p  q = 8 ‰es p  2q = 4 nGj, w`GK ewaÆZ KiGj Drc®² ewntÕ© ˆKvY«¼Gqi M 80 N 90
p + q = KZ? ˆhvMdj KZ? 30. ‰KwU wòfzGRi KZwU ewnte†î AuvKv hvq?
K 8 L 4 K 240 L 180 K ‰KwU L `yBwU
M 12 N 0 M wZbwU N PviwU
M 120 N 360
1 N 2 M 3 K 4 M 5 L 6 K 7 N 8 N 9 L 10 L 11 K 12 L 13 L 14 M 15 M
Dîi

16 L 17 N 18 M 19 L 20 K 21 K 22 L 23 N 24 K 25 M 26 L 27 L 28 N 29 K 30 M
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 29
374 w`bvRcyi wRjv Õ•zj, w`bvRcyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.1̇6̇  1.3̇ = KZ? 10. gaÅK ˆkÉwYi DœPmxgv KZ? wbGPi ˆKvbwU mwVK?
K 12.12̇ L 0.12̇ M 1.2 N 0.1̇2̇ K 45 L 50 M 55 N 60 K i I ii L i I iii
1 M ii I iii N i, ii I iii
2. A = {x  ô : 2 < x < 6} nGj 11. ‰KwU `ËeÅ 12 2 % ÞwZGZ weKÌq KiGj
i. A ˆmGU ˆgŒwjK msLÅv 2wU 20.  2 + 1 + 4 + 7 + ... avivi mvaviY c` ˆKvbwU?
KÌqgƒjÅ I weKÌqgƒGjÅi AbycvZ KZ?
ii. P(A) ‰i Dcv`vb msLÅv 8wU K 3n + 1 L 3n  5
K 7:8 L 8:9
M 3n  1 N 3n + 5
iii. A ˆmGU 2 «¼viv wefvRÅ msLÅv 1wU M 9:8 N 8:7
21.  cot(B + 30) = 0 nGj, cosecB =
 KZ?
wbGPi ˆKvbwU mwVK? 12. 35  2x  x2 ‰i Drcv`GK weGkÏlY KiGj
2 3 1
K i I ii L i I iii wbGPi ˆKvbwU mwVK nGe? K L
2
M N 0
3 2
M ii I iii N i, ii I iii K (5  x) (x + 7) L (7 + x)
wbGPi ZG^Åi AvGjvGK (22-24) bs cÉGk²i Dîi
3. ˆKvb msLÅvi PviàGYi mvG^ 3 ˆhvM KiGj M (5 + x) (7  x) N (5 + x) (7 + x)
`vI:
ˆhvMdj H msLÅvi 3 àY nGZ 5 ˆewk nGe? wbGPi ZG^Åi AvGjvGK (13 I 14) bs cÉGk²i
P ‰KwU wZbwU evüi Š`GNÆÅi AbycvZ 1 : 2 : 2 ‰es
K 1 L2 M3 N 4 Dîi `vI:
cwimxgv 60 wgUvi|
wbGPi ZG^Åi AvGjvGK (4 I 5) bs cÉGk²i Dîi 1 22.  wòfzRwU Kx aiGbi?
`vI: E
Q R K mgGKvYx L mgevü
B
M mgw«¼evü N welgevü
D

1
45 C 13. 2 P ‰i gvb ˆKvbwU? 23.  wòfzRwUi Þz`ËZg evüi Š`NÆÅ KZ wgUvi?
K 5 L 12 M 24 N 30
A K 30 L 45 M 60 N 90
24. 
 wòfzRwUi ˆÞòdj KZ eMÆwgUvi?
75 14. PQR ‰i ˆÞGò
K 36 15 L 36 5
5
B i. secP = cosecP ii. cosP + secP = M 34 15 N 34 5
2
4. 
 CDE ‰i gvb KZ wWMÉx? 1 25. ˆKvGbv e†Gîi AwaPvGc A¯¦wjÆwLZ ˆKvY
K 105 L 95 M 85 N 75 iii. tanR =
3 ˆKvb aiGbi?
5. 
 CAD ‰i gvb KZ wWMÉx? wbGPi ˆKvbwU mwVK? K mƒßGKvY L Õ©ƒjGKvY
K 30 L 35 M 40 N 45
K i I ii L i I iii M mgGKvY N cƒiK ˆKvY
6. 
 ‰KwU mylg lofzGRi ˆÞòdj 18 3 eMÆ M ii I iii N i, ii I iii 26. wbGPi ˆKvb A®¼qwU dvskb bq?
‰KK nGj, ‰i evüi Š`NÆÅ KZ ‰KK? 15. 
 2logx  log(4x  1) + log3 = 0 nGj, K {(5, 7), (1, 3), (2, 9)}
K 9 L6 M2 3N 3 x ‰i gvb KZ? L {(3, 1), (1, 6), (3, 3)}
x y z M {(2, 8), (1, 2), (2, 7)}
7. = = nGj, wbGPi ˆKvbwU mwVK?
2 3 4
K 1 L2 M3 N 4
N {(2, 3), (1, 2), (4, 5)}
K x :y:z=2 :3 :4 L x:y:z=4:3:2 16. wbw`ÆÓ¡ ‰KwU PZzfzÆR AvuKv mÁ¿e hw` ˆ`qv ^vGK
27. hw` x + x = 0 nq, ZGe 2  x +
1 1
M x :y:z=8 :9 :6 N x:y:z=6:8:9 i. `yBwU evü I wZbwU ˆKvY = KZ?
 x
8. 3 ˆm.wg. eÅvmwewkÓ¡ NbGKi ii. PviwU evü I ‰KwU ˆKvY
K 4 L3 M2 N 1
i. AvqZb 27 Nb ˆm.wg. iii. `yBwU evü I ‰G`i A¯¦fzÆÚ ˆKvY
28. ‰KwU wgbvGii DœPZv 20 3 wgUvi|
ii. mÁ·ƒYÆ ZGji ˆÞòdj 54 eMÆ ˆm.wg. wbGPi ˆKvbwU mwVK? wgbvGii cv`G`k nGZ 20 wgUvi `ƒGii
iii. KGYÆi Š`NÆÅ 3 3 ˆm.wg. K i I ii L i I iii
ˆKvGbv we±`yi AebwZ ˆKvY KZ wWMÉx?
wbGPi ˆKvbwU mwVK? M ii I iii N i, ii I iii K 30 L 45 M 60 N 90
4
K i I ii L i I iii 17. tanA = nGj, secA = KZ? 29. KÌgGhvwRZ MYmsLÅv cÉGqvRb
3
M ii I iii N i, ii I iii 3 5 3 4 i. gaÅK wbYÆGq
K L M N
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i 5 3 4 5 ii. cÉPziK wbYÆGq
Dîi `vI: 18. 
 64 + 32 + 16 + 8 + .... avivi beg c` KZ? iii. AwRf ˆiLv wbYÆGq
ˆkÉwY K 1 L
1
M
1
N
1 wbGPi ˆKvbwU mwVK?
31-35 36-40 41-45 46-50 51-55 56-60 2 4 8
eÅeavb K i I ii L i I iii
MYmsLÅv 5 8 18 15 12 10 19. a > 0, b > 0 ‰es a  1, b  1 nGj M ii I iii N i, ii I iii
i. logaMr = Mlogar
9. cÉPziK ˆkÉwYi cƒGeÆi ˆkÉwYi KÌgGhvwRZ 30. M = {a, b, c}, N = {1, 2, 3} nGj M  N ‰i
5
MYmsLÅv KZ? ( 3
ii. log0 a a = )
6 Dcv`vb msLÅv KZwU?
K 8 L 13 M 18 N 31 iii. logab  logba = 1 K 3 L6 M9 N 12

1 N 2 N 3 L 4 N 5 K 6 M 7 K 8 N 9 L 10 L 11 N 12 K 13 K 14 M 15 K
Dîi

16 K 17 L 18 M 19 M 20 L 21 K 22 M 23 L 24 K 25 K 26 L 27 M 28 M 29 L 30 M
30 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
375 iscyi wRjv Õ•zj, iscyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.012̇ ‰i mvaviY f™²vsk wbGPi ˆKvbwU? 12. 
 EFG Kx aiGbi wòfzR? 22. mgevü wòfzGRi evüi Š`NÆÅ 8 cm nGj,
K
11
L
11
M
11
N
11 K mgevü wòfzR L mgw«¼evü wòfzR DœPZv KZ?
900 990 999 1000 M Õ©ƒjGKvYx wòfzR N welgevü wòfzR K 4 3 L 8 3 M 16 3 N 32 3
1 1
2. (x) = x + nGj,   = ? 13. 
 FEG-‰i gvb KZ? 23. ABCDE ‰KwU mylg cçfzR nGj, ‰i
x x  K 50 L 35 M 30 N 25 A¯¦t Õ© cÉwZwU ˆKvGYi cwigvY KZ?
1 1 14. ABC-‰ AB > AC ‰es D, BC ‰i
K x2 + L 1+ 2 K 92 L 108 M 110 N 112
x2 x
1 gaÅwe±`y nGj 24. x + 3y = 1 ‰es 5x + 15y = 5 mgxKiY
M x+ N x2 + 1 i. ABC < ACB
x
ii. AB + AC > 2AD
ˆRvUwU-
3. A = {2, 3, 5}
iii. ABC < ADC i. mãwZcƒYÆ ii. ciÕ·i wbfÆikxj
R = {(x, y) : x  A, y  A ‰es y = x  1) wbGPi ˆKvbwU mwVK? iii. ‰KwU gvò mgvavb wewkÓ¡
nGj, R ˆK ZvwjKv c«¬wZGZ cÉKvk Ki| K i I ii L i I iii wbGPi ˆKvbwU mwVK?
K {(2, 3)} L {(3, 2)}
M ii I iii N i, ii I iii K i I ii L ii I iii
M {(3, 3)} N {(5, 5)}
15. ABCD ‰KwU mvgv¯¦wiK| M i I iii N i, ii I iii
4.  U ‰i DcGmU msLÅv 64 nGj, U ‰i
 A D
m`mÅ msLÅv = ? (3a+6) 25. wPGòi mylg eüfzRwUi-
K 2 L4 M5 N 6 2a
B C
5. a2  2 a + 1 = 0 nGj,
1
i. a + = 2
1
ii. a2 + 2 = 2
wPGò a ‰i gvb KZ?
a a K 30 L 34.8 M 60 N 74
1 16. 
 O ˆK±`Ê wewkÓ¡ e†Gî OC = 3cm,
iii. a3 + 3 =  2
a i. NƒYÆb gvòv 4 ii. NƒYÆb ˆKvY 60
AB = 8cm ‰es OC AB nGj, OP = KZ? cÉwZwU ˆKvY 120
wbGPi ˆKvbwU mwVK? iii.
K i I ii L ii I iii O wbGPi ˆKvbwU mwVK?
M i I iii N i, ii I iii
C
B K i I ii L ii I iii
A
6. 0.00357 ‰i cƒYÆK KZ? P M i I iii N i, ii I iii
  K 4 L5 M6 N 8 26. ˆhvwRZ MYmsLÅv cÉGqvRb-
K 3 L3 M2 N 2 17. 
 7cm I 5cm eÅvmvGaÆi `ywU e†î ciÕ·i
i. Mo wbYÆGq ii. gaÅK wbYÆGq
7. 
 1600 ‰i jM 4 nGj wfwî KZ? A¯¦tÕ·kÆ KiGj ZvG`i ˆK±`Ê«¼Gqi `ƒiZ½ KZ?
iii. AwRf ˆiLv Aâb KiGZ
K 2 5 L 2 10 K 2 L5 M7 N 12
M 10 2 N 3 2 18. 

wbGPi ˆKvbwU mwVK?
E D
wbGPi ZG^Åi AvGjvGK (8 I 9) bs cÉGk²i Dîi `vI:
C 20 K i I ii L ii I iii
M i I iii N i, ii I iii
84
`yB AâwewkÓ¡ ‰KwU msLÅvi ‰KK Õ©vbxq B A
Aâ `kK Õ©vbxq AGâi AGaÆK ‰es Aâ 27. AwRf ˆiLvi ˆÞGò ˆKvbwU mwVK?
`yBwUi àYdj 25| wPGò ADE ‰i gvb KZ? K Ea»ÆMvgx L wbÁ²Mvgx
8. msLÅvwU KZ? K 64 L 76 M 70 N 36 M mgv¯¦ivj N DjÁ¼
K 84 L 48 M 42 N 24 19. eMÆGÞGòi ‰K evüi cwigvY x ‰KK nGj, 28. wbGPi ˆKvbwU wewœQ®² PjGKi D`vniY?
9. msLÅvwUi ˆgŒwjK àYbxqGKi ˆmU ˆKvbwU? Dnvi cwimxgv I KGYÆi Š`GNÆÅi AbycvZ KZ? K eqm L Zvcgvòv
K {1, 2, 2, 2, 3} L {2, 2, 2, 2, 3} K 2 2:4 L 2 2:1 M RbmsLÅv N IRb
M {2, 3, 7} N {2, 2, 3, 7} M 2:2 N 2 2:2
2(x2 + 1) wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
10.  x2 + 1 =
 ‰i mgvavb ˆmU KZ? 20. A
Dîi `vI: A
x
K {1} L {0} M {2} N {3} 3 x
11.  PQR ‰i Q I R ‰i mgw«¼L´£K«¼q
  C
O we±`yGZ wgwjZ nGqGQ P = 50 nGj, B 4 O

QOR = KZ? tan + cot  sec = KZ? x+60


K 40 L 65 M 115 N 130 5 5 25 5 B C
K L M N
wbGPi ZG^Åi AvGjvGK (12 I 13) bs cÉGk²i 4 12 12 6
Dîi `vI: 21.  sin4A + sin2A = 1 nGj,
 wPGò O e†Gîi ˆK±`Ê|
i. sin2A = cosA ii. tanA = cosecA
C A
D
iii. tanA.cosecA = 1 29. 
 BAC = KZ?
wbGPi ˆKvbwU mwVK? K 30 L 45 M 60 N 120
35 30 K i I ii L i I iii 30. 
 cÉe†«¬ BOC ‰i gvb KZ?
F G K 120 L 180 M 240 N 280
M ii I iii N i, ii I iii
1 K 2 M 3 L 4 N 5 M 6 K 7 L 8 K 9 M 10 M 11 M 12 N 13 K 14 N 15 L
Dîi

16 L 17 K 18 L 19 L 20 N 21 K 22 K 23 L 24 K 25 L 26 L 27 K 28 M 29 M 30 M
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 31
376 KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, iscyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.53̇ ‰i mvaviY f™²vsk ˆKvbwU? 12. wbw`ÆÓ¡ PZzfÆR
z AuvKv mÁ¿e hw` ˆ`qv ^vGK 19. 
 3x  5y  7 = 0 ‰es 6x  10y  15 = 0

K
53
L
50 i. PviwU evü I ‰KwU KYÆ mgxKiY ˆRvUwU
90 90
ii. wZbwU evü I `yBwU KYÆ K mgém L mgvavb AmsLÅ
53 24
M N M ‰KwUgvò mgvavb AvGQ
100 45 iii. `yBwU evü I wZbwU ˆKvY
N ciÕ·i AwbfÆikxj
2. 
 A = {x  ô : 0  x <5} nGj, P(A) ‰i wbGPi ˆKvbwU mwVK? 20. 3x  3x + 3x  3x + 3x  ....... avivwUi 12
Dcv`vb msLÅv KZ? K i I ii L i I iii cG`i mgwÓ¡ KZ?
K 5 L 16
M ii I iii N i, ii I iii K 36x L 6x
M 32 N 64
M 3x N 0
13. 
 `yBwU e†î ciÕ·iGK ewntÕ·kÆ KGi|
3. f(x) = x + 1 nGj, f  x  = KZ?
3 1 21. iÁ¼Gmi cÉwZmvgÅ ˆiLv KqwU?
‰G`i ‰KwUi eÅvm 10 ˆm.wg. ‰es
K ‰KwU L `yBwU
K 3x + 1 L 3+x AciwUi eÅvmvaÆ 4 ˆm.wg.| e†î«¼Gqi M wZbwU N PviwU
3+x x
M N ˆKG±`Êi gaÅeZÆx `ƒiZ½ KZ ˆm.wg.? 22. ar + ar3 + ar5 + ..... avivwUi n-Zg c` KZ?
x 3x + 1
1 K 1 L 6 K arn L arn1
4.  y2  6 y + 1 = 0 nGj, y  KZ?

y M 9 N 14 M ar 2n1
N ar2n2
K L 2 7 23. 
 `yBwU msLÅvi AbycvZ 2 : 5 ‰es ‰G`i
2 14. tan2  sec2 + 3 = KZ?
M 6 N 10
A¯¦i 36 nGj, Þz`ËZg msLÅvwU KZ?
1 4 K 12 L 24
5. wbGPi ˆKvbwU x3  2x  4 eüc`xi ‰KwU K
3
L
3 M 36 N 60
Drcv`K? M 3 N 2 wbGPi ZG^Åi AvGjvGK (24 I 25) bs cÉGk²i
K x4 L x2 25 Dîi `vI:
M x+2 N x+4 15. ‰KwU `ËeÅ % ÞwZGZ weKÌq KiGj
2 ˆkÉwYeÅwÚ 11-20 21-30 31-40 41-50 51-60
6. logaN = x nGj weKÌqgƒjÅ I KÌqgƒGjÅi AbycvZ KZ? MYmsLÅv 4 15 20 10 7
i. N > 0 ii. x > 0
K 7:8 L 8 :9 24.  gaÅK wbYÆGqi ˆÞGò FC ‰i gvb KZ?
iii. a > 0, a  1 K 19 L 20
M 9:8 N 8:7
wbGPi ˆKvbwU mwVK? M 28 N 39
K i I ii L i I iii
wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i f1
25. 
 cÉPziK wbYÆGqi ˆÞGò ‰i gvb KZ?
M ii I iii N i, ii I iii Dîi `vI: f1 + f2
D K 0.33 L 0.67
7. 320.42 I 0.0931 ‰i jGMi cƒYÆK ‰i M 0.79 N 0.87
mgwÓ¡ KZ? 2 2
2 60 26. ‰KwU eGMÆi A¯¦e†ÆGîi eÅvmvaÆ 3 ˆm.wg.
K 5 L 3 2 nGj, eGMÆi evüi Š`NÆÅ KZ ˆm.wg.?
E F
M 1 N 0 G
K 3 L 3
8. (x + 3)2 = x2 + bx + c mgxKiGY b I c ‰i 16. 
  ‰i gvb KZ?
M 6 N 6
gvb KZ? K 15 L 30 27. ‰KwU wmwj´£vGii f„wgi eÅvm 6 ˆm.wg. I
K 2, 9 L 6, 9 M 45 N 60 DœPZv 7 ˆm.wg. nGj, eKÌc†GÓ¤i ˆÞòdj
M 3, 6 N 9, 6 17. 
 DGF-‰ KZ eMÆ ˆm.wg.?
9. mgw«¼evü wòfzGRi f„wg msj™² ˆKvY«¼Gqi i. FG = 6 K 9 L 21
cÉGZÅKwU kxlÆGKvGYi w«¼àY nGj kxlÆ 3 M 42 N 63
ii. cosF = 28.  ‰i Q = 90 ‰es P = 30
ˆKvGYi cwigvY KZ? 2  PQR
K 30 L 35 iii. sin(GDF + DFG) = 1 nGj wbGPi ˆKvbwU mwVK?
M 36 N 38 wbGPi ˆKvbwU mwVK? K PR = 2 QR L PR = 2QR
10. ‰KwU mijGKvGYi mgw«¼LíKGK Kx eGj? K i I ii L i I iii M PR = 3 QR N PR = 3QR
K f„wg L jÁ¼ 29.  ˆKvb aiGbi wòfzGRi cwie†Gîi
 ˆK±`Ê
M ii I iii N i, ii I iii
M DœPZv N mƒßGKvY wòfzRwUi e†nîg evüi Dci AewÕ©Z?
18. 
 ‰KwU jvwVi Qvqv ‰i Š`GNÆÅi KZàY
K mgevü L mƒßGKvYx
11. Õ©ƒjGKvYx wòfzGRi Õ©ƒjGKvY Qvov evwK nGj, D®²wZ ˆKvY 60 nGe? M Õ©…jGKvYx N mgGKvYx
ˆKvY `yBwU KZ nGj wòfzR Aâb mÁ¿e? 1 1
K L 30. y2 = 7 y mgxKiGYi gƒj KqwU?
K 30 I 60 L 45 I 45 3 2 K 3 L 2
M 40 I 50 N 50 I 30 M 2 N 3 M 1 N 0

1 N 2 L 3 K 4 K 5 L 6 L 7 N 8 L 9 M 10 L 11 N 12 N 13 M 14 L 15 K
Dîi

16 K 17 N 18 K 19 N 20 N 21 L 22 M 23 L 24 K 25 K 26 M 27 M 28 L 29 N 30 L
32 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
377 KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, jvjgwbinvU

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg
«¼viv mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. wZbwU KÌwgK Õ¼vfvweK msLÅvi àYdj 12. `yBwU e†î ciÕ·iGK ewntÕ·kÆ KiGj e†î 20. ‰KwU wòfzGRi wZbwU ˆKvGYi AbycvZ
meÆ`vB wbGPi ˆKvbwU «¼viv wefvRÅ? `yBwUi gGaÅ mGeÆvœP KZwU mvaviY Õ·kÆK 2: 3 : 5 nGj, Þz`ËZg ˆKvGYi gvb KZ wWwMÉ?
K 5 L6 AuvKv hvq? K 18 L 20
M 7 N 11 K 4 L3 M 25 N 36
2.  3a + 1
 f(a) = 3 nGj, f(1) ‰i gvb wbGPi M 2 N1 21. 2x  y = 8, x  2y = 4 nGj, x + y = KZ?
3a + 3 13. 
 K 0 L4 M8 N 12
ˆKvbwU? B 22. 2 + 4 + 6 + 8 + .. .. avivwUi cÉ^g n msLÅK
2 C
K
3
L3 cG`i mgwÓ¡ KZ?
K n2 L n(n + 1)
M 0 N AmsãvwqZ O
M n(n + 2) N n(n + 3)
3.  A ˆmGUi cÉK‡Z DcGmGUi msLÅv 63
 A D wbGPi ZG^Åi AvGjvGK (23 I 24) bs cÉGk²i
nGj, A ‰i m`mÅ msLÅv KZ? Dîi `vI:
K 2 L4 M5 N 6 wPGò, O e†îwUi ˆK±`Ê ‰es AOD = 90
nGj, ABD + ACD = KZ? ‰KwU mgv¯¦i avivi cÉ^g c` 3 ‰es 10 Zg c` 21
4.  a  b = 6, a + b = 3 nGj,

K 90 L 120 M 180 N 360 23. 
 avivwUi mvaviY A¯¦i KZ?
a  b = KZ? K 8 L 2 M2 N 24
K 2 L 2 M1 N  3
14. ABCD PZzfƃGRi A = 120, C = 60
nGj 24. 
 avivwUi cÉ^g 10wU cG`i mgwÓ¡ KZ?
5. x2  2x + 1 = 0 nGj K 330 L 150
i. B + D = 180
1 1
ii. x2 + 2 = 0 M 120 N 99
i. x+ = 2 ii. BC ˆK E chƯ¦ ewaÆZ KiGj ECD = 120
x x 25.
1 iii. A, B, C, D we±`y PviwU mge†î A
iii. x3 + 3 =  2
x wbGPi ˆKvbwU mwVK?
wbGPi ˆKvbwU mwVK? K i I ii L i I iii M N
K i I ii L i I iii M ii I iii N i, ii I iii O
M ii I iii N i, ii I iii 15. A ‰i ˆKvGbv ‰KwU gvGbi RbÅ B C

6. 

