Solution
We are tasked with finding the Laurent series expansion of the function:
z2 − 1
f (z) =
(z + 2)(1 + z 2 )
for two different annular regions:
1. 2 < |z| < 3
2. 1 < |z| < 2
Step 1: Factorize the Denominator and Perform Partial
Fraction Decomposition
First, factorize the denominator:
(z + 2)(1 + z 2 ) = (z + 2)(z + i)(z − i)
Perform partial fraction decomposition on f (z):
z2 − 1 A B C
= + +
(z + 2)(z + i)(z − i) z+2 z+i z−i
Multiply through by the denominator to solve for A, B, and C:
z 2 − 1 = A(z + i)(z − i) + B(z + 2)(z − i) + C(z + 2)(z + i)
Substitute z = −2:
(−2)2 − 1 = A(−2 + i)(−2 − i)
3 = A(4 − i2 ) = A(4 + 1) = 5A
3
A=
5
Substitute z = −i:
(−i)2 − 1 = B(−i + 2)(−i − i)
−1 − 1 = B(2 − i)(−2i)
−2 = B(−4i + 2i2 ) = B(−4i − 2)
−2 = B(−2 − 4i)
−2 1 1 − 2i 1 − 2i 1 − 2i
B= = · = =
−2 − 4i 1 + 2i 1 − 2i 1+4 5
Substitute z = i:
(i)2 − 1 = C(i + 2)(i + i)
1
−1 − 1 = C(2 + i)(2i)
−2 = C(4i + 2i2 ) = C(4i − 2)
−2 = C(−2 + 4i)
−2 1 1 + 2i 1 + 2i 1 + 2i
C= = · = =
−2 + 4i 1 − 2i 1 + 2i 1+4 5
Thus, the partial fraction decomposition is:
3/5 (1 − 2i)/5 (1 + 2i)/5
f (z) = + +
z+2 z+i z−i
Step 2: Rewrite Each Term for Series Expansion
We will expand each term in the partial fraction decomposition as a Laurent
series in the given annular regions.
(i) For 2 < |z| < 3:
3/5
1. First term: z+2
∞ n ∞
3/5 1 3 X 2 3X 2n
· 2 = − = (−1)n n+1
z 1+ z
5z n=0 z 5 n=0 z
(1−2i)/5
2. Second term: z+i
∞ n ∞
(1 − 2i)/5 1 1 − 2i X i 1 − 2i X 1
· i
= − = (−i)n n+1
z 1+ z
5z n=0 z 5 n=0 z
(1+2i)/5
3. Third term: z−i
∞ n ∞
(1 + 2i)/5 1 1 + 2i X i 1 + 2i X n 1
· i
= = i
z 1− z
5z n=0 z 5 n=0 z n+1
Combine the series:
∞ ∞ ∞
3X 2n 1 − 2i X 1 1 + 2i X n 1
f (z) = (−1)n n+1 + (−i)n n+1 + i
5 n=0 z 5 n=0 z 5 n=0 z n+1
Simplify the coefficients:
∞
X 3 1 − 2i
n n n 1 + 2i n 1
f (z) = (−1) 2 + (−i) + i n+1
n=0
5 5 5 z
2
(ii) For 1 < |z| < 2:
3/5
1. First term: z+2
∞ ∞
3/5 1 3 X z n 3 X zn
· z = − = (−1)n n
2 1+ 2 10 n=0 2 10 n=0 2
(1−2i)/5
2. Second term: z+i
∞
1 − 2i X 1
(−i)n n
5z n=0 z
(1+2i)/5
3. Third term: z−i
∞
1 + 2i X n 1
i
5z n=0 z n
Combine the series:
∞ ∞
z n X 1 − 2i
3 X 1 + 2i n 1
f (z) = (−1)n n + (−i)n + i n+1
10 n=0 2 n=0
5 5 z
Final Answer:
1. Laurent series for 2 < |z| < 3:
∞
X 3 1 − 2i 1 + 2i n 1
f (z) = (−1)n 2n + (−i)n + i
n=0
5 5 5 z n+1
2. Laurent series for 1 < |z| < 2:
∞ n ∞
3 X nz
X 1 − 2i n 1 + 2i n 1
f (z) = (−1) n + (−i) + i n+1
10 n=0 2 n=0
5 5 z
These series represent the Laurent expansions of f (z) in the specified annular
regions. The coefficients can be further simplified if desired, but the above forms
are complete and correct.