0% found this document useful (0 votes)
13 views14 pages

Maths 4 (2 Unit

The document appears to be a collection of mathematical problems and solutions related to complex analysis, specifically focusing on Laurent series, residue calculations, and convergence regions. It includes various equations, theorems, and examples, likely intended for engineering or mathematics students. The content is structured in a question and answer format, with references to specific sets and dates.

Uploaded by

dailyparadise33
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views14 pages

Maths 4 (2 Unit

The document appears to be a collection of mathematical problems and solutions related to complex analysis, specifically focusing on Laurent series, residue calculations, and convergence regions. It includes various equations, theorems, and examples, likely intended for engineering or mathematics students. The content is structured in a question and answer format, with references to specific sets and dates.

Uploaded by

dailyparadise33
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

Set-1,

Q6()
Dec.-16,
...
(1) ...(2)
Set-2,Q5(b)]
..13
|Oct.JNov-18,
-1).
STUDENTS
Q3(b) (z
of
Paper-l1, powers
ENGNEERING
(Model
nagatlve
+ and FOR
21(2-1)?
31(2-)
zero 4(z-1)'e,(2-1posltive 30RIIAL
is,
o (z-1)
denominator is,
1) of
(z.- of ALSN-ONE
3! seriea
Theorem of powers -1)-3)
powers
its (z-)
(z-1
2! a B
equating off2).
aboutz
=1 in 2e4e in
in offz) 2(2-))e SPECTROAM
Residue G-h7-3
offz) z-12
by pole f)=-1)e-3)1)
expansion i:fi)e, B(2-
and obtained orderexpansion - e-1)(e-3)
+
Expanslons second Given
function
is, z=A(z-3)
arc Given
function
is, Laurent'series e
of) series Let,
=z-1· =
f(2)
:(¢-1y
ie,
=0
a
z=1.is f{z) Express Consider,
Seriespoles 1z=1, Laurent z=‘+] Expand and
z=] .
SolutiOn
1 5olation ’
The
The
UNIT-2 The Q19.
Q18.
JNTU-KAKINADA
proceedngs.
convergence.,
LEGAL
METHODS
faca
of to
region LIABIE
STATISTICAL is
the gullty
find found
Also
Anyona
AND serles. 1.
= act.
VARIABLES z
about CR:MINAL
Laurent
(1), =0
cquation series
a (1-1)-I|<0
COMPLEX as isa
f Laurent book
in is
4e centre
(3) z is this
and about expansion, 2e. convergence of
from a XeroxPhotocopying
(2) 1 as
= is, circle
equations
scrics isz 1,1
1,z=
circle öff2)
= Given
funtion
is, of of
e (2-1=
0
singularity
Substituting f(z) Laurent radiusregion 7.Expand Suncáon
is,
i(z)= Given
for
Bxpand centre WARNNG:
Wherc, the the
Solution
: Fron
The The Then, Thus, Souston:
2.12
Q16.
expansion]
binomial STUDEN
Using
EKINEE
(":
FOR
+) 3OURNSL
C:Xz
G(z-2)
+B(X2-2)+
1) QLL-IN-ON
z(z+1Xz-2)
C\z+ 5
Theorem z+1-2 cquation
(1), 3(z+)
C
B"
A, + as,
B()(z-2) +0 (-1-2)+0
A(z+1Xz-2) 2+3-Q+0+
(2+1)
c(2) expresscd
5 SPECTRO
Residue +0 (2), 2z
fraçtion, (2),
equation (2),
(0-2)
1) cquation cquation values
in' "3(
+1)
+ +lX7-2), be 2z 0
and
partial z(2+1Xz-2)
Expanslons
A(r+1)(-2) 3=A(1)(-2) 1) 2=B(-1)(-3) S=
B(- C(2)(3) can 2 2
+
z(z+1X:-2) -A(0
in in n C z+3 (3)
intoz+3 'z+3 0 =-1 =0+ 2 Substitutingz=26 B,
A,
z(2 3
cquation
Resolvingf) z= 0+3 z -1+3 B 1<]z|<2
+3- Substituting Substituting Substituting
Sories [z]<1Then,
UNIT-2
(h)
()
Dec.-16,
Sut:2,
Q6b)
procedings.
LEGAL
2.
(21> face
(1) to
LIABLE
<|z<2
ls
gultly
1
(1) found
<1
Anyone
(z
)
where a>.
CRIMINAL
series
isa
(1)\ power book
(2), equation
(2), =in tis
1)
cquation cquation z[zlz-2)+I(z-2)]
of
- 1) is, z(-2z+z-2) XorowPhotocopyi
B(3 - àn of) 3
B(1 values z+3 z(z+1)Xz-2)
z('-z-2)
in + in + z+3 z+3
3 3=A(3-3) z+3 z+3
z=l-3) series
z 3=B(2) 1-A(-2)4,B Given
function
is,
Substituting |-A(1
Substizuing Substituting I=w
z-
Let, Laurent f(zj
Expand fO)
= WARING:
The Solution:
Q20.
Solution :
Q21.
ING: Substituting Resolving (ii)
Given1<|z<<2.
functionis, in
B=1 Obtain Then, |z|
l=A
1=A(-1+ i)(z+ Then,
ying =A(2+1) I fünction
above
into Laurent's equation >
(0) 2= 2
(2+2\(%+I)
+t
B()) 1) in
-1
2)\(2 1
-) 22
(3)
equation