64
x = 16 nGj, x = KZ? i. sin A =
3
ii. cos A =
5 wPGò, BC || MN nGj
(64) 5 7 i. BOC I MON m`†k
1 1 5
K 4 L M N 4 iii. sec A = ii. AM : BM = AN : CN
3 3 4 iii. BO : ON = CO : OM
7. log625  2log5 = KZ? wbGPi ˆKvbwU mwVK? wbGPi ˆKvbwU mwVK?
K log600 L log125 K i I ii L i I iii K i I ii L i I iii
M log25 N log5
M ii I iii N i, ii I iii M ii I iii N i, ii I iii
x2 1
8. =2 nGj mgxKiGYi mgvavb wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i 26. Õ©ƒjGKvYx wòfzGRi Õ©…jGKvGYi wecixZ
x1 x1
ˆmU wbGPi ˆKvbwU? Dîi `vI: evüi Dci AwâZ eMÆGÞGòi ˆÞòdj Aci
K {1} L {} M {} N {2} sin cos
= `yB evüi Dci AwâZ eMÆ ˆÞGòi ˆÞòdGji
x y
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i K mgwÓ¡i mgvb L mgvb
x
Dîi `vI: 16. 
 = 1 nGj,  = KZ wWwMÉ? M mgwÓ¡ AGcÞv eo N mgwÓ¡ AGcÞv ˆQvU
y
A
K 30 L 45 27. 
 ‰KwU mvgv¯¦wiK ˆÞGòi ˆÞòdj
M 60 N 90 120 eMÆ ˆm.wg. ‰es ‰KwU ˆKŒwYK we±`y
O 17. 
 sin = KZ? ˆ^GK Zvi wecixZ KGYÆi Dci AwâZ
K
x
L
y jGÁ¼i Š`NÆÅ 5 ˆm.wg. nGj, DÚ KYÆwUi Š`NÆÅ
B C x2 + y2 x2 + y2 KZ ˆm.wg.?
wPGò ABC = 70, AB = AC, OB I OC nGjv M
x
N
y K 20 L 24 M 26 N 28
B I C ‰i mgw«¼LíK| x2  y2 x2  y2 28. ‰KwU mgevü wòfzGRi ˆÞòdj 9 3
9. BAC = KZ wWwMÉ? 18. 
 mƒGhÆi D®²wZ ˆKvY 90 nGj, 90 wgUvi eMÆwgUvi nGj, ‰i cwimxgv KZ wgUvi?
K 70 L 65 M 55 N 40 Š`GNÆÅi ‰KwU UvIqvGii Qvqvi Š`NÆÅ KZ K 18 L 20 M 30 N 45
10. BOC = KZ wWwMÉ? wgUvi nGe? 29. DcvGîi mGeÆvœP gvb 57, cwimi 37 nGj,
K 55 L 100 M 110 N 120 K 0 L 45 M 60 N 90 DcvGîi meÆwbÁ² gvb KZ?
11. ÷ay cwimxgv Rvbv ^vKGjB AuvKv mÁ¿e 19. a, b, c, d KÌwgK mgvbycvwZ nGj K 21 L 22 M 23 N 27
i. eMÆ ii. AvqZ i. c2 = bd ii. a : b = c : d 30. 

iii. mgevü wòfzR iii. ad = bc 21-30 31-40 41-50 51-60 61-70 71-80
wbGPi ˆKvbwU mwVK? wbGPi ˆKvbwU mwVK? 8 10 5 10 12 8
K i I ii L i I iii cÉPziK KZ?
K i I ii L i I iii K 60 L 60.33 M 62 N 63.33
M ii I iii N i, ii I iii M ii I iii N i, ii I iii

1 L 2 N 3 N 4 L 5 N 6 L 7 M 8 M 9 N 10 M 11 L 12 L 13 K 14 N 15 L
Dîi

16 L 17 K 18 K 19 N 20 N 21 L 22 L 23 M 24 M 25 N 26 M 27 L 28 K 29 K 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 33
378 KzwoMÉvg miKvwi DœP we`Åvjq, KzwoMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 4x  3y = 10 ‰es x  y = 1 nGj x ‰i 11. D
5 ˆm.wg. C 21. 
 log 3 27 ‰i gvb KZ?
gvb KZ? F K 1 L 3
K 6 L 7 M 6 N 9

ˆm.wg.

ˆm.wg.
30
M 12 N 13 O E 4y + 1 1
22. f(y) = 4y  1 nGj f   ‰i gvb KZ?

5
A
2. wPGò, DE || BC nGj,  2
50
ADE ‰i gvb KZ? D E A
ˆm.wg.
B 1
K 50 L 64 B 64 5 K 1 L 
3
i. eMÆwUi ˆÞòdj = 25 eMÆ ˆm.wg.
C
M 66 N 114 1
ii. e†Gîi cwiwa 15.71 ˆm.wg. M N 1
3.  cvGki wPòvbyhvqx Z^ÅàGjv jÞÅ Ki@
 3
i. BOE = 2 A iii. EOF e†îvsGki ˆÞòdj = 1.64 eMÆ ˆm.wg. wbGPi ZG^Åi AvGjvGK (23 I 24) bs cÉGk²i
ii. DOE = OAD + ODA wbGPi ˆKvbwU mwVK? Dîi `vI:
O
1
iii. BOD = BAD K i I ii L i I iii x=7+4 3
2 B E D
M ii I iii N i, ii I iii 1
wbGPi ˆKvbwU mwVK? C 23. 
 x2 + 2 ‰i gvb KZ?
12. 0.000045 msLÅvwUGZ jGMi cƒYÆK KZ? x
K i I ii L i I iii   K 190 L 194
M ii I iii N i, ii I iii K 5 L 4 M 198 N 200
4. Pvi cvLv wewkÓ¡ ‰KwU wmwjs dÅvGbi NƒYÆb M 4 N 5 1
13.  `ywU
 msLÅvi AbycvZ 7 : 10
‰es ZvG`i 24. 
 x ‰i gvb KZ?
cÉwZmgZvi gvòv KZ? x
K 1 L 2 j.mv.à 910 nGj, msLÅv `ywUi A¯¦i KZ? K 2 3 L 4
M 3 N 4 K 39 L 91
M 8 3 N 14
5.  p + q = 3 ‰es p  q = 2
 nGj@ M 130 N 221
1
3+ 2 14. y2  5y = 0 mgxKiYwUi mgvavb ˆmU 25. 3 x = 81 nGj, x ‰i gvb KZ?
i. p =
2 wbGPi ˆKvbwU? K 4 L 3
ii. p2  q2 = 6 K {0} L { 5} M 3 N 4
1
iii. pq = M {0, 5} N {0, 5} . .
4 26. 
 x = 0.4 ‰es y = 0.8 nGj@
wbGPi ˆKvbwU mwVK? wbGPi wPò ˆ^GK (15 I 16) bs cÉGk²i Dîi . 32
K i I ii L i I iii `vI: A i. x + y = 1.3 ii. xy =
81
5 wgUvi
M ii I iii N i, ii I iii iii.
x
= 0.5
wbGPi DóxcGKi AvGjvGK (6 I 7) bs cÉGk²i y
Dîi `vI: A C B wbGPi ˆKvbwU mwVK?
12 wgUvi
K i I ii L i I iii
N 15. cosC ‰i gvb KZ?
M ii I iii N i, ii I iii
5 ˆm.wg.

5 12
K L 27. A
13 13
C
B 12 ˆm.wg. 13 13 65
M N
12 5
6. ABC ‰i cwimxgv KZ ˆm.wg.? P
C
K 15.0 L 18.81 16. cotA + tanC = KZ? B 102

M 24.81 N 30.0 K
5
L
3 wPGò P ‰i gvb KZ?
7. BN ‰i Š`NÆÅ KZ ˆm.wg.? 6 2 K 37 L 65
K 4.62 L 6.5 181 169
M N M 78 N 115
M 9.23 N 18.46 65 60
28. ‰KwU mgw«¼evü mgGKvYx wòfzGRi mgvb
8. A 17. 
1+3+5+ .......... + 101 avivwUi c`
mgvb evü«¼Gqi Š`NÆÅ 12 ˆm.wg. nGj,
msLÅv KZ?
C K 51 L 101 wòfzRwUi ˆÞòdj wbGPi ˆKvbwU?
10 wgUvi

60
M 201 N 204 K 24 eMÆ ˆm.wg. L 36 eMÆ ˆm.wg.
D B
18. (5, 3) we±`ywU x-AÞ ˆ^GK KZ `ƒGi M 72 eMÆ ˆm.wg. N 144 eMÆ ˆm.wg.
 wPGò AB ‰i Š`NÆÅ KZ wgUvi?

K 20.0 L 21.55 AewÕ©Z? wbGPi DóxcGKi AvGjvGK (29 I 30) bs cÉGk²i
M 24.14 N 30.0 K 5 ‰KK L  3 ‰KK Dîi `vI:
9. A = {a, b, c, d}, B = {b, c, d, e} nGj M 3 ‰KK N 5 ‰KK ˆkÉwYeÅvwµ¦ 1519 2024 2529 3034
P (AB) ‰i m`mÅ msLÅv wbGPi ˆKvbwU? 19. a : b = c : d nGj, wbGPi ˆKvbwU mwVK? MYmsLÅv 2 8 10 6
K 3 L 5 K bc = ad L ab = cd 29. cÉPziK wbYÆGq (f1 + f2) ‰i gvb KZ?
M 8 N 32 M abc = d N bcd = a K 4 L 6
1 20. tanA = 1 nGj, cosA ‰i gvb KZ?
10.  1 + 3  ...... avivwUi 8g c` KZ? M 8 N 10
3 1 1 30. DcvîmgƒGni gaÅK ˆKvbwU?
K 27 3 L 27 K L
2 2 K 26.2 L 26.5
M 27 N 27 3 M 2 N 2 M 31.0 N 36.5

1 L 2 M 3 K 4 N 5 L 6 N 7 K 8 N 9 M 10 L 11 N 12 K 13 K 14 N 15 L
Dîi

16 K 17 K 18 M 19 K 20 K 21 M 22 M 23 L 24 K 25 K 26 N 27 K 28 M 29 L 30 L
34 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
379 AvIqvi ˆjwW Ae dvwZgv MvjÆm nvB Õ•zj, KzwgÍÏv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
a b 2 3 
1. 
 = = nGj, a : c ‰i gvb KZ?
b c 3
11. tan = 4 nGj, sec2 = KZ? 20. 3.2 ‰i mvaviY f™²vsk wbGPi ˆKvbwU?
K 2:3 L 3:4 9 16 25 9 1 2 5 7
K L M N K 3 L3 M3 N 3
16 25 16 25 3 9 9 9
M 4:9 N 9:4
2. wbGPi ˆKvbwU x2  11x  12 ivwkwUi ‰KwU 12. 0.000045 msLÅvwUGZ mvaviY jGMi cƒYÆK 21. AebwZ ˆKvGYi gvb KZ wWMÉx nGj, LuywUi
KZ? Š`NÆÅ Qvqvi Š`GNÆÅi 3 àY nGe?
Drcv`K?
K 30 L 45 M 60 N 90
K x  12 L x4  
M x3 N x1
K 5 L4 M4 N 5 22. 
 a, b, c  R; a > b > 0 ‰es c < 0 nGj
13. 
 wbGPi ˆKvbwU mwVK?
DóxcGKi AvGjvK 3 I 4 bs cÉGk²i Dîi `vI: A
K ac = bc L ac > bc
A 50
D E M ac < bc N ab < bc
8 cm 64
23. `yBwU msLÅvi AbycvZ 5 : 6 ‰es ZvG`i
B C j.mv.à 150 nGj, M.mv.à KZ?
B F C
K 5 L6 M 11 N 30
10 cm
wPGò DE | | BC nGj, ADE ‰i gvb KZ? 24. 
 eMÆGÞGòi ‰K evüi cwigvc x ‰KK nGj,
3. 
 ABF ‰i cwimxgv KZ? K 50 L 64
K 40 cm L 22.43 cm
Dnvi cwimxgv I KGYÆi Š`GNÆÅi AbycvZ KZ?
M 66 N 114
M 20 cm N 18.43 cm K 2 2:4 L 2 2:3
1
4. 
 AFC ‰i ˆÞòdj KZ? 14.  1 + 3  ------ avivwUi 8g c` KZ? M 2 2:2 N 2 2:1
3
K 20 cm2 L 40 cm2 25. ABC mgGKvYx wòfzR nGe, hw` ‰i
K 27 3 L 27
M 60 cm2 N 80 cm2 evüàGjvi cwigvY nq@
M 27 N 27 3
5. y = 2x + 1 dvskGbi@ i. 5, 12, 13 ‰KK
15. BsGiwR S eGYÆi NƒYÆb ˆKvY KZ? ii. 6, 8, 10 ‰KK
i. ˆjLwPGòi ‰KwU we±`y (1, 3)
K 90 L 180
ii. ˆjLwPò ‰KwU mijGiLv iii. 14, 16, 20 ‰KK
M 270 N 360
iii. ˆjLwPò ‰KwU e†î wbGPi ˆKvbwU mwVK?
16. hw` A = {a, b, c}, B = {b, c, d} nq ZGe,
wbGPi ˆKvbwU mwVK? K i I ii L i I iii
A\B wbGPi ˆKvbwU?
K i I ii L i I iii M ii I iii N i, ii I iii
K {a} L {d}
M ii I iii N i, ii I iii
26.  wPGò, O ˆK±`Ê wewkÓ¡ S
M {a, b, c, d} N {b, c}
6. ˆKvbwU wewœQ®² PjK? e†Gî PQRS A¯¦wjÆwLZ O R
17. 

nGqGQ| SPQ = KZ? P 80 T
K Zvcgvòv L cvwLi msLÅv A
Q
M eqm N DœPZv C K 80 L 90 M 180 N 360
DóxcGKi AvGjvGK (7 I 8) bs cÉGk²i Dîi `vI: 60 10 wg. 27. 6x  y = 5 ‰es 5x  2y = 2 nGj, x + y = KZ?
B
B K 2 L3 M4 N 5
S D
2x  1
C
60
A wPGò AB ‰i Š`NÆÅ KZ? 28. ( 5)x+1 =  5
3
nGj,
O
K 20.0 wg. L 21.55 wg.  
M 24.14 wg. N 30 wg. x-‰i gvb KZ?
O ˆK±`ÊwewkÓ¡ e†Gî AC = 12 ˆm.wg. 1 5
× × K L M1 N 5
7. AB PvGci Š`NÆÅ KZ? 18. x = 0.4 ‰es y = 0.8 nGj@ 7 7
K 40.84 cm L 12.57 cm i.
×
x + y = 1.3 ii. xy =
32 DóxcGKi AvGjvK (29 I 30) bs cÉGk²i Dîi
M 6.28 cm N 3.14 cm 81
`vI: A
x
8. e†îKjv AOB ‰i ˆÞòdj KZ? iii. = 0.5
2 2
y 5 ˆm.wg.
K 150.80 cm L 75.40 cm
M 40.84 cm2 N 18.85 cm2
wbGPi ˆKvbwU mwVK? C B
12 ˆm.wg.
7.2x+1  13.2x K i I ii L i I iii
9. 

2x
= KZ? 29. cosC ‰i gvb KZ?
M ii I iii N i, ii I iii
K 2 L 1 M 1 N 2 5 12 13 13
4y + 1 1 K L M N
10. hw` a + b = 5 ‰es a  b = 3 nq, ZGe 19. f(y) = 4y  1 nGj f   2  ‰i gvb KZ? 13 13 12 15
  30. cotA + tanC = KZ?
a2 + b2 = KZ? 1 1
K 1 L M N 1 5 3 181 169
K 2 L4 M8 N 64 3 3 K L M N
6 2 65 60

1 M 2 K 3 L 4 K 5 K 6 L 7 M 8 N 9 M 10 L 11 M 12 K 13 M 14 L 15 L
Dîi

16 K 17 N 18 N 19 M 20 L 21 M 22 M 23 K 24 N 25 K 26 K 27 L 28 N 29 L 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 35
380 beve dqRyG®²mv miKvwi evwjKv DœP we`Åvjq, KzwgÍÏv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. m : n ‰i w«¼fvwRZ AbycvZ ˆKvbwU? 12. 
 a > 0 ‰es a  1 nGj@ 20. 

6 D C
K n 2 : m2 L n:m i. loga1 = 0 E
M m2 : n2 N m: n ii. logaa = 1
2. A = {1, 3, 5} I B = {2, 4, 6} nq, ZGe iii. log a0 = 1 10
A I B ‰i Dcv`vbàGjvi gGaÅ x ≥ y  1 wbGPi ˆKvbwU mwVK?
mÁ·KÆ weGePbvq mwVK wiGjkb ˆKvbwU? K i I ii L i I iii
A B

[ˆhLvGb, x  A, y  B]
M ii I iii N i, ii I iii ABCD ‰KwU eMÆ nGj, AC = ?
K {}
L {(1, 2), (3, 4), (5, 6)} 13. 0.0024 ‰i mvaviY jGMi cƒYÆK KZ? K 5 2 L 6 2
M {(2, 4), (5, 2), (5, 4)} K 2 L 3 M 8 2 N 10 2
N {(3, 2), (3, 4), (5, 2), (5, 4)}   21. wZb cvLv wewkÓ¡ ‰KwU dÅvGbi NƒYÆb ˆKvb
.. M 2 N 3
3. 5.132 ‰i mvgvbÅ f™²vsk cÉKvwkZ i…c 2 KZ wWMÉx?
1 1
ˆKvbwU? 14. x + x  = 4 nGj, x3 + 3 = ?
x K 90 L 80
51 53
  M 60 N 120
K L K 0 L 2
90 90 22. 
 9y2 + 36 ‰i mvG^ KZ ˆhvM KiGj
512 5081 M 5 N 8
M
99
N
990
ˆhvMdj cƒYÆeMÆ nGe?
1
4. 
 (180  A) ‰i mÁ·ƒiK ˆKvY KZ? 15. 
 x(3x  2) = nGj@
3 K 54y L 27y
M 18y N 36y
K A L 180 + A 1
i. 9x2 + =6 1 + sin2
M 90 + A N 180 9x2 23. 
  = 45 nGj, =?
1  sin2
wbGPi ZG^Åi AvGjvGK (5 I 6) bs cÉGk²i Dîi `vI: 1 2
ii. (3x + ) = 8 1
ˆKvGbv we`ÅvjGqi wbeÆvPbx cixÞvi 40 Rb 3x K 1 L
3
wkÞv^Æxi MwYZ welGq mGeÆvœP bÁ¼i 96 ‰es 1
iii. 3x + = 2 1
3x M N 3
meÆwbÁ² bÁ¼i 55| 3
5. DcvGîi cwimi KZ? wbGPi ˆKvbwU mwVK?
24. ABC mgevü wòfzGRi AB = 2 ˆm.wg.
K 40 L 41 K i I ii L i I iii
M 42 N 43
‰es AD  BC nGj, AD = KZ?
M ii I iii N i, ii I iii 4
6. ˆkÉwY eÅeavb 5 aGi ˆkÉwY msLÅv KZ? K L 3
K 7 L 8 16. 
 3 + m + n + 81 àGYvîi avivfzÚ nGj, 3
M 9 N 10 n =? 2 1
M N
2
7. 
 ABC ‰ C = 90 ‰es B = 2A K 27 L 9 3
nGj, wbGPi ˆKvbwU mwVK? M 6 N 3 25. ABC ‰i AB I AC evüi gaÅwe±`y
K AC = 2 AB L AB = 2 BC wbGPi ZG^Åi AvGjvGK (17 I 18) bs cÉGk²i h^vKÌGg P I Q nGj,
M BC = 2 AC N AC = BC ABC : APQ = KZ?
Dîi `vI:
8. (x) = x5 + 2x  a, (1) = 0 nGj, a = ? K 1:2 L 4:1
K 7 L 3 6% nvi gybvdvq 15000 UvKv 3 eQGii RbÅ
M 1:4 N 2:1
M 3 N 7 wewbGqvM Kiv nGjv| 26. cÉ^g 100wU Õ¼vfvweK msLÅvi mgwÓ¡ KZ?
9.  wbGPi ˆKvbwU Agƒj`?
 17. mij gybvdv KZ UvKv? K 1999 L 5500
3 9 K 2900 L 2700 M 5050 N 1000
K L
8 16
M 1800 N 450 27. e†Gî A¯¦wjÆwLZ mvgv¯¦wiK ‰KwU@
5
M
243
N 7 18. PKÌe†w«¬ gybvdv KZ UvKv? K eMÆGÞò L iÁ¼m
32
K 1862.24 M AvqZGÞò N UÇvwcwRqvg
10. wbGPi ˆKvb ˆRvov mnGgŒwjK? L
K 3, 18 L 6, 18
2865.24 28. 
 `yBwU abvñK msLÅvi eGMÆi A¯¦i 3 ‰es
M 3, 19 N 4, 10 M 3865.24 àYdj 2; ‰G`i eGMÆi mgwÓ¡ KZ?
11. 3x  4y = 14 ‰es 6x  8y = 22 N 4865.24 K 5 L 3
5x2 2x+1
mgxKiGYi ˆRvUwU@   3
19. 
11
=  3
5
mgxKiGYi M 2 N 1
i. mgém     29. ‰KwU e†Gîi cÉwZmvgÅ ˆiLv KqwU?
ii. AwbfÆikxj mgvavb KZ? K 1 L 4
iii. mgvavb ˆbB 3 1 MAmsLÅ N 9
K L
wbGPi ˆKvbwU mwVK? 5 5 30. 
 ˆKw±`Êq cÉeYZvi cwigvc KqwU?
K i I ii L i I iii M 
1
N 7
K 3 L 4
M ii I iii N i, ii I iii 7 M 5 N 6

1 N 2 L 3 N 4 K 5 M 6 M 7 L 8 M 9 K 10 M 11 M 12 K 13 N 14 L 15 K
Dîi

16 K 17 L 18 L 19 N 20 M 21 N 22 N 23 N 24 L 25 L 26 M 27 M 28 K 29 M 30 K
36 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
381 KPzqv miKvwi cvBjU DœP we`Åvjq, Puv`cyi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
. . 10. 
 3 ˆm.wg., 4 ˆm.wg. ‰es 4.5 ˆm.wg. 19. avivwUi 1g 7wU cG`i mgwÓ¡ KZ?
1. 
 0.3  0.6 = KZ?
.
evüwewkÓ¡ ‰KwU wòfzGRi cwie†Gîi eÅvmvaÆ K
364
L
1093
243 729
K 1 L 0.2 wbGPi ˆKvbwU? 3280 6560
.. . K 5.88 L 5.75 M N
M 0.18 N 0.18 2187 6561
M 2.30 N 3.29
2. x = {a, b, c}, y = {b} ‰es z = x\y nGj, 20. H AÞiwUi NƒYÆb cÉwZmvgÅ ˆKvY KZ?
11. cot(  60) = 3 nGj cos = KZ? K 60 L 90
P(z) ‰i Dcv`vb KqwU? 1
K 0 L M 180 N 360
K 1 wU L 2 wU 2
21. ˆKvGbv eMÆGÞGòi ˆÞòdj Zvi KGYÆi Dci
M 3 wU N 4 wU 3
M 1 N
2 AwâZ eMÆGÞGòi KZàY?
3. 
 x2 + y2 = 9 ‰es xy = 3 nGj@
K AGaÆK L mgvb
i. (x  y)2 = 3 wbGPi ZG^Åi AvGjvGK (12 I 13) bs cÉGk²i
Dîi `vI: M ˆ`oàY N 2 àY
ii. (x + y)2 = 15
iii. x2 + y2 + x2y2 = 18 P 22. 
 e†Gîi ˆK±`ÊÕ© ˆKvY 144 ‰es eÅvmvaÆ
wbGPi ˆKvbwU mwVK? 1 10 ˆm.wg. nGj e†îPvGci Š`NÆÅ KZ ˆm.wg.?
tan =
3 K 15 L 12
K i I ii L i I iii 
M N M 8 N 4
M ii I iii N i, ii I iii
12. PN ‰i gvb wbGPi ˆKvbwU? 23. ‰KwU eGMÆi evüi Š`NÆÅ wZbàY KiGj Dnvi
4. 0.000432 ‰i cƒYÆK KZ? K 2 L 2 ˆÞòdj KZàY e†w«¬ cvGe?

