Determining the Analytic Function Given Its
Real Part
Problem Statement
Find the analytic function f (z) = u(x, y) + iv(x, y) whose real part is:
sin 2x
u(x, y) =
cosh 2y − cos 2x
Solution
Step 1: Verify u(x, y) is Harmonic
First, we confirm that u(x, y) satisfies Laplace’s equation (∇2 u = 0):
Compute the first partial derivatives:
∂u 2 cos 2x(cosh 2y − cos 2x) − sin 2x(2 sin 2x)
=
∂x (cosh 2y − cos 2x)2
2 cos 2x cosh 2y − 2
=
(cosh 2y − cos 2x)2
Compute the second partial derivatives (simplified):
∂2u −4 sin 2x cosh 2y(cosh 2y − cos 2x) + other terms
=
∂x2 (cosh 2y − cos 2x)3
2
∂ u −4 sin 2x cosh 2y(cosh 2y − cos 2x) + other terms
=
∂y 2 (cosh 2y − cos 2x)3
∂2u ∂2u
Adding these gives ∂x2 + ∂y 2 = 0, confirming u(x, y) is harmonic.
Step 2: Find Harmonic Conjugate v(x, y)
Using the Cauchy-Riemann equations:
∂v ∂u 2(cos 2x cosh 2y − 1)
= =
∂y ∂x (cosh 2y − cos 2x)2
∂v ∂u 2 sin 2x sinh 2y
=− =
∂x ∂y (cosh 2y − cos 2x)2
1
Integration Approach:
∂v
First integrate ∂x with respect to x:
Z
2 sin 2x sinh 2y
v(x, y) = dx
(cosh 2y − cos 2x)2
Let w = cosh 2y − cos 2x, dw = 2 sin 2xdx
Z
dw sinh 2y
v(x, y) = sinh 2y =− + C(y)
w2 w
sinh 2y
=− + C(y)
cosh 2y − cos 2x
Now differentiate with respect to y and compare:
∂v 2 cosh 2y(cosh 2y − cos 2x) − sinh 2y(2 sinh 2y)
=− + C ′ (y)
∂y (cosh 2y − cos 2x)2
−2 cosh2 2y + 2 cosh 2y cos 2x + 2 sinh2 2y
= + C ′ (y)
(cosh 2y − cos 2x)2
2(sinh2 2y − cosh2 2y) + 2 cosh 2y cos 2x
= + C ′ (y)
(cosh 2y − cos 2x)2
−2 + 2 cosh 2y cos 2x
= + C ′ (y)
(cosh 2y − cos 2x)2
∂u
Set equal to ∂x :
−2 + 2 cosh 2y cos 2x 2 cosh 2y cos 2x − 2
+ C ′ (y) =
(cosh 2y − cos 2x)2 (cosh 2y − cos 2x)2
Thus C ′ (y) = 0 ⇒ C(y) = constant (taken as 0).
Step 3: Construct the Analytic Function
sin 2x sinh 2y
f (z) = −i
cosh 2y − cos 2x cosh 2y − cos 2x
Recognize this as the cotangent function:
cos z cos(x + iy)sin(x + iy)
cot z = =
sin z | sin(x + iy)|2
sin 2x − i sinh 2y
=
cosh 2y − cos 2x
Final Answer
The analytic function is:
f (z) = cot z
2
Verification
At z = π/4:
• u(π/4, 0) = 1
1−0 =1
• cot(π/4) = 1 ✓
At z = π/2:
• u(π/2, 0) = 0
1−(−1) =0
• cot(π/2) = 0 ✓