Gatmiri
Gatmiri
numerical
GU modelling of Nuclear
Waste
DU Disposal
ENPC
BehrouzUNITN
Gatmiri
Ecole Nationale
UPC des Ponts et Chaussées
UNINA
Outline
GU
•Formulation for THM
DU problems in Multiphase media
in CERMES, integrated in θ-STOCK Code
•Review of THM formulation in Barcelona
•An alternative ENPC
formulation
•Some applications to Nuclear
UNITN Waste Disposal
problem
UPC
UNINA
Compacted Clay
container
Access Tunnels
GU Constituents (Unsaturated
DU and Thermal Condition):
• Solid skeleton
ENPC
• Water :
Water - Gas Form
UNITN (water vapour)
Air
(dry) Air - Liquid Form
Dissolved
Air UPC
Water Vapour Water Humidity •UNINA
Air
Soil In Gas phase
Particles
Dissolved in water
GU
DU
Mass densities in medium
ENPC
Water
(
ρma =nρa 1 − Srw + HSrw )
UNITN
Air
(dry) Air ρmw = θ w ρ w + ( n − θ w ) ρ v
Dissolved
Air
Water Vapour Water
UPC
Humidity ( )
ρmw = nSrw ρ w + n 1 − Srw ρ v
UNINA
ρms = (1-n ) ρs
Soil
Particles
Thermo-elastic-plastic
ª Dry UPC
UNINA
ª Saturated (Thermal loading surface)
ª Unsaturated ( modified Barcelona model)
laws 1 ∂e
F=GU
DDs−1 , Ds−1 = β sm , β s =
1 + e ∂ (p g − p w )
DU
1 ∂e
C = DD t−1 , D t−1 = β t m , β t =
1 + e ∂T
1 ª Thermal state surface concept :
0.6
UNITN1 + e0
T>T0 e
e= −1
0.4
σ − pg σ − p g p g − p w 1− m
[a e ( ) + b e (1 − )( )]
p atm σc p atm
0.2
exp[ ]exp[c e (T − T0 )]
UPC
0
2.5 K b (1 − m)
UNINA
0
Succion H kPaL
5
0
2.5
7.5
10
7.5
5
Contrainte HkPaL
Ö Compatibility with the other equations of
non linear elastic model
10
T0 9 Different propositions
0.5
Sr isothermes :
- Brooks et Corey (1964),
- van Genuchten (1980),
T>T0 0
0 - Lloret et Alonso (1985),
10
2.5
- Gatmiri (1994)
Contrainte HkPaL 5
5
Succion HkPaL
- Thomas et He (1997)
7.5
0 10
Thermal surface (Gatmiri 1997)
Sr = 1 − [a s + bs (σ − pg )][1− exp(cs (pg − p w ))]exp(ds (T − T0 ))
a s , bs , cs , d s = constants
 4 components of model :
-Elastic properties
- Loading surface
- Hardening rule
- Plastic potential
BG
Thermo-elastic-plastic model for
unsaturated soils, theoretical aspects
⎧ * ⎛ ki 2 ⎞
⎡p p ⎤ ⎫ ks ⎛ s + Patm ⎞
Ω = ⎨(α 0 + α 2 ∆T )∆T ( p − pg ) + ⎜⎜
'