K 4 L 4 M 3 N 4 K 3 àY L 4 àY
 13. cosec ‰i gvb wbGPi ˆKvbwU? M 8 àY N 9 àY
M 3 N 3
1 1
5. logx16 = 2 nGj, x = KZ? K L 24. ‰KwU NbGKi KGYÆi Š`NÆÅ 6 3 wgUvi nGj
4 2
K 2 L 4 ‰i AvqZb@
M 3 N 2
M 4 N 16 K 36 NbwgUvi L 144 NbwgUvi
14. 
 12 wgUvi `xNÆ ‰KwU gB ˆ`Iqvj ˆ^GK
6. mgxKiYwUi mgvavb ˆmU M 216 NbwgUvi N 512 NbwgUvi
3x  6 + 5 = 2 6 3 wgUvi `ƒGi f„wgi mvG^  ˆKvY Drc®²
ˆKvbwU? 25. cixÞvi bÁ¼i I RbmsLÅv ˆKvb aiGbi
KGi ˆ`IqvGji Qv` Õ·kÆ KGi|  ‰i gvb
K  L {5}
PjK?
KZ?
M {3} N {5} K wewœQ®² PjK L AwewœQ®² PjK
K 30 L 45
7. M evÕ¦e PjK N AwebÅÕ¦ PjK
A M 60 N 90
26.  5 ˆ^GK 5 chƯ¦ cƒYÆ msLÅvàGjvi gaÅK
40 15. `yBwU msLÅvi AbycvZ 3 : 2| ‰G`i j.mv.à.
KZ?
D 42 nGj msLÅv `yBwUi M.mv.à. KZ?
B C K 5 L 1
1 K 16 L 7
ABC ‰i AB = AC nGj ACD = KZ M 0 N 5
2 M 14 N 21
27. 10% nvi gybvdvq 6000 UvKvi 3
eQGii
wWMÉx? 16. 25% jvGf KÌqgƒjÅ I weKÌq gƒGjÅi AbycvZ
PKÌe†w«¬ gybvdv I mij gybvdvi cv^ÆKÅ
K 50 L 55 KZ?
KZ?
M 90 N 110 K 1:4 L 4:3
K 186 L 1800
8. 
 ‰KwU wbw`ÆÓ¡ wòfzR AuvKGZ cÉGqvRb@ M 5:4 N 4:5
M 1986 N 6000
i. wZb evüi Š`NÆÅ
17. 
 6x  y = 5 ‰es 5x  2y = 2 nGj 1 1
28. 
 p + = 2 nGj p13 + 13 = KZ?
x + y = KZ? p p
ii. wZb ˆKvGYi cwigvc
K 2 L 3 K 14 L 10
iii. `ywU ˆKvY I ‰G`i msj™² evü M 11 N 2
M 4 N 5
wbGPi ˆKvbwU mwVK? wbGPi ZG^Åi AvGjvGK (18 I 19) bs cÉGk²i 29. (x + y,  1) = (3, x  y) nGj (x, y) ‰i
K i I ii L i I iii Dîi `vI: gvb KZ?
M ii I iii N i, ii I iii 1 1 K (2, 1) L (1, 2)
1 + + + ... ... ... M (1, 2) N (2, 1)
9. mgGKvYx wòfzGRi ˆÞGò cwiGK±`Ê wòfzGRi 3 9
x+3 2x1
ˆKv^vq AewÕ©Z? 18. avivwUi 7 Zg c` KZ? 30. ( 5) = ( 5) nGj x = KZ?
1 1 1
K Afů¦Gi L ewnfÆvGM K L K L 1
729 243 7
M AwZfzGRi Dci N jGÁ¼i Dci 1 5
M N 3 M N 4
81 3

1 L 2 N 3 N 4 K 5 M 6 K 7 L 8 L 9 M 10 M 11 K 12 L 13 N 14 K 15 L
Dîi

16 N 17 L 18 K 19 L 20 M 21 K 22 M 23 M 24 M 25 K 26 M 27 K 28 N 29 L 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 37
382 AvZvZzKÆ miKvwi gGWj nvB Õ•zj, ˆdbx

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.37̇  0.5̇ = ? 12. 
 ABC ‰i B I C ‰i mgw«¼LíK 21. secA ‰i gvb
2
nGj, tanA ‰i gvb wbGPi
K 0.0068 L 0.068 O we±`yGZ wgwjZ nGqGQ ‰es BAC = 40 3
M 0.68 N 6.8
nGj BOC ‰i gvb wbGPi ˆKvbwU? ˆKvbwU?
2.  (x  y, 6) = (3, 2x + y) nGj, (x, y) ‰i

K
1
L
1
M1 N 3
K 130 L 110 M 70 N 50 2
gvb KZ? 3
wbGPi ZG^Åi AvGjvGK (13 I 14) bs cÉGk²i
K (0, 3) L (3, 0) 22. cos sec2  1 ‰i mijgvb wbGPi
M (0,  3) N ( 3, 0) Dîi `vI: ˆKvbwU?
wbGPi ZG^Åi AvGjvGK (3 I 4) bs cÉGk²i Dîi A K cot L sin M cos N tan
`vI: 23. 8 wg. jÁ¼v ‰KwU gB f„wgi mvG^ 45 ˆKvY
60
A = { 1, 1, 2, 3}, B = {x : x2  2x  3 = 0} E
D F Drc®² KGi ˆ`IqvGji Qv` Õ·kÆ KGi|
C = {x : x2  6x + 8 = 0}
ˆ`IqvGji DœPZv KZ wg. nGe?
3.  C ‰i Dcv`vbàGjv nGjv@ B C
K 3 L2 2 M3 2N 4 2
K  2,  4 L  2, 4 wPGò DE | | BC ‰es BD | | CF
M 2,  4 N 2, 4 24. 8cm I 6cm eÅvGmi `yBwU e†î ciÕ·iGK
13. CEF = 50 nGj, BDE ‰i cwigvY KZ?
4.  A  B = KZ? ewntÕ·kÆ KiGj ZvG`i ˆK±`Ê«¼Gqi `ƒiZ½
K 50 L 60
K {1, 2} L {1, 3} wbGPi ˆKvbwU?
M 110 N 120
M { 1, 3} N { 1, 2} K 4cm L 6cm M 7cm N 8cm
1 14. AB = AC nGj, ABC + EFC = KZ? 25. ‰KwU mgevü wòfzGRi NƒYÆb cÉwZmgZvi
5. x + x = 5 nGj@ K 100 L 110 M 120 N 130
gvòv KZ?
i. x2  5x + 1 = 0 15. AwRf ˆiLv AâGb y-AÞ eivei ˆKvbwUGK K 0 L1 M2 N 3
1
ii. x3 + 3 = 25
x aiv nq? 26.
5
tan = nGj, sin = KZ?
12
1 2 K KÌgGhvwRZ MYmsLÅv L ˆkÉwYi gaÅgvb
iii.  x   = 21 K
5
L
12
M
13
N
13
 x M ˆkÉwYi MYmsLÅv N ˆkÉwYi DœPmxgv 13 13 12 5
wbGPi ˆKvbwU mwVK? 16. 
 13 ˆm.wg. DœPZv wewkÓ¡ ‰KwU ˆejGbi DcGii ZG^Åi AvGjvGK (27 I 28) bs cÉGk²i
K i I ii L i I iii f„wgi eÅvm 12 ˆm.wg. nGj ‰i@ Dîi `vI:
M ii I iii N i, ii I iii i. f„wgi ˆÞòdj 113.10 eMÆ ˆm.wg. wPGò 'O' ˆK±`ÊwewkÓ¡ O
6. 25% jvGf ‰KwU `ËeÅ weKÌq KiGj ii. AvqZb 1470.27 Nb ˆm.wg. e†Gî OA = 10 ˆm.wg.
weKÌqgƒjÅ I KÌqgƒGjÅi AbycvZ nGe@ iii. mgMÉ c†GÓ¤i ˆÞòdj 490.09 eMÆ ˆm.wg. OP = 6 ˆm.wg.| A P B

K 5:4 L 4:5
wbGPi ˆKvbwU mwVK? 27. AB ‰i Š`NÆÅ wbGPi ˆKvbwU?
M 4:3 N 3:4
K 6 ˆm.wg. L 8 ˆm.wg.
2 K i I ii L i I iii
7. 
 x2 + 2 = 3x nGj,  x  2  ‰i gvb M 10 ˆm.wg. N 16 ˆm.wg.
 x M ii I iii N i, ii I iii
28. e†îwUi cwimxgv wbGPi ˆKvbwU?
KZ? wbGPi ZG^Åi AvGjvGK (17 I 18) bs cÉGk²i
K 31.42 ˆm.wg. L 62.83 ˆm.wg.
K 1 L5 M 13 N 17 Dîi `vI: M 125.66 ˆm.wg. N 314.16 ˆm.wg.
10 Rb wkÞv^Æxi AvB.wm.wU welGqi bÁ¼i ˆ`Iqv 29. 
8. ( 3 7)2x  1 = ( 7)x + 1 nGj, x ‰i gvb KZ? 
1 5 nGjv: 36, 35, 43, 50, 40, 43, 38, 33, 45, 46 A
K L M1 N 5
7 7 17. 
 DcvGîi cwimi wbGPi ˆKvbwU?
9. log93 + log 33 ‰i gvb KZ? K 20 L 18 M 17 N 10 B C
1 5 18. 
 DcvGîi gaÅK wbGPi ˆKvbwU? D E
K L1 M N 4
5 2
K 40.5 L 41.5 M 42.5 N 43.5 wPGò BC | | DE
10. 
 jMvwi`Ggi ˆÞGò@
19. ‰KwU mgevü wòfzGRi ˆÞòdj 36 3 eMÆ wPGòi ˆcÉwÞGZ wbGPi ˆKvbwU mwVK?
i. 10 ˆK mvaviY jMvwi`Ggi wfwî aiv nq K AB : BD = AD : DE
wg. nGj, ‰i cwimxgv wbGPi ˆKvbwU?
ii. 25.345 ‰i jGMi cƒYÆK 1 L BC : DE = AD : AE
iii. logaM + logaN = loga(M + N) K 4 3 eMÆ wg. L 12 3 eMÆ wg. M AD : BD = AE : EC
wbGPi ˆKvbwU mwVK? M 36 wg. N 48 wg. N AD : DE = AE : CD
K i I ii L i I iii 20. 4 wg. evüwewkÓ¡ ‰KwU mylg lofzGRi 30. ABC ‰i AB I AC evüi gaÅwe±`y
M ii I iii N i, ii I iii ˆÞòdj KZ eMÆ wg.? h^vKÌGg M I N nGj, ABC : AMN
x5
11. (x  5) = x nGj, x ‰i gvb wbGPi ˆKvbwU? K 24 3 L 12 3 KZ?
K 4:1 L 2:1 M 1:4N 1:2
K 2, 5 L5 M2 N 1, 5 M 6 3 N 4 3

1 M 2 L 3 N 4 M 5 L 6 K 7 K 8 N 9 M 10 K 11 N 12 L 13 M 14 M 15 K
Dîi

16 K 17 L 18 L 19 M 20 K 21 L 22 L 23 N 24 M 25 N 26 K 27 N 28 L 29 M 30 K
38 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
383 we‰‰d kvnxb KGjR, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
. . AB || CF, DF || BC nGj,  EFC = KZ? 22. e†Gîi NƒYÆb cÉwZmgZvi gvòv KZ?
1. 0.4 + 0.3 = KZ?
. . . . . . K 90 L 70 M 50 N 60 K 1 L 2
K 0.7 L 0.1 M 0.102 N0.148 13. ˆKvGbv `G´£i Qvqvi Š`NÆÅ Zvi Š`GNÆÅi KZ M 3 N Amxg
2. P = {x  ô : 2 < x < 6 ‰es x ‰KwU àY nGj D®²wZ ˆKvY 30 nGe? 23. n evü «¼viv MwVZ mylg eüfzGRi cÉGZÅKwU
cƒYÆeMÆ msLÅv} ˆmUwU ZvwjKv c«¬wZGZ 1 1 ˆKvGYi cwigvc KZ?
K L
cÉKvwkZ i…c wbGPi ˆKvbwU? 3 2 180(n  2) 180(n + 2)
K {2, 3} L {2, 3, 4, 5, 6} K L
M 2 N 3 n n
M {4} N  14. 
  = 30 nGj@ 90(n  2) 90(n+2)
M N
3. 4x  3 + 5 = 2 ‰es mgvavb ˆmU ˆKvbwU? 3
n n
K {} L {0} M {3} N {3} i. 4 sin  =
cos 24. ‰KwU mgw«¼evü wòfzGRi cwimxgv
4.  {a, b, c, d} ‰i KqwU DcGmU AvGQ hvi
 ii. tan 2 = 3 cot 2 16 ˆm.wg.| ‰i f„wg 6 ˆm.wg. nGj DœPZv
cÉGZÅKwUi wZbwU KGi Dcv`vb AvGQ? iii. tan 2 = 2 sin2 KZ ˆm.wg.?
K PviwU L wZbwU wbGPi ˆKvbwU mwVK? K 12 L 8
M `yBwU N ‰KwU K i I ii L i I iii M 6 N 4
5. hw` a + b = 5 ‰es a  b = 3 nq, ZGe M ii I iii N i, ii I iii 25. ‰KwU BGUi Š`NÆÅ, cÉÕ© I DœPZv h^vKÌGg
a2 + b2 = KZ? wbGPi ZG^Åi AvGjvGK (15 I 16) bs cÉGk²i 8 ˆm.wg., 5 ˆm.wg. I 4 ˆm.wg. nGj,
K 2 L4 M8 N 64 Dîi `vI: A AvqZb KZ Nb ˆm.wg.?
6. 35  2y  y2 ‰i Drcv`K ˆKvbwU? K 120 L 160 M 320 N 460
K 5+y L y6 26. wPGò, O ˆK±`ÊwewkÓ¡ C
AC = 8 wgUvi
M 7+y N 7y ABC e†îvKvi gvGVi
ACB = 60
7.  log366 + log 6 6 = KZ?
 B C
mxgvbv ˆNuGl 2 ˆm.wg.
O

K
1
L1 M2
1
N 5 15. 
 BC ‰i Š`NÆÅ KZ wgUvi? PIov ‰KwU ivÕ¦v AvGQ| A B
6 2 4
K L 4 OA = 6 ˆm.wg.| ivÕ¦vwUi
3 3
8. ( 5) x+1 = ( 5)2x1 nGj x ‰i gvb KZ? ˆÞòdj KZ eMÆ ˆm.wg.?
M 4 2 N 4 3
1 5 K 87.96 L 113.09
K 1 L5 M N 16. 
 AB ‰i Š`NÆÅ KZ wgUvi?
7 7 M 201.06 N 210.06
9. wòfzR AuvKGZ cÉGqvRb@ 4
K L 4 27. ‰KwU UÇvwcwRqvg AvK‡wZi ˆjvnvi cvGZi
3
i. wZbwU evü mgv¯¦ivj evü«¼Gqi Š`NÆÅ h^vKÌGg 3 ˆm.wg.
ii. `yBwU evü ‰es ZvG`i A¯¦fzÆÚ ˆKvY M 4 2 N 4 3
I 1 ˆm.wg. ‰es ZvG`i jÁ¼ `ƒiZ½ 2 ˆm.wg.|
iii. `ywU ˆKvY ‰es ZvG`i msj™² evü 17. p, q, r KÌwgK mgvbycvZx nGj,
p2 + q2 cvGZi ˆÞòdj KZ eMÆ ˆm.wg.?
wbGPi ˆKvbwU mwVK? = KZ? K 1 L2 M3 N 4
q2 + r2
K i I ii L i I iii r p q q 28.  KÌgGhvwRZ MYmsLÅv cÉGqvRb@
M ii I iii N i, ii I iii K L M N
p r p r i. cÉPziK wbYÆGq
wbGPi ZG^Åi AvGjvGK (10 I 11) bs cÉGk²i 18. `yB AâwewkÓ¡ msLÅvi A⫼Gqi A¯¦i 3| ii. gaÅK wbYÆGq
Dîi `vI: P
msLÅvwUi A⫼q Õ©vb wewbgq KiGj ˆh iii. AwRf ˆiLv wbYÆGq
3x msLÅv cvIqv hvq Zv gƒj msLÅvi w«¼àY wbGPi ˆKvbwU mwVK?
O
AGcÞv 2 ˆewk| msLÅvwU KZ? K i I ii L i I iii
wPGò, O e†Gîi ˆK±`Ê| 2x+60 K 25 L 36 M 41 N 63
Q S M ii I iii N i, ii I iii
10. 
 QRS = KZ? R 19. 5 + 11 + 17 + ... ... ... + 59 avivwUi wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
K 30 L 45 M 60 N 135 c`msLÅv KZ? Dîi `vI:
11. 
 PSR = 90 nGj, K 27 L 29 M 10 N 18
ˆkÉwYeÅeavb 21-30 31-40 41-50 51-60
QRS + PQR = KZ? 20. cÉ^g wòkwU Õ¼vfvweK msLÅvi mgwÓ¡ KZ?
K 100 L 135 M 180 N 225 K 435 L 235 M 465 N 265 MY msLÅv 4 12 8 10
12. A 21. p + q + r + s + ... ... ... àGYvîi avivfzÚ 29.  cÉ`î DcvGîi gaÅK ˆkÉwYi Ea»Æmxgv
60 nGj wbGPi ˆKvbwU? KZ?
D F
E 50 p s K 40 L 41 M 51 N 50
K pq=sr L =
q r 30. 
 DcGivÚ ZG^Åi cÉPziK KZ?
q s K 27.07 L 37.67
B M = N p+q=r+s
C p r M 47.67 N 57.67