equation + expansionforfz)=+2)2+1)
+1)
+B(- (z+2) B can (3);
z+2 2 be
can
2
of
this (2),
1
+2).(2+2)(2+1)A(2+ fractions,"
partial expressed be
book cxpressed
wmrLEA
1)+B(2+2) z+1 Dec.-18,
Set3,
5
is as,
a
NAL as,
VANIADLcO
(2).. ()
.. QG(b)
act
yone
Solution : Evaluate
Q22.f(z) ANU1AISIICAL
ound Substituting ’
.. Substituting ’ Applying function
Giyen1<jz<2
i0<z-1|<1
s; (i) ()
A=-1 Then 14<2Fot Substinuting
uilty 1=A(-1)1=A(1 B(2-1)1=A(z-2)
B=1l=B(1)
1-A(0) + Substituting
Paper-111,
(Modet equation
is. z= partial
LE -2) z=2 and1<|z| <2
1 7-3z+2 the l-A-2+
1=1(-) +B
(0) z-2
+ in in fractions (3)
the + values METHODS
to B(0) the B(z-1) becomcs, K+1
face above above 1 in
Q3(bj ofA equation
1)
AL to
cquation, the. and +B
equation, NovDec.-17, | regionthe in
s. above (: B (-2
[JNTU-KAKINADA
By equation
in +2) (2),
equation, binormial
8et-2,
(1),
..(2) QB(b)) series]
(3)

(i) (1) UNIT-2


Solution : Q23.
.0<z-1|<1.'Substituting
)1<<3
2>3(ü) Regionis, function
Givenis, for Find If1<|2|<2thenl<<z|a=lnd|<2, 1<<2 -
f2)
f)= Series
(i) (2-1Y+..-I
--[1+(¢-1)+
(¢-1y+ -1|<1
1< the (1+ Expansions
Laurant' 4,
z|<3 s (z-1) t-De-2) B
values
(1) +(¢-+(e-19+...
E [: in and
z|>3. series 1 equatiohResidue
Frpm
Nov./Dec.-17,
St-3,
Q6(b) of binomial (2),
f(2) TheórerH
=2
expansion]
-
R 4z,+3
..(1)()2|>3 (
can
Substituting Substitutingz=l
Substituting 1=A(-2) ’ Resolving
be <|z|<31<z|<3
As, I
Gobtained The 1=A(1-3) =A(z-3) 1
S2) = =2B 1=A(3
1
f)= 1)*z-3)
(2-2-3) equation
Laurent z
1 the -3) =3
as, corresponding +
series B(3
+ in
cquation
+ inB(z-
equation
(1)
B(1 into
S - -
expansion 1)
1) (z-1)2 partial
1) 3)
(3), (3),
values fractions,
of2),
in B
cquation
in .17
the -.(3.)
region (2),
2>
Solution Represent
: Q24.z)=
Substitutingz= 4(-2)
Substituting 4z+3=A-3)(+)+B The function
Givenis, lz|1(i)() fE) =
VWARNING: Substituting
40)+ ze-3)(2+2) Resolving
=Ap-)0+2)+BS)3
B=1 +)+CO3-3)
B=1 43)+3
15 -5=0+0+10C
C=
+3 t-3)X+2) 7=0,3,-2.
4z+3 4z+3 possible
2-l-)
2a-)
15=0+ C- =A(-2-3)(-2+2)+
3=4-6)
+0+0 3=A f)singular
hotocopying +C-2)\-2-3) =-2 z (0-3)X0
z=0
into
B(15) 3 in
4z+3
zí2-3)(2+2)
in in Az- partial 2< 4z+3
cquation
+0equation equation +2)
points
|z<<3 ULN
3)X=+ fractions,
+B(2%+2) of/)
(1). (O),z(-3)(z+) 2)+ OctJNov-13,
Set-i,
Q8(bj
of (), (00+)+C(0X03} Laurent's
this B(- B(:)\+2)+Cele-3) are, () seriesin
book
+ C(
2)(-2 AINIADLCO
z k4>3.for
is -3)
a +) >3
CRIMINAL
-2) -
(1) HIVU

act. (ii)
Anyone 1z|>3(üi) SIAIIO
Substituting
Thus, 2<|z]<3
For
found IAL
<|z 2 --*-*+-6)*-)
quilly 2<|z,|z|<3 4z+3the
|<3. WeVUS
is. corresponding
LIABLE
-t-**B.) 2(z+2) 1
to
face UNIU-nAnIINAPA)
valucs
roceedings.
LEGAL
in
equation

..(3) (1).

UNII2
Solution :Q25.

Givenis, Obtain
funçtion
Equation
Substituting
=-1 .:B Resolving senes
Substituting Comparing Substituting’l=0+
1=A(-2+1=Az+2)
For A=10=4+1
l=4-1+2)(-1+1)+B
(-1+1)+
C(-1+2)
I=A C=1 expansion
Laurerit's (3)
ExpansSIons
H|> (0) z-1 B-1)+0 z (z+2)'
(z+1)
above 22
can
be
2 the coefficient
+
=-2
2) (z+ function 1 cxpressed
CTRUM e1 valucs
in'B(0e) quation (-2+1) in
) z+2
cquation(z+22+1
ana

of C + +B(z+1)+ ijto Kesiaue


of as,
4, in (1 y + partial
B cquation (2), B(-2+
(2), for
and f(z) ineoram
-1 C Cz fractions,
ALLHA-ONE in (2),
1)+C-2+2) +2) =
equation (2+2)(z+1)

(1),
JOuRNAL
[z|>2. in

FOR
INEERING

STUDENTS
[:
binomial
series]
Using
Dec.16,
Set-4,
Q6[b)

...(1)
. (2)
NG:
Solatibn :
Substituting equation
From
(4), equation
From
(3). 26. 2.20
Substituting Comparing ’
2C+A =12B+
C---) A+B=0’
A=-B Resolving function
Givenis, () Find
g
the
corresponding
2(-2E)-B=1
-4B-- =!B
=1
SB
equations
(e+2)+1)tC =
l=(A+l=A2+
CI=A2+4+

0 thie
1 z|<1
Laurent's
cqustion
conesponding
C-2B B)=+(2B 1)+
B+2Bz ()
serles
z+2,+! (3) (B| (1)
of into
this nd +Cz+2) 1<|z[<2
book values C+2C+A +
(4) coefficients 2+1 partial COMPLEX
f(z)
+
ls n0 in Cz
a in equation +2C fractions, tt2c+1)"
AL equation
on VARIABLES
(5), both |zl>2(it)
(2),
act. sides,
one
AND
ound
STATISTICALMETHODS.(JNTU-KAKINADA)
guily
is
BLE

to
face
GAL

ngs. Oct.ov.10,
Sot-3,
QS()

...(5) (3). . ;
(2) (1)

(iü>2
i) 1<Iz|<2(UNIT-2
i)
Solution: C27.

