Solution
We are tasked with finding the Laurent series expansion of the function:
                                           z2 − 1
                             f (z) =
                                       (z + 2)(1 + z 2 )
for two different annular regions:
  1. 2 < |z| < 3
  2. 1 < |z| < 2
Step 1: Factorize the Denominator and Perform Partial
Fraction Decomposition
First, factorize the denominator:
                     (z + 2)(1 + z 2 ) = (z + 2)(z + i)(z − i)
   Perform partial fraction decomposition on f (z):
                          z2 − 1            A   B   C
                                         =    +   +
                   (z + 2)(z + i)(z − i)   z+2 z+i z−i
   Multiply through by the denominator to solve for A, B, and C:
         z 2 − 1 = A(z + i)(z − i) + B(z + 2)(z − i) + C(z + 2)(z + i)
   Substitute z = −2:
                         (−2)2 − 1 = A(−2 + i)(−2 − i)
                         3 = A(4 − i2 ) = A(4 + 1) = 5A
                                              3
                                       A=
                                              5
   Substitute z = −i:
                         (−i)2 − 1 = B(−i + 2)(−i − i)
                            −1 − 1 = B(2 − i)(−2i)
                        −2 = B(−4i + 2i2 ) = B(−4i − 2)
                                −2 = B(−2 − 4i)
                      −2         1     1 − 2i   1 − 2i   1 − 2i
               B=           =        ·        =        =
                    −2 − 4i    1 + 2i 1 − 2i     1+4       5
   Substitute z = i:
                          (i)2 − 1 = C(i + 2)(i + i)
                                          1
                                     −1 − 1 = C(2 + i)(2i)
                            −2 = C(4i + 2i2 ) = C(4i − 2)
                                         −2 = C(−2 + 4i)
                      −2         1     1 + 2i   1 + 2i   1 + 2i
                C=           =       ·        =        =
                   −2 + 4i     1 − 2i 1 + 2i    1+4        5
   Thus, the partial fraction decomposition is:
                                 3/5   (1 − 2i)/5 (1 + 2i)/5
                     f (z) =         +           +
                                 z+2      z+i        z−i
Step 2: Rewrite Each Term for Series Expansion
We will expand each term in the partial fraction decomposition as a Laurent
series in the given annular regions.
(i) For 2 < |z| < 3:
                  3/5
1. First term:    z+2
                                       ∞      n      ∞
                3/5    1            3 X      2      3X           2n
                    ·        2   =         −      =       (−1)n n+1
                 z    1+     z
                                   5z n=0    z      5 n=0      z
                           (1−2i)/5
   2. Second term:           z+i
                                            ∞      n          ∞
       (1 − 2i)/5    1               1 − 2i X     i      1 − 2i X        1
                  ·         i
                                 =              −      =          (−i)n n+1
           z        1+      z
                                       5z n=0     z        5 n=0       z
                        (1+2i)/5
   3. Third term:         z−i
                                                ∞  n          ∞
          (1 + 2i)/5    1                1 + 2i X i      1 + 2i X n 1
                     ·           i
                                     =                 =          i
              z        1−        z
                                           5z n=0 z        5 n=0 z n+1
   Combine the series:
                  ∞                    ∞                    ∞
               3X          2n   1 − 2i X        1    1 + 2i X n 1
     f (z) =        (−1)n n+1 +          (−i)n n+1 +          i
               5 n=0     z        5 n=0       z        5 n=0 z n+1
   Simplify the coefficients:
                     ∞                                       
                     X   3             1 − 2i
                                         n n      n  1 + 2i n      1
           f (z) =            (−1) 2 +        (−i) +       i      n+1
                     n=0
                            5            5             5        z
                                                2
(ii) For 1 < |z| < 2:
                   3/5
1. First term:     z+2
                                            ∞            ∞
                   3/5   1              3 X  z n   3 X        zn
                       ·       z   =           −   =       (−1)n n
                    2 1+       2        10 n=0   2   10 n=0     2
                          (1−2i)/5
   2. Second term:          z+i
                                               ∞
                                        1 − 2i X       1
                                                 (−i)n n
                                          5z n=0      z
                         (1+2i)/5
   3. Third term:          z−i
                                                 ∞
                                          1 + 2i X n 1
                                                   i
                                            5z n=0 z n
   Combine the series:
                       ∞            ∞ 
                              z n X 1 − 2i                                                            
                   3 X                             1 + 2i n      1
         f (z) =         (−1)n n +         (−i)n +       i      n+1
                   10 n=0     2    n=0
                                        5            5        z
Final Answer:
  1. Laurent series for 2 < |z| < 3:
                         ∞                                                 
                         X   3                      1 − 2i         1 + 2i n      1
               f (z) =                 (−1)n 2n +          (−i)n +       i
                         n=0
                                   5                  5              5        z n+1
  2. Laurent series for 1 < |z| < 2:
                        ∞        n  ∞                         
                     3 X      nz
                                   X    1 − 2i     n  1 + 2i n      1
            f (z) =       (−1) n +             (−i) +       i      n+1
                    10 n=0     2   n=0
                                          5             5        z
    These series represent the Laurent expansions of f (z) in the specified annular
regions. The coefficients can be further simplified if desired, but the above forms
are complete and correct.