1 K 2 M 3 K 4 K 5 L 6 M 7 M 8 L 9 N 10 N 11 N 12 L 13 N 14 K 15 L
Dîi

16 N 17 L 18 K 19 M 20 M 21 M 22 N 23 K 24 N 25 L 26 K 27 N 28 M 29 N 30 L
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 39
384 evsjvG`k gwnjv mwgwZ evwjKv DœP we`Åvjq I KGjR, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.2̇  0.04̇ ‰i gvb KZ? 13. wPGò, ABC mgevü wòfzR nGj, 21. 
 hw` ‰KwU wgbvGii DœPZv 20 3 wgUvi
K 0.5 L 0.05 M 5 N 6 cÉe†«¬ x = KZ? A ‰es Qvqvi Š`NÆÅ 20 wgUvi nq, ZGe kxGlÆi
2. 
 3% nvi gybvdvq 10,000 UvKv 3 eQGii K 60 D®²wZ ˆKvY KZ?
RbÅ wewbGqvM Kiv nGj PKÌe†w«¬ gybvdv KZ L 120 O
K 30 L 45 M 60 N 90
x
UvKv? M 180
B C 22. 
 `yBwU msLÅvi AbycvZ 5 : 7 ‰es ‰G`i
K 927 L 927.27 N 240 M.mv.à 4 nGj, msLÅv `yBwUi j.mv.à KZ?
M 790 N 790.37 14. wbw`ÆÓ¡ ‰KwU PZzfyRÆ AuvKv mÁ¿e hw` ˆ`Iqv K 120 L 140 M 160 N 180
wbGPi ZG^Åi AvGjvGK (3 I 4) bs cÉGk²i Dîi ^vGK@ wbGPi ZG^Åi AvGjvGK (23 I 24) bs cÉGk²i
`vI: i. PviwU evü I ‰KwU ˆKvY Dîi `vI:
A = {1, 2, 3} ‰es B = {2, 3, 4} ii. wZbwU evü I ‰G`i A¯¦fÆyÚ `yBwU ˆKvY log2 + log4 + log8 + .......
3. A ˆmGUi cÉK‡Z DcGmGUi msLÅv KZ? 23. 
 avivwUi mvaviY A¯¦i KZ?
iii. `yBwU evü I wZbwU ˆKvY
K 8 L4 M6 N 7 K 2log2 L 3log2
wbGPi ˆKvbwU mwVK? M log2 N log3
4. A – B = KZ?
K {1} L {2} M {3} N {4} K i I ii L i I iii 24. 
 avivwUi 7g c` ˆKvbwU?
5. logx400 = 4 nGj, wfwî ˆKvbwU? M ii I iii N i, ii I iii K log112 L log120
D
K 5 L2 5 M5 2N 2 15. 
 C M log125 N log128

wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi


3x + 5
3x + 15
25. ‰KwU NbGKi KYÆ 4 3 wgUvi nGj, ‰i avi
`vI: A
KZ wgUvi?
B
a2 – 5a – 1 = 0 K 4 L5 M2 3N 3 3
ABCD mvgv¯¦wiGKi x ‰i gvb KZ?
1
2
26. 
 ‰KwU wmwj´£vGii DœPZv 8 ˆm.wg. ‰es
6. a+ 
 ‰i gvb KZ? K 20 L 22 M 22.6 N 26.7
 a f„wgi eÅvmvaÆ 4 ˆm.wg. nGj@
K 29 L 25 M 21 N 20 wPGòi AvGjvGK Q
i. mgMÉZGji ˆÞòdj 301.59 eMÆ ˆm.wg.
1 (16 I 17) bs cÉGk²i ii. eKÌZGji ˆÞòdj 201.06 eMÆ ˆm.wg.
7. 
 a2 + 2 ‰i gvb KZ?
a
Dîi `vI: O
iii. AvqZb 100.53 Nb ˆm.wg.
K 19 L 21 M 25 N 27
8. 
 ( 3)2x + 1 = 27 nGj, x ‰i gvb KZ? 100 wbGPi ˆKvbwU mwVK?
A B
2 5 K i I ii L i I iii
K L M9 N 12 P
5 2 M ii I iii N i, ii I iii
9. `yBwU msLÅvi cv^ÆKÅ 4 ‰es ˆQvU msLÅvwUi 16. APB PvGci A¯¦MÆZ ˆKvY 100 nGj, AQB 27. ‰KwU eGMÆi A¯¦e†GÆ îi eÅvmvaÆ 3 ˆm.wg.
eMÆ eo msLÅvwUi w«¼àGYi mgvb| eo PvGci A¯¦MÆZ ˆKvY KZ nGe? nGj, eGMÆi evüi Š`NÆÅ KZ ˆm.wg.?
msLÅvwU KZ? K 120 L 130 K 4 L5 M6 N 8
K 4 L5 M6 N 8 M 260 N 360 ˆkÉwYeÅvwµ¦ 11-20 21-30 31-40 41-50
10. mgGKvYx wòfzGRi mƒßGKvY«¼Gqi A¯¦i 8 17. wPGò APB PvcwU ˆKvb aiGbi Pvc? MYmsLÅv 5 15 10 20
nGj ‰i Þz`Z
Ë g ˆKvYwUi gvb KZ? K DcPvc L AwaPvc DcGii ZG^Åi AvGjvGK (28-29)bs cÉGk²i
K 36 L 38 M 40 N 41 M e†îPvc N Pvc Dîi `vI:
wPGòi AvGjvGK (11 I 12) bs cÉGk²i Dîi `vI:
18. cot( – 30) =
1
nGj, sin = KZ? 28. gaÅK ˆkÉwYi wbÁ²mxgv KZ?
wPGò AB = AC A 3 K 21 L 31 M 40 N 41
‰es BO I CO 60
K 0 L1 M 3 N
1
29. DcvGîi cÉPziK KZ?
h^vKÌGg B I C O
2
K 33.30 L 30.03 M 41.33 N44.33
B C 3
‰i mgw«¼L´£K| 19. tan = 4 nGj, cos2 ‰i gvb KZ? 30. AvqZGjL Aâb KiGZ cÉGqvRb@
11. BOC ‰i gvb KZ? 16 25 9 16 i. x AÞ eivei AwewœQ®² ˆkÉwYeÅvwµ¦
K 120 L 100 K L M N
9 16 16 25 ii. y AÞ eivei MYmsLÅv
M 80 N 60 20. 
 mgevü wòfzGRi evüi Š`NÆÅ 8 ˆm.wg. iii. ˆkÉwYi gaÅgvb
12. OBC ‰i gvb KZ? nGj, ‰i DœPZv KZ ˆm.wg.? wbGPi ˆKvbwU mwVK?
K 30 L 60
K 2 3 L 4 3 K i I ii L i I iii
M 120 N 180
M 16 3 N 18 3 M ii I iii N i, ii I iii
1 M 2 L 3 N 4 K 5 L 6 K 7 N 8 L 9 N 10 N 11 K 12 K 13 N 14 N 15 N
Dîi

16 M 17 K 18 L 19 N 20 L 21 M 22 L 23 M 24 N 25 K 26 K 27 M 28 L 29 N 30 K
40 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
385 PëMÉvg KÅv´ŸbGg´Ÿ ˆevWÆ Av¯¦t DœP we`Åvjq, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 0.2˙  1.1˙ 2˙  0.08˙ 1˙ = KZ? wbGPi ˆKvbwU mwVK? 21. eGMÆi KGYÆi Š`NÆÅ KZ?
K 0.02139 L 0.02039 K i I ii L ii I iii K 70.028 L 70.208
M 0.20239 N 0.02239 M ii N iii M 70.280 N 70.820
2.  q weGRvo
 Õ¼vfvweK msLÅv nGj wbGPi wbGPi ZG^Åi AvGjvGK (13 I 14) bs cÉGk²i 22. CD ‰i gvb KZ?
ˆKvbwU ˆRvo msLÅv? Dîi `vI: K 49.571 L 94.517
K 4q + 1 L 2q  1 M 49.517 N 94.371
ax  cy = 0
M q2  2 N q2 + 1 cx  ay = c2  a2
23. 
 e†Gîi cwiwa = mgevü wòfzGRi cwimxgv
3.
x y x y
  +  1 = 1 +  nGj, (x, y) = KZ?
 13. 
 DóxcK nGZ mgxKiY«¼q@ nGj ‰G`i ˆÞòdGji AbycvZ KZ? eÅvmvaÆ
 2 3   3 2 = r, evüi Š`NÆÅ = a
K mgém, wbfÆikxj, ‰KwU gvò mgvavb AvGQ
K 56  56 5 6
L   L mgém, AwbfÆikxj, 1wU gvò mgvavb AvGQ
K 2 3: L 3:
   6 5 M 3 3: N : 3
6 6 6 5 M Amgém, wbfÆikxj, 1wU gvò mgvavb AvGQ
M    N   24.  NbGKi ‰KwU avi 2cm nGj@

5 5   5 6 N Amgém, AwbfÆikxj, AmsLÅ mgvavb AvGQ
i. mgMÉ c†Ó¤ZGji ˆÞòdj 12 cm2
4. B = {x : x, 4 ‰i àYbxqK} C = {x : x 14.  DóxcGKi mgvavb (x, y) = KZ?

ii. NbGKi AvqZb 2 2 cm3
ˆRvo ˆgŒwjK msLÅv} nGj, B\C wbGPi K (a, b) L (b, c) M (c, a) N (a, c)
iii. NbGKi KYÆ 6 cm
ˆKvbwUi mgvb? 15. ZGji gvòv KqwU?
wbGPi ˆKvbwU mwVK?
K {1, 2, 4} L {1, 4} K 1 L2 M3 N kƒYÅ
K i I ii L i I iii
M {1, 2} N {2} 16. BDwKÑGWi Õ¼xKvhÆ@
5.  144x2 + 36y2 ‰i mvG^ KZ ˆhvM
 KiGj M ii I iii N i, ii I iii
i. ˆiLvi cÉv¯¦ we±`y AvGQ
ˆhvMdj cƒYÆeMÆ nGe? 25. wbGPi ˆKvbwU ˆÞGò mgGKvYx wòfzR Aâb
ii. ZGji cÉv¯¦ nGjv ˆiLv
K 144x L 414xy Kiv mÁ¿e bq?
iii. we±`y nGjv kƒbÅ gvòvi mî½v K 3cm, 4cm, 5cm L 6cm, 8cm, 10cm
M 144xy N 441xy
1 8p3  10p + 14 wbGPi ˆKvbwU mwVK? M 5cm, 7cm, 9cm N 5cm, 12cm, 13cm
6. P +
P
= 2 nGj 6p3 + 4p + 2
‰i gvb K i I ii L i I iii 26. ABC PQ || BC nGj wbGPi ˆKvbwU mwVK?
KZ? M ii I iii N i, ii I iii K AP : PB = AQ : QC
1 3 17. PQR ‰i ˆÞGò ˆKvbwU mwVK? L AB : PQ = AC : PQ
K L1 M N 2
2 2
K PQ + QR < PR L PQ + PR < QR M AB : AC = PQ : BC
7. cot ‰i cƒYÆi…c nGjv@ M PQ  PR > QR N PQ  PR < QR
N PQ : BC = BP : BQ
K cotengant L cotengent 27. 
 wPò nGZ@
M cotangent N cotanjent
wbGPi ZG^Åi AvGjvGK (18-20) bs cÉGk²i Dîi A
8.  mƒßGKvY nGj sin ‰i ˆié@ `vI:
B
i.  1 < sin  1 2cm
ii.  1  sin < 1 60 C D E
iii.  1  sin  1
wbGPi ˆKvbwU mwVK? B C

K i L ii M iii N i I iii
D i. ABC I ADE ciÕ·i m`†k
30 AD CE
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i 30
ii. =
BD AE
Dîi `vI: A E
ABC BC2
wPGò RS = 20 wgUvi iii. =
ADE DE2
P 18. 
 wPò nGZ AC ‰i Š`NÆÅ KZ? wbGPi ˆKvbwU mwVK?
1
K 2 6 L 6 M N 3 6 K i I ii L i I iii
6
M ii I iii N i, ii I iii
R
30 60
Q 19. 
 ABC ‰i ˆÞòdj KZ?
wbGPi ZG^Åi AvGjvGK (28-30) bs cÉGk²i Dîi
S K 1.73 L 2.73 M 1.37 N 2.37
9. 
 PQ ‰i Š`NÆÅ KZ? `vI:
20. 
 DE ‰i Š`NÆÅ KZ?
K 10 3 L 15 3 ˆKvb ‰KwU AçGji 10 w`Gbi Zvcgvòv 10,
2 2 3 2 4 2 6 2
M 20 3 N 25 3 K L M N 9, 8, 6, 11, 12, 7, 13, 14, 5
4 4 4 4
10.  (PR + RQ + PQ) ‰i Š`NÆÅ KZ wgUvi?
28. DcvGîi Mo Zvcgvòv ˆKvbwU?
 wPò nGZ (21 I 22) bs cÉGk²i Dîi `vI: K 8 L 8.5
K 81.64 L 81.47 M 81.74 N81.96 A B
M 9.5 N 9
11. H AÞiwUi NƒYÆb ˆKvY KZ?
K 30 L 60 M 90 N 180
r 29. DcGii msLÅv mƒPK DcvGîi cÉPziK ˆKvbwU?
O K 120 L 50
12. logaa = 1 ‰i ˆÞGò ˆKvb kZÆwU mwVK?
i. a > 0, a = 1 M 14 N cÉPziK ˆbB
ii. a < 0, a  1 D C 30. DcvîmgƒGni gaÅK ˆKvbwU?
iii. a > 0, a  1 e†Gîi cwiwa 220 wgUvi ‰es ABCD ‰KwU eMÆ K 9.5 L 9 M 8.5 N 8
1 2L 3 4N 5 M 6 L 7
L M 8M M 9 K 10 N 11 N 12 N 13 L 14 M 15 L
Dîi

16 M 17 N 18 L 19 K 20 L 21 K 22 M 23 M 24 N 25 M 26 K 27 L 28 M 29 N 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 41
386 AvMÉvev` miKvix KGjvbx DœP we`Åvjq, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 wbGPi ˆKvbwU Agƒj` msLÅv? 12. mgZGj `yBwU iwkÄi cÉv¯¦ we±`y ‰KB nGj wbGPi ˆKvbwU mwVK?
5 75 32 15 wK ŠZwi nq? K i I ii L i I iii
K L M N
4 27 8 2 K ˆKvY L ˆiLvsk M ii I iii N i, ii I iii
. . M iwkÄ N we±`y 3
2. 0.3  0.6 = KZ? 20. 
 sin  = nGj cot = ?
13. `yBwU cƒiK ˆKvGYi AbycvZ 3 : 7 nGj eo 2
. .. .
K 1 L 0.2 M 0.18 N 0.18 ˆKvY ˆKvbwU? K
1
L
1
M
3
N 3
3. A = {2, 3, 7, 9} nGj, A ‰i cÉK‡Z K 27 L 70 3 2 2
M 63 N 124 21. 0    90 ‰i RbÅ sin  ‰i meÆwbÁ²
DcGmU KqwU? 14. 

K 7 L4 M 15 N 16 gvb KZ?
1 x K 1 L0 M1 N 
4. 
x+ =2
x
nGj@ 22. cosA = sinA nGj 2sinA.cosA = KZ?
105 y
1 1 1
2
i. x  2 = 2 5
ii. x + 5 = 2 K 0 L M1 N 2
x x 2
wPGò, y = 2x nGj x = ?
1
iii. x7  7 = 0 K 25 L 30
23. 
 mgGKvYx wòfzGRi 30 ˆKvY AâGbi
x ˆÞGò@
M 35 N 45
wbGPi ˆKvbwU mwVK? i. f„wg > jÁ¼
15. R
K i I ii L i I iii ii. jÁ¼ = f„wg
M ii I iii N i, ii I iii O
iii. f„wg < AwZfzR
5. a + b = 7, a  b = 1 nGj, wbGPi ˆKvbwU mwVK?
a3  b3 + a2 + b2 = KZ? P Q K i I ii L i I iii
K 62 L 49 M 48 N 53 wPGò, P I Q ‰i mgw«¼L´£K«¼q O M ii I iii N i, ii I iii
6. (x) = x3 + 2x2 + x  3 ˆK (x + 1) we±`yGZ wgwjZ nGqGQ ‰es R = 40, 24. 
 x : y = 2 : 3 ‰es 2 : x = 1 : 2 nGj
«¼viv fvM KiGj fvMGkl KZ nGe? POQ = KZ? y = KZ?
K 70 L 110 1 3
K 0 L1 M 2 N 3 K L M6 N 8
M 130 N 140 3 2
7. ‰KwU eBGqi weKÌqgƒjÅ 30 UvKv hv eBwU 16. wbGÁ² ˆm.wg. ‰KGK wZbwU ˆiLvsGki Š`NÆÅ 25. (2, 3) we±`ywU wbGPi ˆKvb mgxKiGYi ˆjL
ŠZwii eÅGqi 60%| eBwUi cÉK‡Z gƒjÅ ˆ`Iqv AvGQ| ˆKvb ˆÞGò wòfzR AuvKv wPGòi Dci AewÕ©Z?
KZ? mÁ¿e? K xy=1 L 2x + y = 7
K 50 L 48 M 20 N 18 K 2, 3, 5 L 6, 7, 8 M x + 3y = 5 N 2x + y = 6
wbGPi ZG^Åi AvGjvGK (8 I 9) bs cÉGk²i Dîi M 4, 5, 10 N 7, 5, 2
26. 25 + 21 + 17 + ... ... ...  19 avivwUi c`
`vI: 17. ‰KwU iÁ¼m AuvKGZ nGj KqwU Dcvî
cÉGqvRb? msLÅv KZ?
3x = a, 9x = b K 13 L 12 M 11 N 10
8.  a = b nGj, x = KZ? K 2 wU L 3 wU M 4 wU N 5 wU 27. Z ‰i NƒYÆb cÉwZmgZvi gvòv KZ?
wbGPi ZG^Åi AvGjvGK (18 I 19) bs cÉGk²i K 1 L2 M3 N 4
K 2 L 1 M0 N 1
Dîi `vI: S
9. 
 wbGPi ˆKvb mÁ·KÆwU mwVK? 28. 
 ‰KwU wòfzGRi `yBwU evüi Š`NÆÅ 6 ˆm.wg. I
a O 7 ˆm.wg. ‰es evü«¼Gqi A¯¦fzÆÚ ˆKvY 60
K ab2 = 1 L =1
b2 nGj, wòfzGRi ˆÞòdj KZ?
b2
M
a
=1 N a 2b = 1 P R Q
K 10.50 eMÆ ˆm.wg.
10. 0.000567 ‰i jGMi cƒYÆK wbGPi ˆKvbwU? wPGò PQS e†Gîi ˆK±`Ê O, OR = 3 ˆm.wg. L 14.85 eMÆ ˆm.wg.
   ‰es PR = 4 ˆm.wg. M 18.19 eMÆ ˆm.wg.
K 7 L6 M5 N 4
18. OP ‰i Š`NÆÅ KZ? N 36.37 eMÆ ˆm.wg.
11. mgxKiY@
2x  3 + 5 = 2
ˆm.wg. ˆm.wg.
K 3 L 4 wbGPi ZG^Åi AvGjvGK (29 I 30) bs cÉGk²i
i. ‰KwU ‰K PjK wewkÓ¡ mgxKiY M 5 ˆm.wg. N 7 ˆm.wg. Dîi `vI:
ii. ‰i mgvavb ˆmU s = { } 19. wPòvbymvGi@ 46, 45, 33, 38, 43, 40, 50, 43, 35, 36
iii. ‰i mgvavb x = 6 i. PQ ‰i mgw«¼L´£K OR 29. DcvGîi cwimi KZ?
wbGPi ˆKvbwU mwVK? ii. PQ PvGci Dci `´£vqgvb K 10 L 16 M 17 N 18
K i I ii L i I iii e†îÕ© PSQ 30. DÚ DcvGîi gaÅK KZ?
M ii I iii N i, ii I iii iii. PQ < OP + OQ K 40.5 L 41.5 M 42.5 N 43.5

1 K 2 L 3 M 4 M 5 K 6 N 7 K 8 M 9 N 10 N 11 K 12 K 13 M 14 K 15 L
Dîi

16 L 17 K 18 M 19 N 20 K 21 L 22 M 23 L 24 M 25 L 26 L 27 L 28 M 29 N 30 L
42 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
387 evsjvG`k ˆbŒevwnbx Õ•zj I KGjR, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 2.02̇ ‰i `kwgK f™²vsk ˆKvbwU? wbGPi ˆKvbwU mwVK? 22. 
x 2
 hw` = nq, ZGe
6x + y
‰i gvb KZ?
182 200 K i I ii L i I iii y 3 3x + 2y
K L 4 14
9 9
M ii I iii N i, ii I iii K
5
L
15
182 20
M
90
N
90 13.  wPGò, O e†Gîi ˆK±`Ê A
5 20
nGj, x ‰i gvb KZ? M N
2. (2x + y, 3) = (6, x  y) nGj, (x, y) ‰i gvb KZ? 2x + 10 4 13
K (0, 3) L (3, 0) O 23. 5x + 2y = 7 ‰es 10x + 4y = 14 ‰B
M (0, 3) N (3, 0) B C
x + 110
mgxKiY ˆRvUwU
2n + 1
3. f(n) =
2n  1
nGj, f(2) = KZ? K 18 L 26 i. mgém
K 3 L 5 M 30 N 90 ii. ‰i ‰KwU gvò mgvavb AvGQ
3 3 1 iii. ciÕ·i wbfÆikxj
M 
5
N
5 14. cos2 = 2 nGj, sin22 =?
wbGPi ˆKvbwU mwVK?
4.  hw` f(x) = x3 + kx2  4x  12 nq,
 1 1
K L K i I ii L i I iii
ZvnGj k ‰i ˆKvb gvGbi RbÅ f(3) = 0 4 3
M ii I iii N i, ii I iii
nGe| M
3
N 3
K 3 L 2 4 24. wPGò BC | | DE A

3 15.  1 + tanx = 2 nGj, cotx ‰i gvb


 KZ? nGj, BC ˆiLvi 4 ˆm.wg.
M N 3
2 K 21 L 1 2 Š`NÆÅ KZ? D E
3 ˆm.wg. 6 ˆm.wg.
5. nGj, n ‰i gvb KZ?
n
32 = 2 M 2 N 2+1
K 3 L 4 16. 31 + 29 + 27 + 25 + ........ avivi B C
M 5 N 6 i. mvaviY A¯¦i  2 K 10.5 ˆm.wg. L 11.5 ˆm.wg.
wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi ii. 12 Zg c` 9 M 12.0 ˆm.wg. N 13.0 ˆm.wg.
`vI: 25. 
 cvGki wPòwUi cÉwZmvgÅ
iii. cÉ^g 5 cG`i mgwÓ¡ 145
p2  3p + 1 = 0 ˆhLvGb p > 0 ˆiLvi msLÅv KZ?
1 wbGPi ˆKvbwU mwVK?
6. p2 + p2 ‰i gvb ˆKvbwU? K i I ii L i I iii
K 4 L 6 M ii I iii N i, ii I iii K 1 L 2
M 7 N 9 1
1 17. 
 ,  1, 3 ..... AbyKÌgwUi PZz^Æc` M 3 N 4
7. p3  3 = KZ?
p
3
26. ‰KwU mgevü wòfzGRi ˆÞòdj 6 3
KZ?
K 2 5 L 8 5
1
eMÆwgUvi nGj ‰i cwimxgv KZ?
M 10 5 N 20 5 K 3 L  K 4.89 wgUvi L 14.69 wgUvi
3
3
M 19.59 wgUvi N 72.00 wgUvi

1 3  1
8.  x ‰i mij gvb wbGPi ˆKvbwU? M N 3
 a  3 27. 2x  3 + 4 = 3 mgxKiYwUi mgvavb ˆmU
x a 3
18. iÁ¼Gmi ‰KwU KYÆ 16 ˆm.wg. ‰es ˆÞòdj ˆKvbwU?
K L
a3 x 96 eMÆ ˆm.wg. nGj, Aci KGYÆi Š`NÆÅ KZ K {2} L {4}
x x3 ˆm.wg.? M {2} N 
M 3 N
a a3 K 6 L 10 wbGPi ZG^Åi AvGjvGK (28 I 29) bs cÉGk²i
9. 0.00000538 ‰i mvaviY jGMi cƒYÆK KZ? M 12 N 18 Dîi `vI: A 30 D
K 6̄ L 5̄ 19. ‰KwU mylg AÓ¡fzGRi cÉwZwU kxlÆGKvGYi 20 wgUvi
M 5 N 6 cwigvY KZ?
10. KqwU Õ¼Z¯¨ Dcvî Rvbv ^vKGj ‰KwU K 45 L 60
B C
wbw`ÆÓ¡ PZzfÆR
z AuvKv mÁ¿e? M 120 N 135
K 4 L 5
wbGPi ZG^Åi AvGjvGK (20 I 21) bs cÉGk²i 28. AB = KZ wgUvi?
M 6 N 7 K 5 3 L 10
11. wòfzGRi wZbwU evüi Š`NÆÅ ˆm.wg. ‰KGK Dîi `vI:
M 10 3 N 20
ˆ`Iqv nGjv| wbGPi ˆKvb ˆÞGò wòfzR ˆkÉwY eÅeavb 30-39 40-49 50-59 60-69
29. BC ‰i Š`NÆÅ KZ wgUvi?
Aâb Kiv hvq? MYmsLÅv 13 21 24 2
K 15 L 17.3
K 5, 6, 18 L 6, 7, 19 20. mviwY ˆ^GK gaÅK wbYÆGqi RbÅ FC ‰i gvb M 20.3 N 30
M 7, 8, 17 N 9, 6, 13 wbGPi ˆKvbwU? 1
12.  e†Gîi ˆÞGò K 60 L 58 30. 
 sin = nGj, tan ‰i gvb KZ?
2
i. AaÆe†îÕ© ˆKvY ‰K mijGKvY M 34 N 13 1 3
ii. ˆh ˆKvGbv RÅv ‰i jÁ¼w«¼LíK ˆK±`ÊMvgx 21. DcvGîi cÉPziK ˆKvbwU? K L
3 2
iii. e†Gîi mgvb mgvb RÅv ‰i gaÅwe±`yàGjv K 48.8 L 51.2
M 3 N 2
mge†î M 57.8 N 60.2