Comparing Resolving function


Givenis, Find Series
44-C
4B-D=0 =1
B+D=0 A+C=0 () the Expanslons
=z(A+ 2-12+4)
2z=A =(Az+ +4
z -1
equation Laurent's
[2|<1
còefficients
the
4A2
+
B)(?+4) (1)
-)e+4) 2
ee 1
and
M C)+2(B series
+ into 1<|z|<2(i) Residue
B=-DA=-C Bz+
on AztB.Cz+D
2-z
+ partial of
both + 4B(Cz f(z) Theorent
NE D) + + fractions,
sides, z(44 + C2D\
+ (2?-1)i22+4)
-C)+ D-1)
-C:-D |z|>2.(1Ë)
AL 4B-D
for
FOR
IIC
(isdel

Papor-N,
NTS
Q3(b)

|Oct./Nov.18,

2.21

Set-4,

(2).. (1).. C6(a))


(.6.) .(5.) .(4.) ..(3)
1<|z[<2(i)
2.22
WARNING:
|z]<1 Substituting From Substituting Substituting
From
Xerox/Photocopying
equation4(-D)-D=0 equatiaa 4(-)-C-1
the - -SC=1
D=0 SD=0
cquatioa equation
corresponding(),B (3).4
04-T =- (4) =-( ()

this
of ..)---.) (0)= cquation
in COMPLEX
in
cquation
values 0
book 2-1
in (6), (5),
is
a
VARIABLES
CRIMINAL equation

(2),
act
Anyone AND
(ii3 ) Solrio Q28. |z|>2(ii)
STATISTICAL
fouind Subsituting Subsútutingz=3 » Resolving
0<-3|<3 Begionis, *0<|2-3|<3.
function
Givenis, fzFind
2--18-A(2-9)
7(3)-93)- 2-9%-18=A(z+ an>3
d =
7(0-9(0)
guilty
C=1 C(18)18
=
LIABLE
is z=0 equation 72'-9z-18
z-92
7z-9z-18
-9zLaurent's
the
b-*j). -
z-3
z+3 72' 72-9z-18
z -9%-38 METHODS
(o 18= - in
cquation 18=
equation
in z(-9) 2-9z (1)
face 3)(-3) into n
+
LEGAL (0 A(0)+B(0):+ B(2-32)+ partíal theserles
-9) (3), (3),
rsgions
(JNTU-KAKINADAJ
+B()¢-3)+
procaedings. ’AF2 C¢ fraction;
Xpansion
C(18) +3) 1z|
C)+3) >
(1).. 3
-3) (2)
. and of

() UNII
Solution Q29.
Singular
Point 2.2 7=2+B+1 ’
’ Bquating
0<z-3|<3
The then The Substituting
A DafineTYPES IEz-3<3, L¡urcnt
B=4
7=A+B+C Senes
f)--tne-9
singular Laurent
7.945 81 Z.zt3 th»
CXpansions
singular z-3 =3 z-3+6'
z-3+3z-3 2 series the coeffiicnt
series
point OF corresponding
expansion
'expansion
or
SINGULARITIES:
point 4 of ana
SPECTRUMsingularity z?
and
3 off) cquation
in
KeSIaue'
of) values
of isolated 2 .c., in I(laoram
ALLIN-ONE a (i.e.,
equation cquaion (3),
function 2 cquation
singular
ISOLATED-POLE
/z) (4) (2),
JOURNAL (4)
is in
defincd point. for0 4 the
in +.....for
|z|>3 the
region
POR as Give <-3] region
a 2|>3
ENGINEERING point one <3. 0:<|z-3|<3
<\2flor 3 can
where example OF be
ORDER oblaincd
Jz) can
STUDENTS fails for be
each. oblaincd as,
to
be
m.-ESSENTIAL
analytic.
as,
for
\2-3|< 3
-3|<3for(z (4..)
singularity
off).
Exampie is Essentiai
Singularity
referred but Example
singularity.
removable z=o,
Singularity
RemovabBe Solution :
WARNING;of Since,
Xerox/Photocopying Li Q30. cannot
Example then Singular
Iff2) Here but Iffz) isPoint.
Isolated Sxample .
Az) to f) Refer Define
example.singularity
no
as is z Lr Define Three be theother
is an an 0
cists.I sin z f) is defined point Ifa ’
infinite isolatedinfinite is sin z single Only isolated At singularity
function
callcd is exist, removable removable z f)= z,
1 a valued Reróvable =0,andz=+3i,fE) at is
fünction with referred
function, 1 essential series removable then singulaiies these
z(2²+9) z+3 - within f)
funcion one three
function the OR as bas analytic, is fails
which Stigularib?
singuiarityexample. singularity
this z singularity singularity points. singularity
anthe
= singularity. off) isolatedcircle to
book then is which be
0
is is not are fails
around at
at analytic
a an offz. the definei znot is Dec.-s6,
Set-&,
Q1(g) z=0,z=3i,2= singular z
CRIMINAL essential point, andgivean and to z=, 0#
ois be atz
defned analytic the
zz, at Enown eSsential point point and =)
z=0 also
adt.
as at -3i. as off() z
Anyone there
=,
zerO.to it
Sofution :
fourd 12-2Let, funciion Since Q32.
non-isolated
singularity.
esscntial zeroto
Giyenis,
Consider, .Zeros function
Givenis, Sotution t Q31.
guity z=0 there (i) functions.
followingthe Find :.2) ’sìnu(e-a)=0i.e, polesThe
.. z=0ie, are function
Givenis,
FInd
LIABLE
is is are sinz.COSZ (z+1)sin z the
sinZ- z=0 TZN:
n=0,#1,±2 .... sin sin (-a)
a z=0 obtained -n;
to
removable no
negative is
nature has
a the
is
Tz
z=0
= offe) S)=cotz naturo
the
a double n=0, sin rz>zsin)?
face singularity by and limit (or) are
equating nr COs
LEGAL singularity.powers (or)(z-) obtained and
Iocation pole of 1,+2,
the z=a locatlon
procedings. offz). the above
of at ..... 0 by
z. denominator of =a
equating
slngularlties poles
andz Papor,
Q4(a)
Model the of
its
denominator singularitios
off2) o
of is
a

