0% found this document useful (0 votes)
9 views1 page

BVQVLVJX Mikvwi GWNJV K JR, BVQVLVJX: D"Pzi Mwyz Wøzxq Cî Eûwbe©Vpwb Afxÿv

The document appears to be a collection of mathematical problems and equations, likely intended for educational purposes. It includes various topics such as trigonometric functions, algebraic equations, and complex numbers. The format suggests it may be part of a textbook or worksheet for students studying mathematics.

Uploaded by

sharif.csecu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
9 views1 page

BVQVLVJX Mikvwi GWNJV K JR, BVQVLVJX: D"Pzi Mwyz Wøzxq Cî Eûwbe©Vpwb Afxÿv

The document appears to be a collection of mathematical problems and equations, likely intended for educational purposes. It includes various topics such as trigonometric functions, algebraic equations, and complex numbers. The format suggests it may be part of a textbook or worksheet for students studying mathematics.

Uploaded by

sharif.csecu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 1

66

†bvqvLvjx miKvwi gwnjv K‡jR, †bvqvLvjx welq †KvW : 2 6 6


mgq25 wgwbU D”PZi MwYZ wØZxq cÎ eûwbe©vPwb Afxÿv c~Y©gvb25
[we‡kl `ªóe¨ : mieivnK…Z eûwbe©vPwb Afxÿvi DËic‡Î cÖ‡kœi µwgK b¤^‡ii wecix‡Z cÖ`Ë eY©msewjZ e„Ëmg~n n‡Z mwVK/ m‡e©vrK…ó Dˇii e„ËwU ej c‡q›U Kjg
Øviv m¤ú~Y© fivU Ki| cÖwZwU cÖ‡kœi gvb 1| cÖkc
œ ‡Î †Kv‡bv cÖKvi `vM/wPý †`Iqv hv‡e bv|]
1. 3  5i Gi Av¸©‡g›U KZ? 10. (x) = 2 tan1 x n‡j 18. †Kv‡bv we›`y‡Z wµqviZ 10 N I 6N ej `ywUi
5 5 4x AšÍM©Z †Kv‡bv KZ n‡j jwä 2 19N n‡e?
K   tan1 L   + tan1 i. (x) = tan 1
3 3 1 + x2 K 30 L 60
5 5
M  tan1
3
N  tan 1
( )

3 ii. (x) = sin1
2x
1 + x2
M 90 N 120
19. `yBwU mgvb e‡ji jwäi eM© Zv‡`i
1 1  x2
2. 1 + sin   i cos 
Gi ev¯Íe Ask wb‡Pi iii. (x) = cos1 ¸Yd‡ji wZb¸Y n‡j ej؇qi AšÍM©Z
1 + x2
†KvbwU? wb‡Pi †KvbwU mwVK? †KvY KZ?
1 K 30 L 60
K
2
L2 K i I ii L i I iii
M 90 N 120
cos   cos  M ii I iii N i, ii I iii
M N  wb‡Pi Z‡_¨i Av‡jv‡K 20 I 21 bs cÖ‡kœi
2 + 2 sin  2 + 2 sin  11. sin  = sin  n‡j mvaviY mgvavb wb‡Pi
DËi `vI :
 wb‡Pi Z‡_¨i Av‡jv‡K 3 I 4 bs cÖ‡kœi †KvbwU?
12 kg I 8 kg IR‡bi `ywU mgvšÍivj ej
DËi `vI : 
20 cm e¨eav‡b wµqv K‡i|
n
2 K  = (2n + 1) L  = n + ( 1) 
2
Z= GKwU RwUj msL¨v|
4 + 3i  20. ejØq wem`„k mgvšÍivj n‡j e„nËi ej
3. Gi AbyeÜx RwUj msL¨v †KvbwU? M  = n +  N  = (4n + 1)
z 2 †_‡K jwäi cÖ‡qvM we›`yi `~iZ¡ KZ?
K
2
L
2 12. n GKwU c~Y©msL¨v n‡j 2 sin 2x = 1 K 40 cm L 30 cm
4  3i 4  3i M 20 cm N 10 cm
mgxKi‡Yi mvaviY mgvavb †KvbwU?
2 2
M
25
(4 + 3i) N  (4 + 3i)
25  n  21. ejØq m`„k mgvšÍivj n‡q hw` ci¯úi
K n + L + ( 1)n
4. | z | = KZ?
12 2 12 wµqv we›`yi Ae¯’vb cwieZ©b K‡i Zvn‡j
25 2 M n 