1 M 2 L 3 N 4 K 5 M 6 M 7 L 8 L 9 K 10 L 11 N 12 M 13 M 14 M 15 N
Dîi

16 K 17 N 18 M 19 N 20 N 21 L 22 M 23 L 24 K 25 M 26 L 27 N 28 L 29 L 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 43
388 ˆecRv cvewjK Õ•zj I KGjR, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 2cos  3 = 0 nGj,  = KZ? 10. 1  1 + 1  1 + ..... avivwUi 1g (2n + 1) wbGPi ˆKvbwU mwVK?
[ˆhLvGb 0 <  < 90] msLÅK cG`i ˆhvMdj KZ? ˆhLvGb n  ô. K i I ii L i I iii
K 30 L 45 K 0 L 1 M ii I iii N i, ii I iii
M n N 2n + 1 1
M 60 N 90 21. x = 5 + 2 nGj x ‰i gvb KZ?
a 11. 'H' eGYÆi NƒYÆb ˆKvY KZ?
2. hw` cosec = b nq, ZGe tan = ? K 360 L 180 K 1 L 5 2
M 90 N 0 1
2
a +b 2 2
a b 2
M N 2 5
K L 2 5
b b 12. 
 mgevü wòfzGRi evüi Š`NÆÅ 8cm ‰i
b b DœPZv KZ ˆm.wg.? 22. p2  p  2 ‰i Drcv`GK weGkÏwlZ i…c ˆKvbwU?
M N K (p  1) (p  2) L (p  1) (p + 2)
a2  b 2 a + b2
2
K 2 3 L 5 3
M (p + 1) (p  2) N (p + 1) (p + 2)
3. 
 cosec(A  60) = 2 nGj, cotA = KZ? M 4 3 N 3 3
23. 
 ( 3)
2x + 4
= 27 nGj, x ‰i gvb KZ?
K 3 L AmsævwqZ 13. ‰KwU mge†îf„wgK ˆejGbi DœPZv 2cm
1 3
M 1 N 0 ‰es f„wgi eÅvmvaÆ 1cm nGj ˆejGbi K 1 L0 M N
2 2
4. 
 ‰KwU wgbvGii DœPZv 5 3 wgUvi ‰es AvqZb KZ cm3? 24. 
1
 logx =  2 nGj, wfwî KZ?
36
Qvqvi Š`NÆÅ 5 wgUvi nGj D®²wZ ˆKvY KZ? K 4 L 3
K 2 L6 M2 N 6
K 90 L 60 M 45 N 30 M 2 N 
14. wbGPi ˆKvbwU avc wePzÅwZ? 25. y2 + 7 y = 0 mgxKiGYi mgvavb ˆmU
5. 
 wPGò PQ ‰i Š`NÆÅ KZ wgUvi?
P xi + a xi  a wbGPi ˆKvbwU?
K ui = L ui =
h h K {0, 7} L {0,  7}
K 40 xi xi
R M ui =  a N ui = + a M { 7} N {(0, 7)}
L 74.64 h h
30
20 3 wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
M 34.64 wgUvi
wbGPi ZG^Åi AvGjvGK (15 I 16) bs cÉGk²i
Dîi `vI:
N 60 S Q Dîi `vI:
ˆKvGbv e†Gîi ˆK±`Ê ˆ^GK ˆKvGbv RÅv-‰i Ici
6. b, a, c KÌwgK mgvbycvZx nGj, wbGPi ˆKvbwU ˆkÉwYeÅvwµ¦ 30-35 36-41 42-47 48-53
AwâZ jGÁ¼i Š`NÆÅ AaÆ-RÅv AGcÞv 2 ˆm.wg.
mwVK? MYmsLÅv 8 11 14 7
Kg| e†Gîi eÅvm 20 ˆm.wg.|
K a2 = bc L b2 = ac 15. DcvGîi cÉPziK ˆkÉwY ˆKvbwU? 26. 
 RÅv ‰i Š`NÆÅ KZ ˆm.wg.?
2
M c = ab N a=b+c K 30  35 L 36  41 K 10 L 12
7. a1x + b1y = c1, a2x + b2y = c2 mgxKiY M 42  47 N 48  53 M 16 N 20
ˆRvUwU ˆKvb kGZÆ ciÕ·i wbfÆikxj nGe? 16. gaÅK wbYÆGqi ˆÞGò, fm = KZ? 27. 
 jGÁ¼i Š`NÆÅ KZ ˆm.wg.?
a1 b 1 a1 b 1 c1 K 7 L 8 K 6 L8
K  L =  M 11 N 14
a2 b 2 a2 b 2 c 2 M 10 N 16
a1 b 1 c1 a1 b 1 c1 ×× 28. 
 wPGò, ABE ‰i gvb KZ?
M = = N   17. 0.45 ‰i mvgvbÅ f™²vsk wbGPi ˆKvbwU?
a2 b 2 c2 a2 b 2 c2
5 41 41 45 K 60 A
8. 
 2  4 + 8  16 + .... avivwUi 7-Zg c` K L M N
11 99 90 90 L 90
ˆKvbwU? 18. wbGPi ˆKvbwU Agƒj` msLÅv? M 120 E
B C 60
P

K 128 L  128 M 64 N  64 8 3 64 32 N 150 Q


K L M N
9. cÉ^g n msLÅK Õ¼vfvweK msLÅvi eGMÆi 32 2 16 8
2x + 1 1 29. `yBwU e†î ciÕ·iGK ewntÕ·kÆ KiGj,
mgwÓ¡- 19. hw` f(x) = 2x  1 nq, ZGe f 2  ‰i gvb
  ‰G`i ˆK±`Ê«¼q I Õ·kÆ we±`y Kxi…c nq?
n2(n + 1)2
K
4 KZ? K wZhÆK L wecixZ
n(n + 1)(2n + 1) K 4 L2 M0 N 2 M mgGiL N mgv¯¦ivj
L
2 20. {(2, 1), (1, 0), (0, 1)} A®¼qwUi 30. 
 mgGKvYx wòfzGRi ˆÞGò cwie†Gîi ˆK±`Ê

M
n(n + 1)
i. ˆWvGgb {2, 1, 0} ˆKv^vq AewÕ©Z?
2
ii. ˆié {1, 0, 1} K wòfzGRi Afů¦Gi L AwZfzGRi Dci
n(n + 1)(2n + 1)
N M wòfzGRi ewnfÆvGM N f„wgGZ
6 iii. ‰wU ‰KwU dvskb

1 K 2 M 3 N 4 L 5 L 6 K 7 M 8 K 9 N 10 L 11 L 12 M 13 M 14 L 15 M
Dîi

16 N 17 K 18 L 19 M 20 N 21 L 22 M 23 K 24 N 25 L 26 M 27 K 28 N 29 M 30 L
44 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
389 wPUvMvs BDwiqv dvwUÆjvBRvi Õ•zj I KGjR, PëMÉvg

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 3x  6 + 5 = 2 mgxKiYwUi mgvavb 11. log9 3 ‰i gvb KZ? 21. 1 ˆ^GK 19 chƯ¦ ˆgŒwjK msLÅvàGjvi Mo
ˆmU ˆKvbwU? K 2 L
1 KZ?
K  L {5} 2 K 9.63 L 9.5
M {3} N {5} 1 M 8.67 N 8.23
M 3 N
3
2.  ‰KwU
 wgkÉGb Pv I wPwbi AbycvZ 7 : 3 22. ˆKvGbv e†Gîi DcPvGci Dci `ívqgvb
nGj, wgkÉGY PvGqi cwigvY kZKiv KZ? 12. 
 tan(  45) = 3 nGj,  ‰i gvb KZ?
ˆKvY
K 30% L 40% K 15 L 60
K mħGKvY L mgGKvY
M 50% N 70% M 75 N 105
M cƒiK ˆKvY N Õ©ƒj ˆKvY
3. A = {a, b, c, d, e} nGj, A ‰i cÉK‡Z 13. mgGKvYx wòfzGRi ˆÞGò cwiGK±`Ê wòfzGRi
1 1 1
DcGmU KqwU? ˆKv^vq AewÕ©Z? 23. 
 1, , , , ... ... ... AbyKÌGgi mvaviY
3 7 15
K 8 L 15 K Afů¦Gi L ewnÆfvGM
M 31 N 64 c` ˆKvbwU?
M AwZfzGRi Dci N jGÁ¼i Dci 1 1
4. ‰KwU wòfzGRi wZbwU evüi Š`NÆÅ ˆ`Iqv K L
2n + 1
AvGQ| wbGPi ˆKvb ˆÞGò mgGKvYx wòfzR 14. 
 `yBwU msLÅvi AbycvZ 4 : 5 ‰es ‰G`i 2n  1
j.mv.à 120 nGj, e†nîg msLÅvwU KZ? 1 1
MVb Kiv mÁ¿e? M n N
2 n
K 2, 3, 4 L 3, 5, 7 K 20 L 24
M 30 N 120 24. wbGPi ˆKvbwU AwewœQ®² PjK?
M 5, 12, 13 N 10, 15, 20
15.  u2 =  2, x2 = 12 ‰es h = 4 nGj, K RbmsLÅv L eqm
5. R 
AbywgZ Mo, a = KZ? M R¯Ãmvj N wkÞv^Æx msLÅv
O
K 20 L 10 25. 
 2x  y = 8 ‰es x  2y = 4 nGj,
P Q M 6 N 4 x + y = KZ?
 wPGò P I Q ‰i mgw«¼LíK«¼q
 16. D
K 0 L 4
M 8 N 12
O we±`yGZ wgwjZ nGqGQ ‰es R = 40 O
26.  ‰KwU
 e†Gîi eÅvm 26 ˆm.wg. nGj, ‰i
nGj, POQ = KZ?
K 70 L 110 B
cwiwa KZ ˆm.wg.?
A C
K 530.9 L 81.68
M 130 N 140
ABD e†Gîi ˆK±`Ê O nGj M 40.84 N 13
6. 
 A = {2, 3, 4} ‰es B = {1, 3} nGj
i. A  B = {3} i. C, AB ‰i gaÅwe±`y 27. A

ii. A\B = {2, 4} ii. OAC = OBC


iii. (A  B) ‰i Dcv`vb msLÅv 5. iii. OAC + OBC = ‰K mgGKvY P Q
wbGPi ˆKvbwU mwVK? wbGPi ˆKvbwU mwVK? O
O
B
K i I ii L i I iii K i I ii L i I iii
C

M ii I iii N i, ii I iii
M ii I iii N i, ii I iii
wPGò BC || PQ nGj
7. 1.4̇3̇ ‰i mvaviY f™²vsk ˆKvbwU? i. BOC I POQ m`†k
142 143
17. 
 ˆKvGbv `Gíi Qvqvi Š`NÆÅ Zvi Š`GNÆÅi
K L ii. AP : BP = AQ : CQ
99 99 KZàY nGj, D®²wZ ˆKvY 30 nGe?
142 143 1 1 iii. BO : OQ = CO : OP
M N K L
100 100 3 2 wbGPi ˆKvbwU mwVK?
8. iÁ¼Gmi cÉwZmvgÅ ˆiLv KqwU? M 2 N 3 K i I ii L i I iii
K 1wU L 2wU 18. 
 0.0000975 ‰i mvaviY jGMi cƒYÆK M ii I iii N i, ii I iii
M 3wU N 4wU KZ? 28. wbGPi ˆKvbwUGK kƒbÅgvòvi mîv eGj MYÅ
9. mgvbycvGZi D`vniY wbGPi ˆKvbwU? Kiv nq?
K 4̄ L 5̄
K 3:4=4:3 L 2 : 3 = 6 : 10 K ˆiLv L Zj
M 6̄ N 5
M 3:2=9:6 N 2 : 5 = 4 : 25 M ˆKvY N we±`y
10. 5x  2y = 13 ‰es 2x + 3y = 9 19. 
 ‰KwU mgevü wòfzGRi ˆÞòdj 25 3 eMÆ
29. 
 'T' eYÆwUi ˆgvU KZwU cÉwZmvgÅ ˆiLv
mgxKiY«¼q wgUvi nGj, wòfzRwUi evüi Š`NÆÅ KZ wgUvi?
K 5 L 10
AvGQ?
i. mgém K kƒbÅ L 1wU
M 50 N 100
ii. ciÕ·i AwbfÆikxj
20. hw` f(x) = x3 + ax2  6x  9 nq, ZGe M 3wU N AmsLÅ
iii. (x, y) = (3, 1)
wbGPi ˆKvbwU mwVK? a ‰i ˆKvb gvGbi RbÅ f(3) = 0 nGe? 30. e†Gî A¯¦wjÆwLZ mvgv¯¦wiK ‰KwU
K i I ii L i I iii K 6 L 2 K UÇvwcwRqvg L iÁ¼m
M ii I iii N i, ii I iii M 2 N 4 M eMÆ N AvqZ

1 K 2 N 3 M 4 M 5 L 6 K 7 K 8 L 9 M 10 N 11 L 12 N 13 M 14 M 15 K
Dîi

16 K 17 N 18 L 19 L 20 L 21 K 22 N 23 K 24 L 25 L 26 L 27 N 28 N 29 L 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 45
390 ev±`ievb miKvwi DœP we`Åvjq, ev±`ievb

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1
1. sin(A  B) = 2 ‰es B = 30 nGj, A ‰i wbGPi ˆKvbwU mwVK? 21. RÅv AB ‰i Š`NÆÅ KZ?
K i I ii L i I iii K 7 L 7 M2 7N 5
gvb KZ?
M ii I iii N i, ii I iii 22. AOC = 55.5 nGj, OBC = KZ?
K 0 L 30 M 45 N 60
K 34.5 L 55.5
2. ˆKvGbv mgevü wòfzGRi ‰K evüi Š`NÆÅ 3 12. 32 = 2 nGj, n ‰i gvb KZ?
n

M 65.5 N 95.5
ˆm.wg. nGj, ‰i ˆÞòdj KZ? K 3 L4 M5 N 6
3 3 3 9 9 3 13. 4 x+1
=2 nGj, x = KZ? 23. ˆKvb e†Gîi AwaPvGc A¯¦wjÆwLZ ˆKvY Kxi…c?
K L M N
4 4 4 4 1 3 7 K mħGKvY L mgGKvY
K 1 L M N
3. ‰KwU NbGKi AvqZb 24 3 nGj ‰i KGYÆi 2 2 2 M Õ©ƒjGKvY N cÉe†«¬GKvY
Š`NÆÅ KZ ˆm.wg.? 14. 4sinA = 3 nGj, tanA = KZ? 24. PQR mgevü wòfzGRi cwiGK±`Ê C nGj,
K 6 L2 3 M4 N 3 7 3 4 3 QCR = KZ?
K L M N
4. ‰KwU mge†îf„wgK ˆejGbi DœPZv 2 wgUvi 3 7 3 4
K 45 L 60 M 90 N 120
‰es f„wgi eÅvmvaÆ 1 wgUvi nGj 15. sin cosec2  1 = KZ?
25. ‰KwU iÁ¼m AvuuKv hvGe hw` ˆ`Iqv ^vGK
i. eKÌZGji ˆÞòdj 3 K sin L cos
i. 1wU evüi Š`NÆÅ
ii. AvqZb 2 M sin.cos N sec
wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i ii.1wU evü I 1wU KYÆ
iii. fƒwgi ˆÞòdj 
iii. 1wU evü I 1wU ˆKvY
wbGPi ˆKvbwU mwVK? Dîi `vI:
wbGPi ˆKvbwU mwVK?
K i I ii L i I iii cosecA + cotA =
1

M ii I iii N i, ii I iii
2 K i I ii L i I iii
16. cosecA  cotA = KZ? M ii I iii N i, ii I iii
wbGPi ZG^Åi AvGjvGK (5 I 6) bs cÉGk²i Dîi
1 1
`vI: K
2
L2 M
3
N 4 wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
cÉvµ¦ bÁ¼i 51-60 61-70 71-80 81-90 91-100 17. secA = KZ? Dîi `vI:
MYmsLÅv 8 12 15 7 8 5 5 1 1 tan(2A  45) = 1 = 3sinB
K L M N
5. gaÅK ˆkÉwYi cƒGeÆi ˆkÉwYi KÌgGhvwRZ 3 3 3 2 26. A ‰i gvb KZ?
MYmsLÅv ˆKvbwU? 18. 1 + 3 + 5 + .......... avivwUi 1g n msLÅK K 30 L 45 M 60 N 90
K 20 L 30 M 42 N 50 cG`i ˆhvMdj ˆKvbwU? 27. cos B = KZ?
2

6. cÉPziK wbYÆGqi ˆÞGò f1 + f2 = KZ? n(n + 1)  n(n + 1)2 10 8 10 2 2


K L   K L M N
K 11 L8 M5 N 3 2  2  9 9 3 3
7. cixÞvq cÉvµ¦ GPA ˆKvb aiGbi PjK? M
n2
N n2
28. an+1.an = KZ?
2
K wewœQ®² L AwewœQ®² 1
+1 n+
1

19. 2 + p + q + r + 162 àGYvîi avivi 4^Æ c` KZ? K a L a1 M an N a n

M AwebÅÕ¦ N webÅÕ¦
K 18 L 27 M 54 N 81 29.
8. wbGPi ˆKvbwU wbYÆGqi RbÅ KÌgGhvwRZ P
1
MYmsLÅv mviwY cÉGqvRb? 20. ,  1, 7 ,........ mvaviY AbycvZ KZ?
7 O 60 M
K MvwYwZK Mo L eÅewa 1 1
K L 
M cÉPziK N gaÅK 7 7 Q

9. A = {2, 3} nGj, P(A) ‰i Dcv`vb msLÅv KZ? M 7 N  7


K 2 L 3 wbGPi ZG^Åi AvGjvGK (21 I 22) bs cÉGk²i
M 4 N 6 O ˆK±`ÊwewkÓ¡ e†Gî PM I QM `yBwU Õ·kÆK
Dîi `vI:
10. P(x) = x  4x + 3 nGj, P(2) = KZ?
3 ‰es PMQ = 60 nGj, POQ = KZ?
K 0 L2 M3 N 4 O K 300 L 270
11. A = {0, 2}, B = {1, 0, 1} nGj M 120 N 90
A C B
i. B\A ‰i cÉK‡Z DcGmU msLÅv 3 30. log55 5 ‰i gvb KZ?
ii. A  B = {0} 2 3 5 3
iii. A  B = {2} wPGò O e†Gîi ˆK±`Ê OA = 4 ˆm.wg., OC = 3 ˆm.wg. K
3
L
2
M
2
N
2

1 N 2 L 3 K 4 M 5 K 6 K 7 L 8 N 9 M 10 M 11 N 12 M 13 L 14 L 15 L
Dîi

16 L 17 L 18 N 19 M 20 N 21 M 22 K 23 K 24 N 25 M 26 L 27 L 28 K 29 M 30 L
46 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
391 ev±`ievb KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, ev±`ievb

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 B = {2, 4, 6, 7} ˆmGUi cÉK‡Z DcGmU 11. cos215 + cos275 ‰i gvb KZ? wbGPi ZG^Åi AvGjvGK (20 I 21) bs cÉGk²i
msLÅv KZ? K 1 L0 M 0.5 N 1 Dîi `vI: S R
K 7 L8 M 15 N 16 wbGPi ZG^Åi AvGjvGK (12 I 13) bs cÉGk²i (3y + 8)
3
2. f(x) ‰i gvòv abvñK nGj ˆKvb kGZÆ f(x) Dîi `vI: A
2y + 7
ˆK (ax + b) «¼viv fvM KiGj fvMGkl  P 4 Q
wPGò PQRS ‰KwU mvgv¯¦wiK|
f
 b
 a 
‰i mgvb nGe?  20. y ‰i gvb KZ?
K a0 L a=0
B C K 15 L 30 M 33 N 41
M a>0 N a<0 21. PQRS ‰i cwimxgv KZ?
wPGò, ABC = 90 ‰es sin = x
K 7 L8 M 12 N 14
wbGPi ZG^Åi AvGjvGK (3 I 4) bs cÉGk²i Dîi 12. 
 sin ‰i gvb KZ?
22. mgGKvYx wòfzGRi cwie†Gîi ˆK±`Ê ˆKv^vq
`vI: 1  x2
K L 1  x2 AewÕ©Z?
x = 7 + 4 3 ‰KwU exRMvwYwZK mgxKiY| x
1 1 K wòfzGRi Afů¦Gi L wòfzGRi ewnfÆvGM
1
3. x2 + x2 ‰i gvb KZ? M 2
N
x M jGÁ¼i Dci N AwZfzGRi Dci
1x
K 190 L 194 M 198 N 200 13. 
 tan ‰i gvb KZ?
23. ˆKvb wòfzGR KqwU ewne†Æî AvuKv hvq?
4. x
1
‰i gvb KZ? K 1wU L 2wU M 3wU N 4wU
x 1  x2
x K L
x 24. 
 ˆKvb e†Gî A¯¦wjÆwLZ mvgv¯¦wiK ‰KwU?
1  x2
K 2 3 L4 M 8 3 N 14 K eMÆ L iÁ¼m
1 1
5. 
 0.000435 msLÅvwUi mvaviY jGMi cƒYÆK M
x
N M AvqZ N UÇvwcwRqvg
1  x2
KZ? 25.
A
14. ‰KwU UvIqvGii Š`NÆÅ I ‰i Qvqvi Š`GNÆÅi
K 4̄ L 3̄ M3 N 4
AbycvZ 3 : 3 nGj, D®²wZ ˆKvY KZ?
3m + n
6. nm
= 9 nGj, m : n ‰i gvb KZ? K 60 L 45 M 30 N 15 B
O
D