Solution
(a) : Q33. (iüi)
UNIT-2
function
Givenis, Find i.C.,Zeros Given Since
tanztan z+2
the
type z=is tanzl=
cos coS are
obtained
function z=2 the f)-(+2+1) Series
2 z number
Sin sin - is
of SinzcOS z
is,
an z-2 Expansions
zz=0 by
SPECTRUM singularity simple a equating
essential
40(2-2)*
120(z-2)*
ofnegative
-f(z)=(b)
62-2)1 sin
pole. the singularity.
powets
(*3)sn and
LLIN-GNE of denominatc Residue
the
.9.. function of 2ig-
(2-2) Theorom
JOURRAL of(2) 2) |)
is
to infinite. .......

zero.
FOR (b Soution
(a)
Q34. negative
ENGINEERNG negative
(b
function
Givenis, Consider, function
Givenis, (c) (c) Find (b) (a:.z=1
) powers
Thc Let, Given .. Sincc,
z=0 S)=,z=0 Givez=0,zfdentlfy
=1. the IdentYfy ldentify above z-!=
powers
isexists.S2) an singularity of
functiortis, therc
sinz is (2 has ) of
STUDENTS the example the the the a serics (z-I)"
removabie .0 2 pole 1). - an z.are
singularity singularity
singularity has cssential infinite
of OR of
for the order finile
singularity. Non-isolated funcion singularity number
(four) 4.
Nov./Dec.-17,
Set-2,
Q1(0) of of
of f(z) f(z)
f{z)= D¡c.-16,
Set-3,
Q1(g) of
f(z) = = 1crms at terms
singulariiy. z(z-1) e~ z
=
et*, at containing 0,
Containing
z= atz
2.23
a C. =0.
nator
zero.to
Solution :
Q37.
WARNING: The function
Givenis, (C)
Find zero.to
ie., poles The Az) function
tho Givénis, IKesf)l,., (b
(z ofz) Residue'offz) residue has The
otacopying - pole z=0i.e.,sin
Resfël,.(Resje. a function
Givenis,
1)?= poles
can
and
B--0}:) off2) pole,
Resfl,-1
z=0, cosec
S)= z
Residue
off:) = Residue
(Res
0 be lim = offz)
determined resídue
at
z cos(0) lim fz)),..,=Coeficient
off)
at atz=a tn, sin
lcosz are v(2).
of
=0 z
|a)m-)--aK)
0) 0of
for order ) 2r, 1 obtained at
this of zero. is =0z
by atz=0is1.
book equating Dec.-16,
Set-1,
Q1(g) m"3' 3n... + by is
2)z-4)2 order given
isa equating of
CRIMINAL
denomi pole inby,"
is its Laurent'sexpansion
givea dencriinator
BCL.
Anyone as,
(tt
denominator
zero.to
found Solution:. Q38.
(ResAtz=-2
Residue ’
fe),... [Resfl,.-,(k-4
ResidueThe
z=2 At The function
Givenis,
guity
residue Z=-2, Find [JNTU-KAKINADA)
ls
A) 2
z+2=0, (e+2)
i.e.,-4=0 poles
z-2=0 Herc The vinOIVAL
VItITUUS

LIABLE tResidue
he
(-a)A) hoff) has
[Resf)l,,= ofA)
m= residue(z-1) z
(-1)
two (2-2) pole 2, 1,
to [Modal off2) a offz) is 1
faco (e+2) , =az
single
at
=0 carn and
at
=ele
*e 1.
atz*asecond
a (-
LEGAL be Paper1,residue 1)
(simple poles determined, the =0
eedings. z pole fornh
order
= Q4(a).|
2, of z=
pole) z f(z) pole
=-2. Dec.-16, 1 order
is by =-4) is of).
given e. pole
equating Set-2,
by, is
Q1(g)1 given
its
by,