N n + ( 1)n
 jwäi miY KZ?
K L 12 6
2 5 K 2 cm L 4 cm
2 2 13. KwbK x2 = 8y Gi Dr‡Kw›`ªKZv KZ? M 8 cm N 12 cm
M N
25 5 K e=0 L e=1
22. †Kv‡bv we›`y‡Z wµqviZ P, 2P Ges 3P
5. 2x2  mx + 2 = 0 mgxKi‡Yi g~jØq RwUj M 0<e<1 N e>1
GKK ejÎq wµqv K‡i mvg¨ve¯’v m„wó
n‡e hLb 14. 4x  y + 2 = 0 mij‡iLvwU y2 = 32x
K‡i| 1g `ywU e‡ji AšÍfz©³ †KvY KZ?
K m>4 L 4<m<4 cive„ˇK ¯úk© Ki‡j ¯úk©we›`y KZ? K 30 L 60
M m<4 N m4
6. x2  4x + 1 = 0 mgxKi‡Yi g~jØq m, n
K (12 4) L (4 12) M 90
23. GKwU †bŠKv 8m s1 †e‡M †mvRvmywR GKwU
N 120

n‡j m3 + n3 Gi gvb KZ? M (1, 8) N (8, 1)


b`x cvwo w`‡Z cv‡i| hw` †mÖv‡Zi †eM
K 52 L 75 x2 y2
15. y = 3x + k †iLvwU 4 + 3 = 1 Dce„‡Ëi 6 m s1 nq, Z‡e †bŠKvi †eM KZ?
M 1692 N 1764
¯úk©K n‡j k Gi gvb KZ? K 2 m s1 L 2 7 m s1
7. 2x3  9x2 + 14x  5 = 0 mgxKi‡Yi `ywU 1 1
M 10 m s N 14 m s
1 K± 13 L± 15
g~j 2  i I 2 n‡j Aci g~j KZ? 24. GKwU ey‡jU †Kv‡bv †`qv‡j 4 Bw XzKvi
M ±6 N ± 39
K 2+i L 2i 16. 16x2  25y2 = 400 Awae„‡Ëi AmxgZ‡Ui ci †eM A‡a©K nvivq| ey‡jUwU †`qv‡ji
M 2+i N 2i
mgxKiY wb‡Pi †KvbwU? wfZi Avi KZ Bw XzK‡e?
8. x2 + mx + 3 = 0 mgxKi‡Yi GKwU g~j 2 n‡j 4 5 K
3
L
4
3 K x=± y L x=± y 4 3
i. Aci g~j 5 4
2 8
4 5 M N3
7 M y=± x N y=± x 3
ii. m Gi gvb 5 4
2 x2 y2 25. u Avw`‡e‡M Avbyf‚wg‡Ki mv‡_  †Kv‡Y
1 17. 
25 16
= 1 Awae„‡Ëi
wbwÿß e¯‘i
iii. g~j؇qi AšÍi
2
i. AbyeÜx A‡ÿi ˆ`N©¨ 8 wePiYKvj
u sin 
wb‡Pi †KvbwU mwVK? i.
g
20
K i I ii L i I iii ii. wbqvgK †iLvi mgxKiY y = ± u2
41 ii. e„nËg cvjøv
M ii I iii N i, ii I iii 32
g
iii. Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ u2 sin2 
9. sin1 x + cos1 x = KZ? 5 iii. me©vwaK D”PZv
2g
K

L
 wb‡Pi †KvbwU mwVK?
6 4 wb‡Pi †KvbwU mwVK?
K i I ii L i I iii
  K i I ii L i I iii
M N M ii I iii N i, ii I iii
3 2 M ii I iii N i, ii I iii

You might also like