K 1:5 L 5:1 15. ‰KwU mylg cçfzGRi NƒYÆb ˆKvY KZ? C

M 2:3 N 3:2 K 36 L 45 M 60 N 72 wPGò, O ˆK±`ÊwewkÓ¡ e†Gî BAD = 85
wbGPi ZG^Åi AvGjvGK (7 I 8) bs cÉGk²i Dîi 16. ˆKvb eMÆGÞGòi KGYÆi Š`NÆÅ I evüi nGj, BCD ‰i gvb KZ?
K 100 L 95 M 90 N 85
`vI: Š`GNÆÅi AbycvZ KZ?
26. ˆKvb wòfzGRi f„wg jGÁ¼i w«¼àY nGj f„wgi Dci
‰KwU cÉK‡Z f™²vsGki ni I jGei mgwÓ¡ K 2:1 L 1: 2
AwâZ eMÆ jGÁ¼i Dci AwâZ eGMÆi KZàY?
13 ‰es àbdj 42| M 3:1 N 1: 3
K 2 L3 M4 N 8
7.   f™²vskwUi gvb KZ? wbGPi ZG^Åi AvGjvGK (17 I 18) bs cÉGk²i 27. ABC ‰i A = ‰K mgGKvY ‰es BE I
K
5
L
6
M
4
N
7 Dîi `vI: CF gaÅgv nGj
8 7 9 6
A D i. BE2 = AB2 + AE2
8. 
 f™²vskwUi je I ni ˆ^GK KZ weGqvM
ii. CF2 = AC2 + AF2
12 cm

1
KiGj f™²vskwUi gvb 2 nGe? iii. 4(BE2 + CF2) = 6BC2
wbGPi ˆKvbwU mwVK?
K 2 L3 M4 N 5
B E 5 cm
C K i I ii L i I iii
9. f + g + h + k + l + ........ mgv¯¦i avivfzÚ nGj
M ii I iii N i, ii I iii
g+f 17. ABCD UÇvwcwRqvGgi ˆÞòdj KZ eMÆ ˆm.wg.?
i. h=
2 28. 
 MYmsLÅv mviwY ŠZwi KiGZ cÉ^Gg
K 72 L 102
h+l
M 174 N 204
ˆKvbwU cÉGqvRb nq?
ii. k =
2 K ˆkÉwYmsLÅv L ˆkÉwYeÅvwµ¦
f+h 18. ABED eMÆ I CDE wòfzGRi cwimxgvi
iii. g = M cwimi N MYmsLÅv
2 AbycvZ KZ?
29. 1 ˆ^GK 22 chƯ¦ 3 «¼viv wefvRÅ msLÅvàGjvi
wbGPi ˆKvbwU mwVK? K 3:4 L 5:7 M 5:8N 8:5
19. 
 kyaygvò `ywU evüi Š`NÆÅ ˆ`Iqv ^vKGj gaÅK KZ?
K i I ii L i I iii
K 12 L 15 M 18 N 21
M ii I iii N i, ii I iii wbGPi ˆKGbwU AuvKv mÁ¿e?
30. 
 avc wePzÅwZ ui ‰i mgvb wbGPi ˆKvbwU?
10. 
 3 sin  cos = 0 nGj,  ‰i gvb KZ? K iÁ¼m L AvqZGÞò
xi  a xi + a xi a  xi
M mvgv¯¦wiK N UÇvwcwRqvg K L M N
K 30 L 45 M 60 N 90 h h h h
1 M 2 K 3 L 4 K 5 K 6 M 7 L 8 N 9 M 10 K 11 N 12 L 13 K 14 K 15 N
Dîi

16 K 17 M 18 N 19 L 20 M 21 N 22 N 23 M 24 M 25 L 26 M 27 K 28 M 29 K 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 47
392 KÝevRvi miKvwi evwjKv DœP we`Åvjq, KÝevRvi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. wbGPi ˆKvb mÁ·KÆwU mwVK? 10. avivwUi n-Zg c` KZ? 18. OAB = 45 nGj, AOB = KZ?
K NQZR K n+3 L n3 K 75 L 80
L NZQR M 3n N n+1 M 90 N 95
M NRZQ 11. 1g 7 wU cG`i mgwÓ¡ KZ? 19. BAC = KZ?
N ZNQR K 7 L 7 K 60 L 70
2. 
 wbGPi ˆKvbwU gƒj` msLÅv? M 35 N 35
M 80 N 90
K 2 L e 20. 
 OM = 4 ˆm.wg. nGj, AC = KZ ˆm.wg.?
wbGPi ZG^Åi AvGjvGK (12 I 13) bs cÉGk²i
4 K 3 L 4
M
3
N 1.7325... Dîi `vI: M 6 N 8
A
3. duvcv ˆmU-‰i Power Set-‰i Dcv`vb 21. wòfzGRi wZbevüi Dci AwâZ eMÆGÞòmgƒn
KqwU? KqwU mgGKvY Drc®² KGi?
K 0 L 1 K 8 L 9
M 2 N 4 B D C M 12 N 16
4. AGf`-‰i ˆÞGò@ ABC mgevü : AD  BC, AB = 6 ˆm.wg. 22. sin = cos nGj,  = KZ?
i. mKj exRMwYZxq mƒò AGf` 12. 
 BD ‰i Š`NÆÅ KZ ˆm.wg.? K 30 L 45
M 60 N 90
ii. mKj AGf`B mgxKiY K 3 L 3
23. ‰KwU LuywUi Qvqvi Š`NÆÅ 3 3 wg., mƒGhÆi
iii. mKj mgxKiYB AGf` M 6 N 2 3
D®²wZ ˆKvY 60| LuywUwUi DœPZv KZ wg.?
wbGPi ˆKvbwU mwVK? 13. 
 AD-‰i gvb KZ?
K 4.5 L 9
K i I ii L i I iii K 27 L 2 3 M 12 N 5.4
M ii I iii N i, ii I iii M 3 N 5 2 24. 
 wòGKvYwgwZK mÁ·GKÆi ˆÞGò@
5. 
 0.000345 msLÅvwUi mvaviY jMvwi`Ggi 14. e†Gîi eÅvmvaÆ r nGj@ i. cosec2 = 1  cot2
cƒYÆK KZ? i. eÅvm 2r ii. sec2  tan2 = 1
  iii. cos2 = 1  sin2
K 5 L 4 ii. ˆÞòdj r2
wbGPi ˆKvbwU mwVK?
M 3 N 4 
iii. e†îKjvi ˆÞòdj 360  r2 K i I ii L ii I iii
6. 2x  5 + 3 = 2 ‰i mgvavb ˆmU ˆKvbwU? M i I iii N i, ii I iii
K {3} L {3} wbGPi ˆKvbwU mwVK?
25. ‰KwU lofzGRi ˆgvU ˆKvGYi cwigvY KZ?
M {3} N  K i I ii L i I iii
K 4 mgGKvY L 6 mgGKvY
7. p, q, r KÌwgK mgvbycvwZ nGj@ M ii I iii N i, ii I iii
M 8 mgGKvY N 10 mgGKvY
p q 15. e†Gîi A¯¦wjÆwLZ mvg¯¦wiK ‰KwU@
i. =
q r 26. ˆejb I ˆKvYGKi AvqZGbi AbycvZ KZ?
2 K eMÆ L iÁ¼m K 3:2 L 2:3
ii. q = pr
p r M AvqZ N UÇvwcwRqvg M 1:3 N 3:1
iii. =
r q 16. iÁ¼Gmi cÉwZmvgÅ ˆiLvi msLÅv KqwU? 27. 
 ‰KwU NbGKi mÁ·ƒYÆ c†GÓ¤i ˆÞòdj
wbGPi ˆKvbwU mwVK? K 0 L 1 216 eMÆ.wg. nGj AvqZb KZ?
K i I ii L ii I iii M 2 N 4 K 6 6 Nb wg. L 36 N. wg.
M i I iii N i, ii I iii wbGPi ZG^Åi AvGjvGK (17-20) bs cÉGk²i Dîi M 144 Nb wg. N 216 Nb wg.
8. 
 ‰KwU eGMÆi KGYÆi Š`NÆÅ I cwimxgvi `vI: 28. DcvGî eÅen†Z msLÅvmgƒnGK Kx eGj?
AbycvZ KZ? C K NUbv L Z^Åvw`
K 1:2 2 L 1: 2 O M WvUv N PjK
M 1:2 N 2:1 29. 
 ˆK±`Êxq cÉeYZvi wbfÆiGhvMÅ cwigvY
A M B
9. ˆKvb wòfzGRi KqwU ewnte†î AuvKv hvq? ˆKvbwU?
K 1 L 2 K Mo L gaÅK
M 3 N 4 wPGò, M, AB-‰i gaÅwe±`y OA = 5 ˆm.wg.
M cÉPziK N meàGjv
wbGPi ZG^Åi AvGjvGK (10 I 11) bs cÉGk²i 17. OM = 4 ˆm.wg. nGj, AB = KZ ˆm.wg.? 30. meGPGq ˆQvU ˆgŒwjK msLÅv ˆKvbwU?
Dîi `vI: K 5 L 6
K 1 L 2
‰KwU mgv¯¦i avivi 1g c` 2, mvaviY A¯¦i 1 M 7 N 8
M 3 N 5

1 L 2 M 3 L 4 K 5 L 6 N 7 K 8 K 9 M 10 M 11 L 12 K 13 K 14 N 15 M
Dîi

16 M 17 L 18 M 19 N 20 N 21 M 22 L 23 L 24 L 25 M 26 N 27 N 28 N 29 N 30 L
48 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
393 LvMovQwo KÅv´ŸbGg´Ÿ cvewjK Õ•zj I KGjR, LvMovQwo

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 Mo wbYÆGqi ˆÞGò AbywgZ Mo, a = KZ 11. 
 ‰KwU mgGKvYx wòfzGRi mƒßGKvY«¼Gqi 21. 0.000575 mvaviY jGMi cƒYÆK KZ?
nGe? ˆhLvGb, u5 =  5, x5 = 17, h = 5 cv^ÆKÅ 12 nGj, mƒßGKvY«¼Gqi gGaÅ e†nîg K 3̄ L 4̄
K 40 L 42 ˆKvGYi gvb KZ wWwMÉ? M 2̄ N 5̄
M 50 N 52 K 49 L 50 22. (5y  1) + 9 = 3 ‰i mgvavb ˆmU ˆKvbwU?
2. 16 ˆ^GK 50 chƯ¦ ˆgŒwjK msLÅvàGjvi M 51 N 52 K {} L {6}
gaÅK wbGPi ˆKvbwU? 12. S eGYÆi NƒYÆb ˆKvY KZ wWwMÉ nGe? M {6} N {0}
K 23 L 29 K 180 L 190 23. 
 ‰KwU eGMÆi evüi Š`NÆÅ wZbàY KiGj
M 31 N 37 M 260 N 60 ‰i ˆÞòdj KZ àY e†w«¬ cvGe?
1
3. 
 hw` cos(x + 45) = nq, ZGe x ‰i 13. `yBwU e†Gî mGeÆvœP KqwU mvaviY Õ·kÆK K 9 L 8
2
AuvKv mÁ¿e? M 6 N 15
gvb KZ nGe?
K 45 L 30 K 3wU L 4wU 24. x + 3y  1 = 0 I 2x + 6y  2 = 0
M 25 N 15 M 6wU N 10wU mgxKiY«¼q
4. cotx sec2x  1 =? 14. e†îÕ© mvgv¯¦wiKGK wK ejv nq? i. ciÕ·i wbfÆikxj
K 1 L cosx K UÇvwcwRqvg L eMÆ ii. Amgém
M secx N tanx M AvqZ N iÁ¼m iii. mgvavb AvGQ ‰KwU
5. 
 ‰KwU MvGQi Š`NÆÅ I MvQwUi Qvqvi Š`GNÆÅi 15. ˆKvGbv eGMÆ A¯¦e†Æî AvuKGZ KqwU avc wbGPi ˆKvbwU mwVK?
AbycvZ 1 : 3 nGj, D®²wZ ˆKvY KZ? AbymiY KiGZ nq? K i L ii
K 30 L 45 K 6 L 4 M iii N i, ii I iii
M 60 N 90 M 2 N 3 25. 
 4 + m + n + 32 MyGYvîi avivfzÚ nGj,
6. 
 mgGKvYx wòfzGRi 60 ˆKvY AâGbi 16. a I b `yBwU cƒYÆmsLÅv nGj a2 + b2 ‰i mvG^ m2 + n2 ‰i gvb wbGPi ˆKvbwU?
ˆÞGò wbGPi ˆKvbwU ˆhvM KiGj ˆhvMdj ‰KwU K 520 L 620
i. fƒwg < jÁ¼ ii. fƒwg > jÁ¼ cƒYÆeMÆ msLÅv nGe? M 820 N 320

iii. fƒwg < AwZfzR K 8ab L  2ab 26.  2 + 2  2 + 2  2 + .... avivwUi 2(n + 1)
wbGPi ˆKvbwU mwVK?
M 4ab N ab cG`i mgwÓ¡ KZ?
K 0 L 1
17. f(m) = m2 + 2m  7 nGj, f   3  = KZ?
1
K i I ii L i I iii
M 2 N 3
M ii I iii N i, ii I iii
K
49
L
60 27. cixÞvq cÉvµ¦ wRwc‰ ˆKvb aiGbi PjK?
7. ‰KwU mylg lofzGRi ‰KwU kxlÆGKvGYi gvb 9 9
K wewœQ®² L webÅÕ¦
KZ? 58 68
M
9
N 
9 M AwewœQ®² N AwebÅÕ¦
K 180 L 135
M 120 N 90 18. a3 + 3 3 ‰i ‰KwU Drcv`K? 28. sin = 2 nGj, cot  2    =?
3 
8. wPGò e†îwUi
2 2
K a + 3a + 3 L a  3a  3
1
OA = 6 ˆm.wg. nGj-
A M a+ 3 N a 3 K 3 L
O 30 3
i. cwiwa = 20 ˆm.wg.
B 19. 
 ABC ‰ AB = BC = CA = 6 nGj, M 1 N 0
ii. ˆÞòdj = 36 eMÆ ˆm.wg. gaÅgv AD = KZ ˆm.wg.? 29. 
 PQR ‰ Q = 90 ‰es P = 30
iii. AB PvGci Š`NÆÅ =  ˆm.wg. K 3 3 L 2 3 nGj, wbGPi ˆKvb mÁ·KÆwU mwVK?
wbGPi ˆKvbwU mwVK? M 6 2 N
3 K PR = 2QR L PR = 3QR
2 PQ
K i L ii I i M PQ = N PQ = 4QR
1
M iii N ii I iii 20. 
 x + = 5 nGj
x
3

9. ˆKvb eGMÆi A¯¦e†ÆGîi eÅvm 10 ˆm.wg. nGj, 1


30. U = {1, 2, 3, 4, 5, 6}, A = {1, 2, 3, 4},
i. x2  = 5 21 P = A nGj
eGMÆi ˆÞòdj KZ nGe? x2
1 i. P ‰i Dcv`vb 8wU
K 20 L 10 ii. x3 + 3 = 110
x
M 25 N 100 ii. A  P ‰i Dcv`vb 8wU
iii. x2 + 1 = 5x
10. 
 ˆKvGbv eMÆGÞò Zvi KGYÆi Dci AwâZ iii. A  P ‰KwU dvskb
wbGPi ˆKvbwU mwVK?
eMÆGÞGòi KZàY? K i L ii wbGPi ˆKvbwU mwVK?
K i L ii
K w«¼àY L ˆ`oàY M ii I iii N i, ii I iii
M i I ii N i, ii I iii
M mgvb N AGaÆK

1 L 2 M 3 N 4 K 5 K 6 L 7 M 8 N 9 N 10 N 11 M 12 K 13 L 14 M 15 N
Dîi

16 L 17 N 18 M 19 K 20 N 21 L 22 K 23 L 24 K 25 N 26 K 27 M 28 K 29 K 30 L
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 49
394 Rvjvjvev` KÅv´ŸbGg´Ÿ cvewjK Õ•zj ‰´£ KGjR, wmGjU

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. cot(  30) =
1
nGj sin = KZ? 12. 
 5 5 ‰i 5 wfwîK jM KZ? 20. cot  cosec = 3 nGj
4
3 1 5 3 5
K L M N cosec + cot = KZ?
1 3 2 2 2 3
K L0 M1 N
2 2 13. A = {1, 3, 5}, B = {2, 3, 5} ‰i ˆÞGò@ 3 4 3 4
K  L M N
2. x + 2y = 10; 2x + 4y = 18 mij 4 3 4 3
i. A  B = {3, 5}
mnmgxKiY `yBwU@ 21. y = 2x + 1 ‰KwU mgxKiY
ii. P(A  B) ‰i Dcv`vb msLÅv 16
K mvgémÅ L AmsLÅ mgvavb i. (1, 3) we±`ywU mgxKiYwUi ˆjLwPGòi
iii. A\B = {1, 5}
M mgvavb ‰KwU N mgvavb ˆbB wbGPi ˆKvbwU mwVK? IcGi AewÕ©Z
3. 
 5 + 8 + 11 + 14 + ... ... ... avivwUi ˆKvb ii. mgxKiYwUi ˆjLwPò ‰KwU mijGiLv
K i I ii L i I iii
c` 383? iii. mgxKiYwUi ˆjLwPò ‰KwU e†î
M ii I iii N i, ii I iii
K 127 L 129 wbGPi ZG^Åi AvGjvGK (14 I 15) bs cÉGk²i wbGPi ˆKvbwU mwVK?
M 130 N 132 K i I ii L i I iii
Dîi `vI:
4. 5 ‰i NƒYÆb ˆKvY KZ wWwMÉ? 1 M ii I iii N i, ii I iii
K 90 L 180 x+ =2 2
x 22. wbGPi ˆKvbwU Agƒj` msLÅv?
M 270 N 360 1
14. x2 + x2 = KZ? . 36
5. 12 ˆm.wg. DœPZv wewkÓ¡ ‰KwU mge†îf„wgK K 2.5 L
121
wmwj´£vGii eÅvmvaÆ 4 ˆm.wg. nGj ‰i K 4 L6 M8 N 10 3 64 7
eKÌZGji ˆÞòdj KZ eMÆ ˆm.wg.? 1 M N
15. x + 3 = KZ?
3
x
125 7
K 96 L 128 . ..
M 192 N 384
K 22 2 L 16 2 23. 
 0.28  42.18 = KZ?
M 14 2 N 10 2 .. .
6. ‰KwU MvQ I ‰i Qvqvi AbycvZ 3 : 3 nGj K 12.185 L 12.15
16. 
 ‰KwU e†Gîi ˆK±`ÊÕ© ˆKvY x + 80 ‰es
mƒGhÆi D®²wZ ˆKvY KZ wWMÉx? .. ..
e†îÕ© ˆKvY x + 10 nGj x ‰i gvb KZ? M 12.85 N 22.185
K 60 L 45
3m+n
M 30 N 15 K 50 L 60 24. hw` nm = 9 nq ZGe m : n = KZ?
wbGPi ZG^Åi AvGjvGK (7 I 8) bs cÉGk²i Dîi M 70 N 80
K 2:3 L 3:2 M 5:1N 1:5
`vI: wbGPi ZG^Åi AvGjvGK (17 I 18) bs cÉGk²i
wbGPi ZG^Åi AvGjvGK (25 I 26) bs cÉGk²i
ˆkÉwYeÅvwµ¦ 20-29 30-39 40-49 50-59 Dîi `vI:
Dîi `vI:
MYmsLÅv 5 6 7 2 B
`yB AâwewkÓ¡ ‰KwU msLÅvi `kK Õ©vbxq
7.   mviwYi ZG^Åi gaÅK ˆkÉwYi gaÅgvb C
O
A
Aâ ‰KK Õ©vbxq AGâi w«¼àY ‰es ‰KK
KZ? Õ©vbxq Aâ x|
K 34.5 L 38
25. 
 msLÅvwU KZ?
M 38.33 N 43.33 O ˆK±`Ê wewkÓ¡ e†Gî AC = 12 ˆm.wg. ‰es K 2x L 3x M 12x N 21x
8. 
 mviwYi ZG^Åi cÉPziK KZ? BOA = 60 26. 
 A⫼q Õ©vb wewbgq KiGj msLÅvwU
K 46.67 L 41.67 17. 
 AB PvGci Š`NÆÅ KZ ˆm.wg.?
M 38.33 N 37.5
KZ nGe?
K 40.84 L 12.57 K 3x L 4x M 12x N 21x
9. ‰KwU e†Gîi eÅvm 24 ˆm.wg. nGj cwiwa M 6.28 N 3.14
27. 0.000337 ‰i mvaviY jGMi cƒYÆK KZ?
KZ? 18. 
 AOB e†îKjvi ˆÞòdj KZ?  
K 15.07 L 37.7 K 4 L3 M3 N 4
K 150.8 L 75.4
M 75.4 N 150.77 28. 3  3 + 3  3 + ... ... ... ‰i 19-Zg c` KZ?
M 40.84 N 18.85
10. 
 log625  2log5 = KZ?
19. b`xi ZxGi ˆKvGbv Õ©vGbi Aci cÉvG¯¦i 90 K 3 L 3 M0 N 30
K log600 L log125 29. 2sin2y + 2cos2y = KZ?
M log25 N log5
wgUvi jÁ¼v MvGQi D®²wZ ˆKvY 60 nGj
K 2 L4 M0 N 2
. b`xi cÉÕ© KZ wgUvi?
11. 0.25 mgvb wbGPi ˆKvbwU? 30. 
2
 y  = 2a nGj 2
6a
‰i gvb KZ?
K 90 3 L 30 3 y y  2ay  1
5 25 23 50
K L M N M 120 3 N 60 3 K 3a L 2a M 3a N 6a
99 90 90 99

1 M 2 N 3 K 4 L 5 K 6 K 7 K 8 L 9 M 10 M 11 M 12 M 13 K 14 L 15 N
Dîi

16 L 17 M 18 N 19 L 20 K 21 K 22 N 23 K 24 K 25 N 26 M 27 K 28 K 29 K 30 N
50 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
395 Imgvbx ˆgwWGKj DœP we`Åvjq, wmGjU