Solution Q40. Residne


z=0 At Solution : Q39. UNIT-2
[Resf()),-0= L =(z-0)f(z)
[Resf:)),.o
The The function
Givenis, Find L-Hospital'
Applying
nle,s Límit (Resf()),,-a)f(e) The function
Givenis, Find
(Resf()),..= residue
(z-aMe) u pole th[Resf(2)),-
e =1. is residue, the Series
S) of
fz)
ofz=0
is,
=sinz
COSZ 2
resldue
cos
0-0sin
=
I-0 Lt 0-
cos (sinz)
i0
-0(sinz the
0
2’0
of sin
fz) +2cos z1+e*
residue
Expansions
Ofe)+1+ z'-2sin COS
+ dz form. at of
CTRIM 24 at of z
2=ais
givenas, f(Z) 0+
1+eze' +z(-sin
+ 1+ze* +e
(sinz =az z zCOSz and
tz + for Ite
eoRzsinz
= cos z
+ cósz) cosz) z simple Residue
+
Nov./Dec.17,
Set-3,
Qi(9) 0 cosz z) sinz
+
N-ONE
0+ cos zcosz) pole Q7(b) atz0.
Dec.-18,
Set-3,
Theorem
at z
z0. is
given
URNAL
as,
zeroi.e,to Solution : Q41.
FOR
The Where, Let, function
Givenis, atzFind
1.
ERING Herc, The
division,By
Buto(z), /2)),..
[Res residue z=1 (-1)' 0= pole z)= the
2)=z+5+ t- (Res n
z-]=0' offz)
[Res)),-,=0
residue (Resf(),.
is (2-1'(z-2X2-3)
Sz fe)),., and 4 off2) pole a z1 (2-2X(z-3) (2-1)
6+ (2-2X2-3)
is
DENTS 2-2z-3z+6 a obtained of.f(z) =
192-30Sz-25z+S2'-6z
30 =4-)i(e-1
-5z+6
=l atz=a of
order cos(0) (0°)sin I-0
(z-2X2-3)19z-30 u
for 4. by =
COsz \
(z-0) Z
mh denominator
equatingits (z-2)(23)(2-1)4 Sinz
order Dec.-16,
Set-4,
Q7(b) -0
pole coSz
z-0
sinz)
is 2.29
(e-l given
(2)..
...(1) by,
fa),.(Res .
sides,
both
fa)l,.1-2(e-3)Substinuting
WARAING: (Res Differentiating Differentiating
)-1+8z-2)*-27(2-3² Diierentiating Substituting Substiuting Sotving
")= Conparing By Consider,
"-)=0+8[-2(2-2)]-27|-2(2-3) d2
-3*-2 A=-8,B-27 partial
-6-1,606101
Xerox/Photocopying J01 16 --16-3(2-2)*]+
54[-3-3)]
=48(2-2)-162(2-3
equation
=-16(z-2}+
54(2-3) )
=8[-2(2-2)]-
27[-2(2-3)] G-2Xe-3)
)=z+5quation 19-30 equations -34-2B
34
i9-30 -3019z
(2-2)(2-3) 48 above the +A+B= 19 the 192-30= fraction
above above 2B y:-3)(-2)
(*-3) (z-2Xz-3)19z-30
values =30 =-30 coefñcients
48(7) equzion cqustion (4) = nethod,
166 16 in eqiationz-2.2-3 (6) ofA and (4A(g-3)
+
equation (z-3? in A(z-3)+
B(z-2)
of with cquation and (5), B-3d
of
this 162 wib with B "and B(-2) +
book espect respect in 28
(1), respect (2), equation
is constant
a 16 to
CRIMINAL 'z, to
'z, to (3)
z, teras
. .(5) .3)
act. (6) on
Anyone off(z)
zeI0. 1o SolutioD 1
Q43. zero.
Sotution Q42.
Rof()l,...
found Theresidue ; The fupction
Givenis,residues Find The The function
Givenis,
Find
guiltly z=iand z=-1 and-i e i.e.,
Thz*-1, poles residue pais :
the the
is off(2) poles (z+ of O i.e=0
, a)
LIABLE isa poles
at
--0) off) has poles
z=-iáe poloff(z) 1(+1) (z+1)'(+) f(z) these
at e
pole are
are 2'-2z of at|=o and
lo z of obtained poles. i2) at obiained
face 1
a ar e z=0
r order - =0
fosimple = for of rosiduas
LEGAL
n 21,i by (z+1)(2 0-2e) n equating
by
order poles. and equating z'-2z order order Dct./Nov,-18,
Sot-1,
Q7T{b)
proceedings. of
pole -i. pole 4. its f(z)
denominator. +1) denominator
is given
is
given and'the
as, (1..) by,
to

Atz1UNII-2
z=i At
[Resf()),--(2-1)!d2
(Resf()),.
(-)e).
[Resfa,.,
Resfe)l,., Th¹ Series
Resf(2),.,4 residue
Expansions
of2) +2-1)-2
2(-1?
- ((+1?
I+2i -l-2 (/+1°((+)
(+1+2)2i [O-249) (-9 atz=0 (X2r-2)-(*°-22)2zdzd. d
and
-l-2i
PECTRUN
-_H21. (z+1'(z+)
(a-2z)
f) for
Residue
simple (e+9°(e²+i)! (z--1)f(O)
(?-2) 4
heorem i
LLAN-ONE pole
is
given
J0URNAL as,
At
z=
zero.f2)10 Soution Evaluate
Q42.
FOR [Res
The integral
Givenis, (i) 4 -1The
2'142i
NEERING |+1-ij=2
z*-1+
i.e.,
fz)=Let, : residues f()l,.-=
poles |z+1-i|=2
|Z+1+i|=2 (Resf(2)),*A
(Resa),..i1
[Res/(P)),.,=
L(2-a)f) z-1+2i
.z+2z+
are
and
Z-3 t
2i --|+2ior-
obtained 2z+5z+ 24245 z-3 1-24 of 1-2B42i(-21) 1-2i
2i(|--1+2i
2i(1-+-21)
(z+1'(z+i)(z-i)
(ti) I
(z-(-
the=-1+2iV2-4()(5)
is -2+-2 S J)
UDENTS pole
=0 -3 respectively. at 1-2 (2'-22)
I-1+21 and 2(1) by using poles 1-2i ))f()
i-2-12 H31
4
which
-l-2i 1-2i cquating dz
z (-22)
residue 1-2i
lies OctJNov,-18,
Sot-2,
Q7(a) where =-
2C1+20)).(z-3)
(2+
Z-3
1, (-H°-4-)1
2i. 3+1-2)(2-3)
(z+1+2)-2)z?+22+5
inside are
the denominator
the
theorem.
the
C
is and i
+1+2i
-1+2i
the poles *4- 20 -
circle, circle are i
2i-3 of
C:<z-
1|=1 its
denominator Soirtiog : Evaluate
Q45.
ARNING:
The Cis integral
Givenis,
AE) poles the bounded
Xerox/Photocopying has (-}-0 ie, toregion
[Resf,..y z=-]-2i
Thus,
zero. of
triple
a equafion d+2+5dz=
by
theorem,
residueBy z+I+|=2
theorem,
Resid°e By
bounded
z-1|=1 eáz
[Biodel
þole (1) =4-2i is
at can by
Paper-41; =i+2} 21 -4i tbe
z+2z+s-2) J)dz J
of z z-1|=1 using n2.+) pole
this be
2ri =
= Q4a)1 where
obtained which
book residue (E-f1-2)%e-3) -i-)r
is
inside
lies
and Doc-16,
+l+2)-3) ik 2xresfa), - [sum
a Cis +2i\2+
1-2i) of
CRIMINAL by theorem. +2-+ 5 inside 2i the
equatíng Set-2, the resid1zes]
the
. . Q7(b)] region circle
act. (1)
Anyone Solution :
Q46.
found (Bter, Find
integral
Givenis, zl=3.
whereEyaluate
dz,
guilty
Ont polesthe Theorem,
Residue By
is m-3Here, a The
LIABLE Poles by
Z
and residue CoS z residue
to aresldues
nd dz=
f)dz J
face Resjhhe) OR -H-200-0)-2-0--1
2ri(-1)
=-2ri = -H-2ai~-~on~) -;2 **-z(oos2)
-
off)
LEGAL theorem
2ni 2ni -*sinzcosa) + -t.
Oct./Nov.-18,
Set-3,
Q7(n) of zma at
proceedings. f2)=-1Ý(2+2) Res (sum
for
2)),.n residue)of sin COsz-sinz z lz- norder
-zz sinz(-1) + sinz)
cos
2) sinz] - +(- osz] + pole
is
sin2)] given
as,

At
z=-2 At
citcle
"The z off2)
zero. to UNII-2
=
residue 1
esf:)1,.-1f:) Here, |z
r=Resfl),..ion-h
Theorem.
)"0)1| »"(-2-1
>r(et2z-1(z+2)fa),+2)f2)(Res » The Thus, Where, i.c., Thé Let, Wherc,
m residueoffz) 3z-2is Serles
=2, offa) f-)l,..,(Res f2)),..-
-a)fe)Res both poles
(2 (-3)? (-2)? z A)
Z=1,2=-2
= (z-1)= (z-1} offz) Cis Expansions
a= al th»
(2+2)
(z-)'
a isI has
SPECTRGNM 1 =az 4 2 poles. simple
pole apoles (2+ are
the
at circle
for 4 z=a 0, obtaincd
z pole of at (z 2)
pole a for Land
= order
z
=
+2) =0 |* and
2 |=
ALL-N-GNE of _imple z 2 and l =0 by 3 Residue
m =- cqgating
ordcr pole 2 =-2 z Theorem
lie denominetor
is is inside
JOARMAL. given given
as, as, the

FOR Soution :
Problem Theorem
Residue Q47.
ENGANEARNG integral
Givenis, For State From
answer z-1)(2-2) the Caúchy's
refer residue )d
STGDENTS z
Residue
-

Unit-I,
tz, 2ri = (3) J+4 (0+2)²
1'+40)
Q35, nhero
theorem. (Sumtheorem, (2+2)' |(2+2)()-e2)
(z+2)
Topic:Cauchy's C of
the is and residoes) (z+2)?
circl
evaluate
Residue j:-24= 2.33
Atz=1 zero.to 2.34
Atz= 2

-From Res : Here, The Resf)],.,=0


’ Where, »ie, The Let, Where,
WARNING: 22-1)(z-2)7
(z-1)(-2)'
f),.,=-1
residue
Aa)1,.,=0 z=l z=lis az-1,z=2
[Res z=lz=2isapole j) (z-1l)
poles
Cithse
Cauchy's m=2=2, a =0,(2-2)²=-10 off)
z lies lies has
d| off) (z
olocopying Lu
outside outside simple
pole.
(z-1)(-2)?
polcs
-2)? are circl-2e)|z
residuce z-1-z(z-1)(0)-
z(1)
-2Ti -2ai
Zri 2zi - e-b0-t-1)
2-1)
tz=a
the order
C
of at
z
=
oblained
0=
VARIASLES
COMPLEX
AND
[0 (Suntheorem, for and l
(2-1)° circle. and by
+(-1)) of pole
a z= 2.
z
equating
of residues) 2 =2.
this - lies
of
book m inside its
is
order denoninator
a C.
CRIMINAL given
as,
act .Atz=2 zero. to Solution': Evaluate
Q48.
Anycne z=] At STATISTCAL
. off)are A)Let
LeThepoles =, Where, Givenis, circle
ir.tcgral
lound f2)l,.m-
The Here, (Res Tbe The Thus, Where,
The
f(:)),
[Res,= -[Resf)),.residue
, residue z has )
residue residye Cis zl=3
2-1, Aa),..-u-)la)[Res both 2 two
(sin r
)2ucoSR-2nz -
guily
2 is z=1;z=2
(2-1'(2-2) =0 the
(z-1)-2)
1
offz) (sin offz) off[z) the az-l=0,z-2 =0 (siz²
n+ using +cosnz)
rz (JNTU-KAKINADA)
| simple poles (slnnz' r
LIABLE
is dz off2)
=2. m e**cosTz')
(z-1)" polcs (z-1'(4-2) circle + (2-1)2-2)
METHODS
(sin at z=afor1
at e-l'(e-2) at at lie pole z=l at obtainedby (z| cosrz) resldue
10 (z-2) re² ez
z=2 z=a
inside T2)cos =3
face
LEGAL costa') + lis is-givenas, for and and
theorem.
(a-2) given pole a sin simple
a the z=1 z=2. denominator
cquatingits
sin (2-1) 47+ circlelz|=3 is where
esdings. as, of cos4t
)-(in (z-1)'(-2) e-af)) order pole pole
a

ce m is of
C
is given is
+ços') given order the
as, as, 2.

Solution : Q49. .:.