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. ˆKvbwU Õ¼vfvweK msLÅv? 12. 4x3 + 3x2  2x + 1 = 0 mgxKiGYi NvZ 20. ABC ‰-
K 1 L 2 KZ? i. cosA = sinC
5 5
M  N 3 K 4 L 3 ii. cosA + secA =
2
2
M 2 N 1 1
2. 
 wbGPi ˆKvbwU Agƒj` msLÅv?
13. 75 ˆKvGYi ŠiwLK mÁ·ƒiK ˆKvGYi cwigvY
iii. tanC =
3
64 32
K L KZ? wbGPi ˆKvbwU mwVK?
36 64
K 15 L 105 K i I ii L i I iii
3
M
81
N
8 M 195 N 265 M ii I iii N i, ii I iii
625 3
27 14. 
 mgGKvYx wòfzGRi mƒßGKvY«¼Gqi cv^ÆKÅ 21. wbGPi Z^ÅàGjv jÞÅ Ki-
wbGPi ZG^Åi AvGjvGK (3 I 4) bs cÉGk²i Dîi 8 nGj, e†nîg ˆKvGYi gvb KZ wWwMÉ? i. 30 ˆKvY AâGbi ˆÞGò f„wg  jÁ¼ nGe
`vI: K 41 L 42 ii. 45 ˆKvY AâGbi ˆÞGò f„wg = jÁ¼ nGe
U = {1, 2, 3, 4, 5, 6} M 45 N 49 iii. 60 ˆKvY AâGbi ˆÞGò f„wg  jÁ¼ nGe
A = {1, 3, 5}, B = {2, 4, 6}
15. iÁ¼Gmi- wbGPi ˆKvbwU mwVK?
3. {A  B} ‰i gvb wbGPi ˆKvbwU? K i I ii L i I iii
i. mw®²wnZ evüàGjv ciÕ·i mgvb
K {} L {2, 4, 6} M ii I iii N i, ii I iii
M {1, 3, 5} N {1, 2, 3, 4, 5, 6} ii. mw®²wnZ ˆKvYàGjv ciÕ·i mÁ·ƒiK
22. ˆKvbwU mgvbycvZ?
4. A\B ‰i gvb wbGPi ˆKvbwU? iii. KYÆ«¼q ciÕ·iGK mgGKvGY mgw«¼Lw´£Z K 1:2=3:4 L 2 : 5 = 6 : 15
K {1, 2, 3, 4, 5, 6} L {2, 4, 6} KGi M 4:6=9:4 N 10 : 5 = 5 : 10
M {1, 3, 5} N {} 23. (2, 3) we±`ywU ˆKvb mgxKiGYi Dci
wbGPi ˆKvbwU mwVK?
5. a + b = 16 ‰es ab = 1 nGj, (a  b)2 = AewÕ©Z?
K i I ii L i I iii
KZ? K xy=1 L 2x + y = 7
M ii I iii N i, ii I iii
K 12 L 14 M x + 3y = 5 N 2x + 2y = 6
M 22 N 24 16. 
 5 ˆm.wg. eÅvmvaÆwewkÓ¡ e†Gîi ˆK±`Ê ˆ^GK
24.  16  8  0 + ...... avivwUi mvaviY A¯¦i
6. 
 x4  5x2 + 1 = 0 nGj, x + ‰i gvb
1 ˆKvGbv RÅv ‰i Dci AwâZ jGÁ¼i Š`NÆÅ 3 KZ?
x
ˆm.wg. nGj, e†Gîi H RÅv ‰i Š`NÆÅ KZ? K 8 L 8
KZ? 1
K 16 ˆm.wg. L 8 ˆm.wg. M 2 N
K 7 L 3 2
M 4 ˆm.wg. N 2 ˆm.wg.
M 7 N 3 25. 
 12 + 22 + 32 + ....... + 502 = KZ?
1 1 17. AwaPvGc A¯¦wjÆwLZ ˆKvY- K 1275 L 42925
7.  a + = 5 nGj, a + 3 ‰i gvb

a
3
a
KZ?
K cƒiK ˆKvY L mƒßGKvY M 1625625 N 54587
K 21 L 23 26.  eGMÆi cÉwZmvgÅ
 ˆiLv KqwU?
M Õ©„jGKvY N mgGKvY
M 110 N 140
K 4wU L 3wU
4n  1 18. 
 `yBwU e†î ciÕ·iGK ˆQ` KiGj ZvG`i
8. 
 n ‰i gvb wbGPi ˆKvbwU? M 2wU N 1wU
2 +1 gGaÅ mGeÆvœP KqwU mvaviY Õ·kÆK Aâb
n
K 2 +1 L 2n  1 27. 
 ‰KwU mgevü wòfzGRi evüi Š`NÆÅ 6
Kiv mÁ¿e?
M 2 n+1
N 2n1 ˆm.wg. nGj ‰i ˆÞòdj KZ eMÆ ˆm.wg.?
K 1wU L 2wU K 3 3 L 4 3
3
9. m=3 nGj, m = KZ? M 3wU N 4wU M 9 3 N 18 3
K 3
3
L 3 wbGPi ZG^Åi AvGjvGK (19 I 20) bs cÉGk²i 28. ‰KwU eGMÆi ‰K evüi Š`NÆÅ a ‰KK nGj,
M 3 N 27 Dîi `vI: ‰i ‰KwU KGYÆi Š`NÆÅ KZ ‰KK?
10. 
 log164 ‰i gvb KZ? A K 4a L 2a
1 1 M 3a N 2a
K L
16 8 2
29. MYmsLÅv mviwY cÉÕ§Z KiGZ nGj cÉ^Gg
1 1
M
4
N
2
ˆKvbwU cÉGqvRb?
K ˆkÉwY msLÅv L ˆkÉwY eÅeavb
11. 
 0.000567 ‰i mvaviY jGMi cƒYÆK B 3 C
M cwimi N MYmsLÅv
wbGPi ˆKvbwU?

19. A ‰i gvb ˆKvbwU? 30. 
 ˆKvbwU wewœQ®² PjK?
K 7 L 6 K 90 L 60 K Zvcgvòv L cvwLi msLÅv
 
M 5 N 4 M 45 N 30 M eqm N DœPZv

1 N 2 L 3 N 4 M 5 K 6 M 7 M 8 L 9 N 10 N 11 N 12 L 13 L 14 N 15 N
Dîi

16 L 17 L 18 L 19 L 20 N 21 N 22 L 23 K 24 L 25 L 26 K 27 M 28 N 29 M 30 L
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 51
396 nweMé miKvwi DœP we`Åvjq, nweMé

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 2a4 + 16a ivwkwUi Drcv`K wbGPi ˆKvbwU? 11. 4sinA = 3 nGj, tanA = KZ? wbGPi ˆKvbwU mwVK?
K 2a2 L 2+a 1 3 3 7 K i I ii L i I iii
M a2 N a2 + 2a + 4 K L M N
5 5 7 3 M ii I iii N i, ii I iii
2. {x  Ñ : 4 < x  5} ‰i ZvwjKv i…c 12. 
 n msLÅK Õ¼vfvweK msLÅvi NGbi mgwÓ¡ 23. e†îÕ© mvgv¯¦wiK ‰KwU
ˆKvbwU? 225| H msLÅv àGjvi mgwÓ¡ KZ? K iÁ¼m L eMÆ
K 0 L {4, 5} M {4} N {5} K 13 L 15 M 20 N 125 M AvqZ N UÇvwcwRqvg
3. {a + b, 2) = {4, a  b) nGj (a, b) ‰i gvb 13. 
 logx324 = 4 nGj, x ‰i gvb KZ?
24. wPGòi AvGjvGK tanP + cotR ‰i gvb KZ?
KZ? K 81 L2 3 M3 2N 8 2 3
K (1, 3) L (3, 1) M (4, 2) N (2, 4) K P
14. 3 3 ‰i 3 wfwîK jM KZ? 2
4. hw` f(x) = 3x2 + 4kx nq ZGe k ‰i ˆKvb 3 1 1 7
K L M N 32 L 4 5
gvGbi RbÅ f(2) = 0 nGe? 2 2 3 5
3 3 15. ax = ay nGj, hLb x = y nGe ˆmGÞGò 8
K 3 L M N 3 M
2 2 3 Q 3 R
i. a > 0 ii. a < 0
5.   ‰KwU avivi cÉ^g c` 2 ‰es mvaviY 5
iii. a  1 N
3
A¯¦i 3 nGj wbGPi ˆKvbwU mwVK?
25. tan( + 30) = 3 nGj,  ‰i gvb KZ?
i. avivwU 2 + 5 + 8 + ............... K i I ii L i I iii
K 30 L 45 M 60 N 90
ii. avivwUi 6Ó¤ c` 17 M ii I iii N i, ii I iii
wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
iii. cÉ^g 10wU cG`i mgwÓ¡ 155 wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i Dîi `vI:
wbGPi ˆKvbwU mwVK? Dîi `vI: M N
m+1
K i I ii L i I iii 3m+1 (3m1)
a=
(3m)m +1
‰es b = 9m1
M ii I iii N i, ii I iii F E
wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi 16. 
 a = 3 nGj m = KZ? A D
`vI: K 0 L 1 B C
A D M 1 N 2
3y + 8
wPGòi ABCDEF ‰KwU mylg lofzR|
17.  b = 81 nGj m = KZ?

2y + 7 CD = 4 ˆm.wg. ‰es EN = FM = 13 ˆm.wg.|
B C K 3, 3 L 3,  1
26. 
 mÁ·ƒYÆ ˆÞGòi cwimxgv KZ?
M 3, 1 N 3, 5
ABCD ‰KwU mvgv¯¦wiK hvi mw®²wnZ evü«¼Gqi K 46 ˆm.wg. L 50 ˆm.wg.
18.  a  b = 27 nGj m ‰i
 gvb ˆKvbwU?
Š`NÆÅ 3 ˆm.wg. I 4 ˆm.wg. K 0 L 1 M 54 ˆm.wg. N 58 ˆm.wg.
6.   y ‰i gvb KZ? 1 27. 
 ABCDEF ˆÞGòi ˆÞòdj KZ?
K 3 L 5 M 2 N 
2 K 44 3 eMÆ ˆm.wg. L 50 eMÆ ˆm.wg.
M 30 N 33 19. AwewœQ®² PjGKi D`vniY ˆKvbwU? 24
7. 
 ABCD ˆÞGòi AaÆ cwimxgv KZ? M 24 3 eMÆ ˆm.wg. N eMÆ ˆm.wg.
K Zvcgvòv L RbmsLÅv 3
K 7 ˆm.wg. L 14 ˆm.wg. M QvòxmsLÅv N eÕ§i msLÅv 28. ‰KwU NbGKi ‰K avi 2 3 ˆm.wg. nGj,
M 28 ˆm.wg. N 56 ˆm.wg. wbGPi ZG^Åi AvGjvGK (20 I 21) bs cÉGk²i KGYÆi ˆ`NÆÅ KZ?
8. hw` ‰KwU e†î ‰KwU wòfzGRi wZbkxlÆMvgx Dîi `vI: K 6 ˆm.wg. L 6 3 ˆm.wg.
nq ZGe e†îwUGK eGj ‰KwU ˆejGbi DœPZv 8 ˆm.wg. ‰es f„wgi eÅvm M 3 3 ˆm.wg. N 24 3 ˆm.wg.
K A¯¦e†Æî L A¯¦wjÆwLZ e†î 12 ˆm.wg.| 29.
1
 1 + 2 .... avivwU àGYvîi aviv nGj
M cwie†î N ewnte†î 20. ˆejbwUi eKÌc†GÓ¤i ˆÞòdj KZ eMÆ 2
9. wPGòi e†Gî ˆm.wg.? i. avivwUi mvaviY AbycvZ =  2
i. PS = 12
O
K 37.70 L 50.27 ii. avivwUi mµ¦g c` = 4 2
10 1
ii. OQ = 4 M 301.59 N 603.19 iii. cÉ^g wZbwU cG`i mgwÓ¡ =
6
iii. e†îwUi cwiwa 20 P Q S 21. ˆejbwUi AvqZb KZ Nb ˆm.wg.? 2 2
wbGPi ˆKvbwU mwVK? K 904.78 L 3015.91 wbGPi ˆKvbwU mwVK?
K i I ii L i I iii M 3619.12 N 150.81 K i I ii L i I iii
1 M ii I iii N i, ii I iii
M ii I iii N i, ii I iii 22. x2 + 2 = 7 nGj
x
1 30. ÷ay cwimxgv ˆ`Iqv ^vKGj ˆKvb cÉKvGii
10. = KZ? 1
x  1x 
2

1 + tan2 i. x + = 3
x
ii.
 
=4 wòfzR AuvKv mÁ¿e?
K cos L sec 1 K mgw«¼evü L mgevü
iii. x4 + = 47
M cosec N cot x4 M mgGKvYx N welgevü

1 N 2 N 3 L 4 M 5 N 6 N 7 K 8 M 9 L 10 K 11 M 12 L 13 M 14 K 15 L
Dîi

16 K 17 L 18 N 19 K 20 M 21 K 22 L 23 M 24 K 25 K 26 L 27 M 28 K 29 K 30 L
52 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
397 kvGqÕ¦vMé Bmjvwg ‰KvGWwg ‰´£ nvB Õ•zj, nweMé

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 2x  5 + 3 = 2 ‰i mwVK mgvavb ˆmU wbGPi ˆKvbwU mwVK? 19. 
 `ywU msLÅvi AbycvZ 3 : 4 ‰G`i M.mv.à.
ˆKvbwU? K i I ii L i I iii 3 nGj, msLÅv `ywUi j.mv.à. KZ?
K {3} L {} M ii I iii N i, ii I iii K 4 L 9
M { 3} N {3} M 12 N 36
11. 
 x2  2x + 1 = 0 nGj
2.  log2 2 64 ‰i
 gvb ˆKvbwU? 1 1
20. 8 ‰i NƒYÆb ˆKvY KZ wWMÉx?
i. x+ =2 ii. x =0 K 90 L 120
K 2 L 3 x x
M 4 N 8 M 180 N 360
1
iii. x2 + 2 = 4 21. 3x  5y = 7; 6x  10y = 15 ‰B mgxKiY
3. 0.555̇ ‰i mvgvbÅ f™²vsGki i…c ˆKvbwU? x
5 11 11 50 wbGPi ˆKvbwU mwVK? ˆRvUwU
K L M N
9 10 9 99 K i I ii L i I iii i. Amgém
4. D = {2, a} nGj, P(D) wbGPi ˆKvbwU? M ii I iii N i, ii I iii ii. ‰KwU gvò mgvavb AvGQ
K {2}, {a} L {2, a} iii. ciÕ·i AwbfÆikxj
wbGPi ZG^Åi AvGjvGK (12 I 13) bs cÉGk²i
M {{2}, {a}, {2, a}, } wbGPi ˆKvbwU mwVK?
N {{2}, {a}, {2, a}} Dîi `vI:
P K i I ii L i I iii
5. 23x + 2 = 16 nGj, x ‰i gvb KZ?
M ii I iii N i, ii I iii
6 6
K 2 L 4 O
2 4
22. 
 12 + 24 + 28 + ... ... ... + 768
M N Q R àGYvîi avivwUGZ KZwU c` AvGQ?
3 3 6
wbGPi ZG^Åi AvGjvGK (6 I 7) bs cÉGk²i Dîi K 5 L 6
PQR ‰ Q ‰es R ‰i mgw«¼LíK«¼q M 7 N 8
`vI: ciÕ·i O we±`yGZ wgwjZ nGqGQ| 23. ‰KwU mgevü wòfzGRi ‰K evüi Š`NÆÅ
ˆkÉwYeÅvwµ¦ 1519 2024 2529 3034 12. 
 OQR ‰i gvb KZ? 3 ˆm.wg. nGj, wòfzRwUi ˆÞòdj KZ eMÆ
MYmsLÅv 2 8 10 6 K 30 L 45 ˆm.wg.?
6.   cÉPziK wbYÆGq f1 + f2 ‰i gvb ˆKvbwU? M 60 N 90 3 3 3 9 9 3
K 4 L 6 K L M N
13.  QOR ‰i
 gvb KZ? 4 4 4 4
M 8 N 10 K 30 L 60 24. ‰KwU PvKvi eÅvm 8 ˆm.wg. nGj ‰i
7.  Dcvî mgƒGni
 gaÅK ˆKvbwU? M 120 N 180 ˆÞòdj KZ?
K 26.2 L 26.5
14. cosec sec2  1 = ? K 8 cm2 L 16 cm2
M 31 N 36.5
K sec L cos M 32 cm2 N 64 cm2
8. A = 15 nGj,
M sin N tan 25. ‰KwU wòfzGRi wZbwU ˆKvGYi AbycvZ
i. tan 3A = 2sin 3A
15. sin3A = cos3A nGj, tan4A = ? 3 : 4 : 5 nGj Þz`ËZg ˆKvGYi cwigvY KZ?
1
ii. cot4A = 1 K 15 L 45
3 K L 3
3 M 60 N 75
iii. sin 4A = cos2A
wbGPi ˆKvbwU mwVK? 3 26. 5 ‰i Pvi `kwgK Õ©vb chƯ¦ Avm®² gvb
M 1 N
K i I ii L i I iii
2 ˆKvbwU?
M ii I iii N i, ii I iii
wbGPi ZG^Åi AvGjvGK (16 I 17) bs cÉGk²i K 2.2269 L 2.2263
Dîi `vI: M 2.2361 N 2.2260
9. D
27. f(y) = y5 + 6y  5 nGj, f(1) ‰i gvb
A
BAC = 2x KZ?
O
4
ACB = x K 0 L 2
C M 12 N 14
A B C

16. ACB ˆKvGYi gvb KZ? 28. KqwU evüi Š`NÆÅ ˆ`qv ^vKGj ‰KwU eMÆ
B AOC = 88
K 15 L 30
AuvKv hvq?
ABC = x K 1 L 2
 x ‰i gvb KZ?
 M 45 N 60
M 3 N 4
K 44 L 88 17. BC ‰i gvb KZ?
29. ( )
16
M 136 N 272 K 2 2 L 2 3 5 = KZ?
1 K 5 L 5
10.  a + = 2 ‰es a > 0 nGj,
 M 4 2 N 4 3
a M 25 N 125
18. ‰KwU `ËeÅ 20% jvGf weKÌq Kiv nGj,
2 1
i. a + 2 = 2
1
ii. a3  3 = 0 30. 33x  2 = 81 nGj, x-‰i gvb KZ?
a a weKÌqgƒjÅ ‰es KÌqgƒGjÅi AbycvZ ˆKvbwU? K 2 L 4
1 K 5:4 L 6:5 2 4
iii. a4 + 4 = 4 M N
a M 5:6 N 4:5 3 3
1 L 2 M 3 K 4 M 5 M 6 L 7 L 8 N 9 M 10 K 11 K 12 K 13 M 14 K 15 L
Dîi

16 L 17 N 18 L 19 N 20 M 21 L 22 M 23 L 24 L 25 L 26 M 27 M 28 K 29 M 30 K
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 53
398 eWÆvi MvWÆ cvewjK nvB Õ•zj, kÉxgãj, ˆgŒjfxevRvi

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
.
1. 0.69 ‰i mvgvbÅ f™²vsk wbGPi ˆKvbwU? 13. 0.0336 ‰i ŠeævwbK i…c wbGPi ˆKvbwU? 22. 
 A

7 69 23 7 K 3.36  102 L 33.6104 90wg.


K L M N 30
11 100 30 10 M 36102 N 0.336102 B C

2. 
 ‰KwU cvLvi AaÆNƒYÆGbi cwigvc KZ wWMÉx? 14. (x) = z + 5z  3 nGj, (1) ‰i gvb
4 2
wPGò, BC ‰i Š`NÆÅ KZ?
K 90 L 180 M 270 N 360 KZ? K 51.96 wg. L 103.92 wg.
3. 4 + a + b + 32 + ... ... ... avivwUi mvaviY K 3 L 4 M 155.88 wg. N 180.43 wg.
AbycvZ KZ? M 7 N 9 23. e†Gîi ˆÞGò@
K 1 L2 M3 N 4 15. y2 = 9y ‰i mgvavb ˆmU wbGPi ˆKvbwU? i. ˆhGKvb mijGiLv ‰KwU e†îGK `yBGqi
4. ‰KwU `ËeÅ 20% ÞwZGZ weKÌq Kiv nGjv, K {0, 3} L {0, 3} AwaK we±`yGZ ˆQ` KiGZ cvGi bv
KÌqgƒjÅ I weKÌqgƒGjÅi AbycvZ ˆKvbwU? M {0, 9} N {0, 9} ii. e†Gîi mgvb mgvb RÅv ˆK±`Ê nGZ
K 4:5 L 5:4 M 5:6N 6:5
16. wòGKvYwgwZK mÁ·GKÆi ˆÞGò@ mg`ƒieZÆx
5
5. tan = nGj, cot2 ‰i gvb KZ?
2 i. sin(90  ) = sin iii. e†Gîi eÅvmB e†nîg RÅv
29 25 4 4 ii. sec2  tan2 = 1 wbGPi ˆKvbwU mwVK?
K L M N iii. sin2 + cos2 = 1
4 4 25 29
K i I ii L i I iii
6. p + q = 5, p  q = 3 nGj, p2 + q2 ‰i gvb wbGPi ˆKvbwU mwVK? M ii I iii N i, ii I iii
KZ? K i I ii L i I iii 24. 

P
K 34 L 19 M 17 N 8 M ii I iii N i, ii I iii
7. 
 evÕ¦e msLÅvi ˆÞGò@
17. 
 60 1 ˆm.wg.
i. 81 ‰KwU weGRvo msLÅv A
R
Q
ii. 21 ‰KwU weGRvo msLÅv 70
iii. 0.21 ‰KwU cƒYÆmsLÅv 60 wPGò, QR = KZ ˆm.wg.?
wbGPi ˆKvbwU mwVK? B
C
D
K 1 L 2 M 3 N 9
K i I ii L i I iii 25. 1 ˆm.wg. aviwewkÓ¡ ‰KwU NbGKi AvqZb
M ii I iii N i, ii I iii wPGò, ACD ‰i gvb KZ? KZ Nb ˆm.wg.?
8. C = {y : y  ô ‰es 5  y  10} ZvwjKv K 50 L 60 K 1 L3 M6 N 9
c«¬wZGZ wbGPi ˆKvbwU? M 70 N 130 26. ‰KwU e†Gîi eÅvm 12 ˆm.wg. nGj, ‰i
K {5, 6, 7, 8, 9} L {6, 7, 8, 9} 18. log5125 ‰i gvb wbGPi ˆKvbwU? cwimxgv KZ?
M {5, 6, 7, 8, 9, 10} N {6, 7, 8, 9, 10} K 3 L 5 K 37.70 ˆm.wg. L 75.40 ˆm.wg.
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i M 6 N 8 M 113.10 ˆm.wg. N 452.39 ˆm.wg.
Dîi `vI: 19. 5x + 3y = 4 I 2x + 7y = 9 mgxKiY 27. wbGPi ˆKvbwU mylg eüfzR?
x=3+2 2 ˆRvUwU@ K wòfzR L eMÆGÞò
1
9. 
 x + ‰i gvb KZ? i. mãwZcƒYÆ M cçfzR N lofzR
x
ii. AmsLÅ mgvavb AvGQ wbGPi ZG^Åi AvGjvGK (27 I 28) bs cÉGk²i
K 6 L4 2 M2 2N 0
1 iii. ciÕ·i AwbfÆikxj Dîi `vI:
10.  x2 + 2 ‰i gvb KZ?

x 10 Rb evjGKi IRb (ˆKwRGZ):
wbGPi ˆKvbwU mwVK?
K 28 L 30 M 32 N 34 46, 45, 33, 38, 43, 40, 50, 43, 35, 36
K i I ii L i I iii 28. DÚ DcvGîi cwimi KZ?
11. (21 + 31)1 ‰i gvb KZ?
1 2 5 6 M ii I iii N i, ii I iii K 10 L 16 M 17 N 18
K L M N
6 3 6 5 20. 3 : 8 = y : 32 nGj, y ‰i gvb KZ? 29. DÚ DcvGîi gaÅK KZ?
12. 
 hw` p + q = r nq ZGe@ K 3 L 12 K 40.5 L 41.5 M 42.5 N 43.5
i. p3 + q3 = r3  3pqr M 24 N 48 30. 