From
". Evaluate theorem.
residue
Thez=*in
nator
zero.to The LetJz), integral
Givenis, EvaluatY Cauchy's
r,=2r+1
= -
Res residue poles 4 2r+1 (I-2)(21()
(Resfa)1,., r(sin f)dz
(sin )|2r(-)-
are of12) [Nodel
(z-1)'
(-2) uzt (2-1)'-2)
n2 residue
z=
of
double
can '+dz e.
Paper-l;
cos +cos 2rci = cosa(1)-2n(U)sinz(1)'-
PECTRUN ofapoles be OR
g TLz") (Sumtheorem, 2n(0)
Tm-IT:u m
obtaincd Q4(b)
whare dz -dz dz= ) (1-2)
order which Oct./Nov.-18, | where 'm =4zi+r) (1 2ui=2ri(1
-
of -0
2ri residues) +
by Dac.16,
Sel-1,
Q7(b). C 41i (-1) sinr(1)y'
-AN-ONE pole lie
inside
cquating C isz=4by +)
(1 (2 + (r,
27+r)
is
Set-4,
:zj +2)
casx(1) +
(-a given = +
C its 1)
as, denomi Q6(b)] 4. using
JOURNAL
fe) z=
At
Ti

FOR
z=-T0 At (Resfal,.
NEERING
(Resf)),.T
Uletin)}

= 4 4n(T+)164r(-1)-4ti(-1)
16r -
4T
-Are+ 4rieM)
(-0-)'.e-2e(--n), 2.
L!
UDENTS +4ni(-1)
Ar(-1)
21 d
2.1 (-2n)
16 (-in)

["e=(-1); 1=
(2n)
ARNING: inside
z=0lies
theorem,
ResidueBy Solution :
Evaluate
Q50. 2e
[Res/)l,-=
(-ay) hThus, twhasA)
o
z(e-3)3 2e'dz z(z-3) )1,.,=3[Res Where, integral
Givenis,theorem. .
ocopying rjd J the
circlez2.
residue Cis
By
(0-3) 3
22H0(2-3) z(2-3)s0u. residue
simpleiz-3) [MRodel
=2nin) 2nisum = -2
2e.
2e off)
2e'. the
circle zz-3)z theorem,
poles Paper-N,
of ofresidue) at at z=2
this =az =0and z QA{e)} 2ri
=
book is where
given NovJDec.-f7, l4r (Sum
is z=3 4
FIMINAL
a C:<=2by of
by, residues
of
wiich Sst-1,
acl. only Residue offe)
QTb))
Anyone
Atz=- in
At Atz=0
found Residue
theorem
From z off()
zero to Solution : Evaluate
= Q51. dz
6=-2ri.
guity tMe)de (Resf(2),-
y(-m) in
[Resf),(Resf));-i=W0)Resf)),.,= The TheWhere,
(z-ae)residue
L polesThe Where, integral
Giventhoorem.
is, residue
uslng
is sinhz poles _inh
LIABLE n Cis
2i =2ri
z= is z off2) sinhz '
off) zero =
to (Sun cosh(-ir) -in) -cosh(in)
COS.T 0,
in, or
0 1 the
sohz-
9
face x(1- cosh(0) 0) atz - an are circle
LEGAL oftheresidues 1
mainteger r obtained
1-1) lie |24
where
is
inside
eedings. givei
cosh
by
atte i¢ as, the equating Nov.Dec,17,
Set-2,
a7(a) C
is
circle
imerior cosxl
= the
[zl=4 denominator clrcle
pols) lz
=
4

Solution: Q53. the Solation : Evaluato


Q52. .UNIT-2
circle
Thus, Where, Wher
. Th ’ f)=Let, Wherc, GivenCauchy'
tihsorem.
residuesEvaluate ’ Since, function
GivenCauchy'
is, s
two Jl=l the In Serdes
bot|=0,2=
h s)z=1,z=t 2-1)
(z-1)sinhz=0
n nn integral Residue 1=above
theorem,
residue
From
f)2-1)
poles sinhz Cis 6 is,
has is cothz [Model and
the zero
=0, cothz the expansion
residue Expênsions
oTsindz
two are, circle cothz
G.
. the,residue
poles ate l ot sinh cosbz Papor-l, f)de
poles an theorem.
CTROM lie simple intege. z=0 z dz z=0is 1
inside at Q4(b) -2zi(1) = and
z= =2. where 2ri the is Residue
the polea. 1,2=0. Nov/Dec.-17
thepole
(Sum coefficieat Nov./Dec.17,
Set-3,
Q7(a)
whore
IMONE circle C
: ofresiiues which C
Theorern
z Set-4, = of usil=1ng :
|=2. 2 lies
OURNAR Q7(a] using poles at insie