P
ii. (p q)2 = r2  4pq 21. 
 2x + 3y = 2 mgxKiGY x = 2 nGj cÉvµ¦ 5
4
iii. {(p + q)2}2 = r2
we±`ywU ˆKvb PZzfÆvGM? Q R
wbGPi ˆKvbwU mwVK?
K 1g L 2q
K i I ii L i I iii wPGò, QR = KZ ‰KK?
M ii I iii N i, ii I iii M 3q N 4^Æ
K 3 L9 M 16 N 20

1 N 2 L 3 L 4 L 5 M 6 M 7 K 8 M 9 K 10 N 11 N 12 K 13 K 14 K 15 N
Dîi

16 M 17 N 18 K 19 L 20 L 21 L 22 K 23 N 24 M 25 K 26 K 27 L 28 N 29 L 30 K
54 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
399 cUzqvLvjx KvGjÙGiU Õ•zj AÅv´£ KGjR, cUzqvLvjx

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. a, b, c, d ‰KwU mgv¯¦i avivi c` nGj 11. 
 3sinA  2cosA = 0, cosecA.cosA = ? 22. cos2B = KZ?
wbGPi ˆKvbwU mwVK? 3 1
K
10
L
8
K L 9 9
a+c c+d 2 2
K a= L b=
2 2 3 10 2 2
b+c b+d M N 1 M N
2 3 3
M a= N c=
2 2 12.  ABC ˆZ AB = AC = 25 cm ‰es
 23. 
 ABC mgevü wòfzGRi cwiGK±`Ê O nGj
2. 4  4 + 4  4 + 4  4 ... ... ... avivwUi BC = 30 cm nGj, ABC ‰i ˆÞòdj BOC = ?
(2n + 2) msLÅK cG`i mgwÓ¡ KZ? KZ cm2? K 30 L 60
K 4 L 4 K 250 L 300 M 90 N 120
M 0 N 8 M 340 N 360 24. ˆKvGbv ˆkÉwYi DœPmxgv 65 ‰es gaÅgvb
3. hw` sec = 2 nq, ZvnGj tan = ? 13.  3 ‰i 3 3 wfwîK jM KZ?
 62.5 nGj H ˆkÉwYi wbÁ²mxgv KZ?
1 4 3
K L 3 K L K 60 L 65
2 3 2 M 70 N 75
1 3 2
M 1 N
3
M
4
N
3
25. AwRfGiLv Aâb KiGZ `iKvi@
4. ‰KwU eGMÆi ‰KwU evü 3 àY e†w«¬ Kiv 14.  9x2 + 16y2 ‰i mvG^ KZ ˆhvM KiGj
 i. x AÞ eivei ˆkÉYx DœPmxgv
nGj ‰i ˆÞòdj KZ àY e†w«¬ cvGe? ‰wU ‰KwU eMÆ nGe? ii. y AÞ eivei KÌgGhvwRZ MYmsLÅv
K 3 L 6 K 6xy L 12xy iii. AwewœQ®² ˆkÉwYmxgv
M 9 N 15 M 24xy N 144xy wbGPi ˆKvbwU mwVK?
5.  hLb log10x = 3,
 ZLb x ‰i gvb KZ? 15. 4, 0, 6, 12, 8, 4, 9 ‰es 15 DcvîàGjvi K i I ii L i I iii
K 0.11 L 0.10 gaÅK KZ? M ii I iii N i, ii I iii
M 0.01 N 0.001 K 7 L 8
6. mgevü wòfzGRi ˆÞòdj 25 3 eMÆ ˆm.wg. M 9 N 12
wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
nGj ‰i evüi Š`NÆÅ KZ ˆm.wg.? 16. mgvb mgvb f„wgi Ici AewÕ©Z ˆhGKvGbv Dîi `vI:
K 10 L 8 `yBwU wòfzGRi wkitGKvY«¼q mÁ·ƒiK nGj, ˆkÉwY 11-20 21-30 31-40 41-50
M 6 N 4 ‰G`i cwie†î«¼q Kxi…c nGe? MYmsLÅv 4 18 22 16
7. 5 2 ˆm.wg. eÅvmvaÆ wewkÓ¡ ‰KwU e†Gî K mgvb L Amgvb 26. DcvGîi gaÅK ˆkÉwY ˆKvbwU?
‰KwU eMÆ A¯¦wjÆwLZ nGj, eMÆwUi evüi M ciÕ·iGœQ`x N Õ·kÆK K 11-20 L 21-30
Š`NÆÅ KZ ˆm.wg.? 17. 
 12 + 24 + 48 + ... ... ... 768| avivwUi M 31-40 N 41-50
K 10 L 8 27. gaÅK wbYÆGqi RbÅ ˆÞGò fm = ?
M 6 N 4 mgwÓ¡ KZ?
K 1524 L 2545 K 40 L 22
8.  ‰KwU wòfzGRi ˆKvYàGjvi
 AbycvZ M 2054 N 2124 M 20 N 18
1 : 1 : 2 nGj, wòfzRwU@ 28. ˆKvGbv e†Gîi AwaPvGc A¯¦wjÆwLZ ˆKvY
18. 2  2 + 2  2 + ... ... ... avivwUi (2n + 2)
i. mgw«¼evü wòfzR Kxi…c?
msLÅK cG`i mgwÓ¡ KZ?
ii. mgGKvYx wòfzR K 0 L 1 K mƒßGKvY L mgGKvY
iii. mgw«¼evü mgGKvYx M 2 N 3 M Õ©ƒjGKvY N cÉe†«¬ ˆKvY
wbGPi ˆKvbwU mwVK? 19. mylg cçfzGRi ‰KwU kxlÆGKvY KZ wWwMÉ? 29. mgGKvYx wòfzGRi cwie†Gîi ˆKG±`Êi AeÕ©vb
K i I ii L i I iii K 108 L 120
ˆKv^vq?
M ii I iii N i, ii I iii M 180 N 360
K wòfzGRi evwnGi
wbGPi ZG^Åi AvGjvGK (9 I 10) bs cÉGk²i 20. e†Gîi ˆÞGò@
Dîi `vI: L e†Gîi ˆKG±`Ê
A i. AaÆe†îÕ© ˆKvY ‰K mij ˆKvY
ii. ˆh ˆKvGbv RÅv ‰i jÁ¼w«¼L´£K ˆK±`ÊMvgx M AwZfzGRi gaÅwe±`yGZ
O iii. e†Gîi mgvb mgvb RÅv ‰i gaÅwe±`yàGjv mge†î N f„wgi Dci
wbGPi ˆKvbwU mwVK? 30. `yBwU exRMvwYwZK ivwk x I y ‰i àYdj
xy = 0 nGj@
B C
K i I ii L i I iii
E
BAC = 60 M ii I iii N i, ii I iii i. x = 0 A^ev y = 0
9. BOC = ? wbGPi ZG^Åi AvGjvGK (21 I 22) bs cÉGk²i ii. x = 0 ‰es y  0
K 110 L 120 Dîi `vI: iii. x  0 ‰es y = 0
M 150 N 160 tan(2A  45) = 1 = 3 sinB wbGPi ˆKvbwU mwVK?
10. ABE + ACE = ? 21. A ‰i gvb KZ? K i I ii L i I iii
K mgGKvY L mÁ·ƒiK ˆKvY K 30 L 45
M ii I iii N i, ii I iii
M cƒiK ˆKvY N mijGKvY M 60 N 90
1 N 2 M 3 M 4 N 5 N 6 K 7 K 8 N 9 L 10 N 11 M 12 L 13 N 14 M 15 K
Dîi

16 M 17 K 18 K 19 K 20 M 21 L 22 L 23 N 24 K 25 K 26 M 27 L 28 K 29 M 30 N
kxlÆÕ©vbxq Õ•zGji cÉk²cò: wbeÆvPwb cixÞv 2024 55
400 eiàbv miKvwi evwjKv DœP we`Åvjq, eiàbv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
1. 
 2x + y = 1 I x =  4 mgxKiY«¼Gqi 4
12. x2  x2 = 0 mgxKiYwUi@ wbGPi ZG^Åi AvGjvGK (22 I 23) bs cÉGk²i
mgvavb we±`y ˆKvb PZzfÆvGM AewÕ©Z? Dîi `vI: A

K cÉ^g L w«¼Zxq i.PjGKi mGeÆvœP NvZ 4


M Z‡Zxq N PZz^Æ `yBwU gƒj ( 2 ,  2 )
ii.
O

2. 35  2x  x2 ‰i Drcv`GK weGkÏwlZ i…c aË‚eK c` 4


iii. B D C

wbGPi ˆKvbwU? wbGPi ˆKvbwU mwVK?


O ˆK±`ÊwewkÓ¡ e†Gî ABC e†îÕ© wòfzR|
K (7  x) (5 + x) L (7  x) (5  x) K i I ii L i I iii
BC = 8 ˆm.wg. I OD = 3 ˆm.wg.
M (7 + x)(5  x) N (7 + x)(5 + x) M ii I iii N i, ii I iii
22. ABC e†Gîi ˆÞòdj KZ?
3. 256 + 128 + 64 + ... ... ... avivwUi KZZg 13. e†îÕ© mvgv¯¦wiK ‰KwU@
K 78.54 eMÆ ˆm.wg.
1 K iÁ¼m L eMÆ
c` 4 ? L 31.42 eMÆ ˆm.wg.
M AvqZ N UÇvwcwRqvg
K 9 L 10 M 11 N 12 M 50.27 eMÆ ˆm.wg.
14. 
 P
4. p, q, r KÌwgK mgvbycvZx nGj, N 201.06 eMÆ ˆm.wg.
p2 + q2 23. OBC = 30 nGj BAC = KZ?
= KZ? E F
q2 + r2 K 30 L 60 M 90 N 120
K
r
L
p
M
q
N
q
Q R 24. A = 30 nGj@
p r p r D
3
5.  x  2y = 5 I 2x  4y = 10

wPGò, PE = EQ, PF = FR ‰es PD,
i. sin2A =
2
ii. cot2A = 3
i. mgxKiY ˆRvU mgém
QPR ‰i mgw«¼L´£K nGj@ iii. cos 3A = 0
ii. mgxKiY ˆRvU ciÕ·i wbfÆikxj i. EF || QR wbGPi ˆKvbwU mwVK?
iii. mgxKiY ˆRvUwUi AmsLÅ mgvavb AvGQ ii. QR = 3 EF K i I ii L i I iii
wbGPi ˆKvbwU mwVK? iii.
QD QE
= M ii I iii N i, ii I iii
DR RF
K i I ii L i I iii 25. 
 ‰KwU MvGQi DœPZv I MvQwUi Qvqvi
M ii I iii N i, ii I iii
wbGPi ˆKvbwU mwVK?
Š`GNÆÅi AbycvZ 3 : 3 nGj D®²wZ ˆKvY
K i I ii L i I iii
6. 3x1 = 27 nGj, x ‰i gvb KZ? KZ?
K 4 L6 M9 N 7 M ii I iii N i, ii I iii
K 90 L 60 M 45 N 30
7. log5p2 =  2 nGj, p ‰i gvb KZ? 15. iÁ¼Gmi cÉwZmvgÅ ˆiLvi msLÅv KqwU?
K 0 L1 M2 N 4 wbGPi ZG^Åi AvGjvGK (26 I 27) bs cÉGk²i
1
K 5 L
5
M  2 N  10 16. ˆKvGbv e†Gîi AwaPvGc A¯¦wjÆwLZ ˆKvY@ Dîi `vI:
8. p2 + q2 = 3 ‰es pq = 3 nGj, (p + q) ‰i K mƒßGKvY L Õ©ƒjGKvY ˆkÉwY eÅeavb 21-30 31-40 41-50 51-60
gvb KZ? M mgGKvY N cÉe†«¬ ˆKvY MYmsLÅv 15 25 35 25
K 3 L9 M 11 N 15 17. 2 sin (  30) = 3 nGj,  ‰i gvb KZ? 26. gaÅK ˆkÉwYi cƒeÆeZÆx ˆkÉwYi KÌgGhvwRZ
9. 5 + 7 + 9 + 11 + ... ... ... K 0 L 30 M 60 N 90 MYmsLÅv (Fc) KZ?
i. ‰KwU mgv¯¦i aviv 18. ABC-‰ AB = BC = AC = 8 ˆm.wg. K 25 L 40 M 70 N 100
ii. avivwUi 23 Zg c` 49 nGj, gaÅgv CD ‰i mgvb Š`NÆÅ wewkÓ¡ 27. cÉ`î DcvGîi cÉPziK KZ?
iii. avivwUi cÉ^g AvUwU cG`i mgwÓ¡ 96 mgevü wòfzGRi ˆÞòdj KZ eMÆ ˆm.wg.? K 35 L 41 M 46 N 51
wbGPi ˆKvbwU mwVK? K 4 3 L 8 3 M 12 3 N 16 3 28. ‰KwU mylg lofzGRi KqwU cÉwZmvgÅ ˆiLv
K i I ii L i I iii 19. 
 AvGQ?
Q
M ii I iii N i, ii I iii K 2wU L 3wU M 4wU N 6wU
5 ˆm.wg.
10. 
 B = {x  ô : 2  x  4} nGj@ P
29. D
13 ˆm.wg.
O
i. B ˆmGUi Dcv`vbàGjvi gGaÅ ˆgŒwjK
P Q
msLÅv 2wU R E F
ii. P(B) ‰i Dcv`vb msLÅv 8wU
iii. B ˆmGUi Dcv`vbàGjvi gGaÅ 2 «¼viv O ˆK±`Ê wewkÓ¡ e†Gîi PQ I PR `yBwU DEF-‰ PQ || EF nGj, wbGPi ˆKvbwU
wefvRÅ msLÅv 1wU Õ·kÆK POQ ‰i ˆÞòdj KZ eMÆ ˆm.wg.? mwVK?
K 65 L 60
wbGPi ˆKvbwU mwVK? K DP : PE = DF : QF
M 32.5 N 30 L DE : PE = DF : QF
K i I ii L i I iii
20. mylg cçfzGRi ‰KwU kxlÆ ˆKvY KZ? M DE : DF = PQ : EF
M ii I iii N i, ii I iii K 106 L 108 M 110 N 120 N PQ : EF = PE : QF
.. .
11. 42.18  0.28 = KZ? 21. iÁ¼Gmi KYÆ«¼q 20 ˆm.wg. I 30 ˆm.wg. nGj 30. 
 y2 + (a + b)y + ab = 0 mgxKiGYi
.. .. ˆÞòdj KZ? mgvavb ˆmU wbGPi ˆKvbwU?
K 0.132 L 11.810
K 50 eMÆ ˆm.wg. L 100 eMÆ ˆm.wg. K {a, b} L {a, b}
.. ..
M 12.185 N 13.285 M 300 eMÆ ˆm.wg. N 1000 eMÆ ˆm.wg. M {a, b} N {a, b}

1 L 2 M 3 M 4 L 5 N 6 K 7 L 8 K 9 N 10 K 11 M 12 K 13 M 14 L 15 M
Dîi

16 K 17 N 18 M 19 N 20 L 21 M 22 K 23 L 24 L 25 L 26 L 27 M 28 N 29 L 30 N
56 cvGéix ‰m‰mwm ˆUÕ¡ ˆccvim ˆgBW BwR: cÉk²cò  MwYZ
401 ˆfvjv miKvwi evwjKv DœP we`Åvjq, ˆfvjv

MwYZ welq ˆKvW : 1 0 9
mgq– 30 wgwbU eüwbeÆvPwb AfxÞv cƒYÆgvb– 30
[`ËÓ¡eÅ: mieivnK‡Z eüwbeÆvPwb AfxÞvi DîicGò cÉGk²i KÌwgK bÁ¼Gii wecixGZ cÉ`î eYÆmÁ¼wjZ e†îmgƒn nGZ mwVK/ mGeÆvrK‡Ó¡ DîGii e†îwU () ej cGq´Ÿ Kjg «¼viv
mÁ·ƒYÆ fivU Ki| cÉwZwU cÉGk²i gvb 1|]
.. . . 11. tan(B  A) ‰i gvb KZ? 21. ABC I DEF ‰i A = D, AB = 5 cm,
1. 
 8.243 ˆ^GK 5.24673 weGqvM KiGj
K
1
L1 M 3 N 
1 DE = 3 cm, AC = 4 cm, DF = 2cm nGj
weGqvMdj KZ? 3 3 wòfzR«¼Gqi ˆÞòdGji AbycvZ KZ?
. . . . 12. mƒGhÆi D®²wZ ˆKvY KZ wWwMÉ nGj ‰KwU
K 2.99669761 L 2.9612761 K 20 : 6 L 16 : 8
1 M 5:4 N 10 : 12
. . . . MvGQi Qvqvi Š`NÆÅ DœPZvi àY nGe?
M 2.99669760 N 2.92142760 3
22. H ‰i NyYÆb ˆKvY KZ?
1 K 90 L 45 M 60 N 30
2. ˆKvGbv ˆmGUi DcGmGUi msLÅv 24n nGj K 30 L 90 M 360 N 180
13. hw` ˆKvGbv LuywUi Qvqvi Š`NÆÅ ÷bÅ nq ZGe 23. mylg cçfzGRi NƒYÆb gvòv KZ?
ˆmUwUi Dcv`vb msLÅv KZ? LuywUi D®²wZ ˆKvY KZ?
4n n
K 4 L5 M6 N 1
K 4n L2 M 4n N 16 K 90 L 180 M 0 N 45 24. Q
3.
3
x+
3
‰es x  y = 3 nGj
y=5
3 3 14. 5, 10, 8 ‰i PZz^Æ mgvbycvZx ˆKvbwU?
K 12 L 13 M 16 N 14
x + y ‰i gvb KZ?
15. 
 100 I 64 ‰i w«¼fvwRZ AbycvZ KZ?
K 50 L 63 M5 N 65
K 50 : 32 L 10 : 8 P R
4. 
 0.00836 ‰i jGMi AskK KZ? M 10 : 6.4 N 200 : 128
D

K 0.0778 L 0.9222 16. x  y  4 = 0 ‰es 3x  3y  10 = 0 wPGò, PQ = QR, QD = 4 cm ‰es PQ = PR



M 2 N 0.5723 mgxKiY«¼Gqi KqwU mgvavb we`Ågvb? nGj PQ ‰i gvb KZ?
ax bx K 1wU L AmsLÅ K 4.6 cm L 6 cm
5.  = a2  b2 nGj x ‰i gvb KZ?
b a M 4 cm N 4.25 cm
M 2wU N bvB
K 0 L ab M1 N  ab 5 3
17. 4x + 3y =  12 ‰es 2x = 5 nGj 25. 
 ‰KwU mgevü wòfzGRi DœPZv
6. 2
(x, y) = KZ?
A wgUvi nGj, ˆÞòdj KZ?
K 52  22  L 25  10 75 5 3 25 3 5
 3   K
4
L
4
M
4
N
2
22  5
B C M (5, 2) N  3 2 26.
  D
1.5 cm
C
wbGPi ˆKvbwU mwVK? wbGPi ZG^Åi AvGjvGK (18 I 19) bs cÉGk²i
3 cm
K AB < AC  BC L AB > AC  BC Dîi `vI: 2

M AC < BC  AB N AC  AB > BC ‰KwU mgv¯¦i avivi 1g c` 2 ‰es mvaviY


A 4 cm B
7. 
 UÇvwcwRqvg AuvKGZ DcvGîi cÉGqvRb@ A¯¦i 3|
K 3wU L 4wU 18. 
 avivi n Zg c` KZ? wPòwUi ˆÞòdj KZ?
M 5wU N 2wU K 3n + 1 L 3n  1 K 4 cm2 L 4.6 cm2
n(3n + 1) n(3n  1) M 5.5 cm2 N 2.25 cm2
8. M
2
N
2
O 27. 
 P = 30 nGj 1  cos2P ‰i gvb KZ?
C
19. 
 mvaviY A¯¦iGK mvaviY AbycvZ aiGj
1 1 3 1
A
D
B 5g c` KZ? K
2
L
2
M
2
N
2
K 81 L 243
wPGò AB = 24 cm, OC = 5 cm nGj CD M 160 N 162
28. avc wePzÅwZ ui = ˆKvbwU?
‰i gvb KZ? 20. 
 A
K
xi  a
L
a  xi
h h
K 8 L6 M 13 N 12 F
E xi + a xi
9. ˆKvGbv wòfzGRi KqwU ewne†Æî AuvKv hvq? M
h
N
h
+a
K 1wU L 2wU M 3wU N 4wU 29. ˆKvGbv MYmsLÅv wbGekGbi cÉPziK = 72.5,
B C
wbGPi ZG^Åi AvGjvGK (10 I 11) bs cÉGk²i D L = 70, f1 = f2 = 3 nGj ˆkÉwY eÅeavb KZ?
Dîi `vI: wPGò AE = CE, EF = 7cm nGj AC ‰i K 10 L5 M 12 N 15
1 gvb KZ? 30. 3, 3, 3, 4, 5, 8 I x ˆhGKvGbv 7wU msLÅv
cot(A + B) = , 3 sec(A  B) = 2
3
K 49 cm L
7
cm
nGj, msLÅvàGjvi Mo cÉPziGKi wZbàY nq
10. A ‰i gvb KZ? 6
ZGe x ‰i gvb KZ?
6
K 30 L 90 M 60 N 45 M 42 cm N cm K 27 L 63 M 37 N 33
7
1 M 2 K 3 N 4 L 5 L 6 L 7 L 8 K 9 M 10 N 11 N 12 M 13 K 14 M 15 L
Dîi

16 N 17 K 18 L 19 N 20 M 21 K 22 N 23 L 24 K 25 M 26 M 27 N 28 K 29 L 30 M

You might also like