zero.to Solution:
FOR Evaluate
Q54.
From Thus, Where, Since The
NEERNG polTheesLet,f) Where, Givenis, theorm.
integral rasidue
using
=
Cauchy's 10)+0
fe)),.,=o R-[Res residue
y2)
the (Resresidue
R,
I7sinz le-I) R,=coth(1)
cosh(0)
(0-1) funcionfz) lim =
=Jimcoshz] si-nhz - f)),..- offz)
coth(1) liml(e-1)E-l)
of2)
C
is dz sinz' zy z-!fcoth z co Shdz = offz) =
=(Res
2Sinz the residue coshz (z-a)f),Aa)
TUDENTS are circle dz cosh(0) coshz cothz sinh z
fe)),.,= atz=
dz dz2ni(sumof at lin
obtained = = -2ri(R, = is
+ + pole }
z|= |
2ni(coth(1)-1)
,where 2ni(coth(1)
2ri(coth() théorcm, [: sinh(0) sinhz,. of
coshz (z-aA)) is1
cosh(0) z
= =0 form,
the lin[(z-1) given
by 1 + 0
equating Qct./Nov.-13,
Sot-4,
Q7{a)
isC
R,) residues) given
is as,
the - (=) + =1, f2))
1)
its circle sinh(0) as,
denominator 2..37
(z|=1 =
0)
(1) circlein 2)
to Model
Paper-N,
Q4(b) shown ..
2.41
..(4) (4),
integration semi residues)
cquation as
of R
comprising
+
to of(Sum
in residues] -R
valucs contour from to,
contour Figure’0 cbanges|ni STADENT
corresponding of axis ()dz =
|re)da
(Sum
of From
rcsidue
theorem, rcal (1)
From
equation
(1), method
x'dx closed
2zi with
equation=
integral
Given
is, Sf)dr ENGINEER
the a -’
evaluate! is along Then,
`ubstituting the C
Where,
R
below.
R figure As
Use Solution
: Let, C,:|z|=
FOR
Q58.
1009RRAA
..(2) ...(3)outside
the
circle
C, ...(1) its
semi-circke equating f(),- ALL-NCNE
ineorem
[Res (2),
a by lies equation
f)),.,=
(z-a)
L
residues)f2)l,-+as,
KeSIUe
of obtained is.given SPEIRUM
consisting
R cirle) it
to circle) theorei,
of 1: as
integral, fromR the exist in
UTIU be (Sum [Res =.a (3)
contour can the outside not equation
f:)],.,
KpaISIOrIS
residue2ri
contout diameter ore, inside 2ri atz = does
f(z) = f2)
the 2*-i(lies
Cauchy'dzs
poles2=(lies of Restz)).~,
+1
=0 Substituting R’o,
As
the is of denominator
zero
to iLe.,?
Se) Jra)de residùe
Res [Res
"C"and poles simple
SUIs
Consider R
Where From
radius The The The
UVIE the
of
)'2+
h)X-i) -By2ib) (3),;
equation
-3
1+x face
LEGAL
procoedings.
(o
ta'Xe+10) in (1),
ib) välues atb cquation integration
+ as,
xb corresponding writen
(ib) +a° {Resf(,,2Ho-b) la+bEa-b) in fuaion
(ib)' (4) Contour be
equstion can LlABLEto
the GiveD
integal
is, integrei 1+x* tven
Sutshing Substtuing iby en is
Evaiuate above ic guilty
fa)
So|ation: Where, found
The
Q57. Ayoss
..
(2) radiusfigure. denominator acL,
the as, ÇRiLSINAL
C,of the in given (z+iaXz-
iaX=?+6')
ie
C: circlein ib is -a
2ia(6²
(ia+iaX(ia)+b)
within shown equating andz= pole a
semi is
[Resf()),..,=
t(-a)f()
simple book
theorenm, residues Ras
of becomes, by ib ia (z+ia)(z²
+
b²) this
consisting =- z=
-Rto obtained for WARNING:
Xerox/Photocopy
of
of Figure Le,
(+ z poles pales,
a)+b=0
residue (Sum ib, a
from (2) 1= simpBe (Resf(2)),.
-io) 2i(a-b')
contour equation are two z (ia
Cauchy's -2zi =-ia, at
axis off(2) only off(z)
4
z has z-plane.
the real z=ia, these, residue
Prom Where, Therefore, poles f)
Cis with off()
to
zero,
along of of
The Out half The
ia
z=
At
"R upper z=
ibAt
WARNING: Substituting
The The
Photocopying (20n',2 resicue f) poles
the
valuc -16 has ii
(2o'124(ei?=16a1
-24aj'-2ait48{ai)'
16a)-12a)»%2a1
+32%0)
-24ai) off=) taO of)
of -{(ai (ai+ third are
r,
in
l(e+an'3+aij'(22)+(z+ai'
ai'3(ait+ (2)-6(+ane z=a
al
obtained
of equation (2ai ai)'(2ai) order
this (2a)2 for polcs
book
(2),
-3ai' -el'G+au-a) by
is -12%a) (a)'(ai 2ai order z=ai at cquating
a +t
CRIMINAL (ai+a)°(2) pole
(ai+ai) a'+ (2+ai)² andz<-ai
is
denominator
6(ai given
act.
Anyona +-
ai))6(ai+ as, Qut
ofj2)
of
found ai) these, to
(ai)'-6(ai+ zero.
gulty only
is one
LIABLE pole
ai)
'ai] z=
1o a
face lics
LEGAL in
the
ceedings, upper

half
of
the
z-plane.

'Solukion :
ofihe.z-plane. offz)
zero to along
R as9.
theorem,
residue
From theorem.
Ae)l,-(-a)f) The Out .) ic, The Then, withWhere, integral
Givenis, Evaluate
residuc of z=i, 2i poles (+1)(2?+4)f)=Let,
these, + (?+ equation -R real
axis Cis
has = off()
(+4) 1)
of2), contour =
only simple 4 - (1) from 2ri
arç 2ri
atz=a the obtained (Sum changes Figuro comprising
-R (Sum
CTRGM poles poles to
0.
ofresidues). 10,
+Rofresidues) ,
for z= at
simple z by shown
as
of
dx
i,2=z=2i,2i1, = equating +R
semi using
NONE
lie ’X incircle
pole in Figure.
is, the denominator
C, residue
givenupperhalf z|= .(1)
URNAL
-2i z (..2)
as, |Atz=i
z=2i At
FOR Evaluatod.
Solution : Q. ", (2-)f()
,Res
f2)),.F
RING Substítuting (Res (z+)z-X:
integral
Givenis, Lt. +4)zs
theorem,
residue
From Foreven
A-)1,.y5 6i (z+)
functions the 3i +1)(z= (z²
ENTS values <(2)*+1)(2i+
(4 21) +4)
u
the of
+)4/2, (z4+1)(z
(25 (2-21)f() (2n
1 definite r, 4i (?
andr,
(-3)4(-1) (2-2)2²
(z+2iXz-21) +4)
integral
in (41) 2)+
cquation (22)(-1+4)
can 31
be
written (2),
i)..
as,

You might also like