+ α1∆T + α 3 ∆T ⎟⎟ pg ⎢ ( Ln − 1) + 1⎥ ⎬ − Ln⎜⎜ ⎟
⎟
⎩ ⎝ 1 + e0 ⎠ ⎣ pg pg ⎦ ⎭ 1 + e0 ⎝ sg + Patm ⎠
∂ Ω '
and ε ve = ' ⇒
∂p
⎡ ki ⎤ dp ⎛ ks 1 ⎞ ⎡ * p⎤
dεv = ⎢
e
+ (α1 +α3∆)∆T ⎥ + ⎜⎜ ⎟⎟ds + ⎢(α0 + 2α2∆T ) + (α1 + 2α3∆T ) ⋅ Ln ⎥dT
⎣1+ e0 ⎦ p ⎝1+ e0 s + Patm ⎠ ⎣ pg ⎦
kT
2 e
ε qe = (ε 3 − ε 3e ) = 1 (q − qg )
3 3G
Thermo-elastic-plastic model for
unsaturated soils, theoretical aspects
9 2/4 : Loading surface
f = q 2 − M 2 (p + p s )(p 0 − p ) = 0,
⎝p ⎠
p c = p c ( ε pv , T ) = p *0 + 2( α 1∆ T + α 2 ∆ T ∆ T )
⎛
p *0 = p *0 ( ε pv , T ) = p c 0 ⋅ exp ⎜⎜
1
[e 1 ] ⎞
− e 2 + (1 + e 0 ) ε pv ⎟⎟
⎝ λ (0 ) − k T ⎠
Thermo-elastic-plastic model for
unsaturated soils, theoretical aspects
9 2/4 : Loading Surface
p0* λ (0) − kT λ ( 0) − k T
v v
ª Knowing
- dε = dε + dε
e p
- dε = ( D e ) dσ + ( D s ) ds + ( DT ) dT
e −1 −1 −1
∂f
- dε = dλ
p
∂σ
- Condition of consistency :
∂f ∂f ∂f ∂f
dσ + ds + dT + p dε vp = 0
∂σ ∂s ∂T ∂ε v
Thermo-elastic-plastic model for
unsaturated soils, theoretical aspects
Incremental constitutive law
1 ⎛ ⎛ ∂f T ⎞ e ⎞ ⎛ e ∂f ⎞
D = p
⎜ ⎜ ∂σ ⎟ D ⎟ ⎜ D ⎟
H − H cr ⎝ ⎝ ⎠ ⎠⎝ ∂σ ⎠
D eT = D e DT−1
D =D D
e −1
( )
es s
p
= β =
m α α
[ + 2 ∆ + (α α+ 2 ∆ ) ( )]
p m Ds=β sm = ks 1 m
T T
D T T
T0 2 T Ln1 3 T T
g
1+e0 s+ Patm
= 1 ⎛ ∂f ⎛ ∂f ⎞ ⎞ ⎛ ∂f ⎛ e ∂f ⎞ ⎞
D H − H ⎜ ∂T ⎜ D ∂σ ⎟ ⎟ 1
p e
eT
⎝ ⎝ ⎠⎠ =
Des H −Hcr ⎜ ∂s ⎜ D ∂σ ⎟⎟
p
⎝ ⎝ T ⎠⎠
cr
⎛ ⎛ ∂f ⎞ ⎞ ⎛ ∂ f ⎞
T
= 1
D H − H ⎜ ⎜ ∂ σ ⎟ D ⎟ ⎜ D ∂σ ⎟
p e
⎛ ⎛ ∂f ⎞ ⎛ e ∂f ⎞ ⎞
= 1
Dese H −Hcr ⎜ ⎜ ∂σ ⎟ Des⎜ D ∂σ ⎟ ⎟
⎝ ⎝ ⎠ ⎠⎝ ⎠
eTe eT p
cr
⎝ ⎠ ⎝ ⎠
⎝ ⎠
Thermo-elastic-plastic model of unsaturated soil
-Elastic properties
GU
- Loading surface DU
- Hardening rule
- Plastic potential
ENPC
Opposite effects of increase of s and T
Incremental constitutive law UNITN
D =
p
⎜ ⎜ ∂σ ⎟ D ⎟ ⎜ D ⎟
H − H cr ⎝ ⎝ ⎠ ⎠⎝ ∂σ ⎠
GU K w = k rw (S r ) ⋅ K (n ) / µ w
DU
⎛ µ w (Tr ) ⎞
d
⎛ S − S ru ⎞ 1
K w = K w 0 ⋅ 10αe ⋅ ⎜⎜ r ⎟⎟ ⎜⎜ ⎟⎟
⎝ 1 − S ru ⎠ ⎝ µ w (T ) ⎠
0.75
ENPC
with
krw
a = 1.2 ´ 10-9 ; 0.5
UNITN
α = 5.0 ;
Sru = 0.05 ; 0.25
d = 3; UPC
UNINA
0
25
THCL
0
µ = 0.6612 * (T − 229) −1.562 (kPa s) 1
0.75 75
50
0.5
(Kaye & Laybe, 1973) Sr
0.25
0
100
Kw en m/s
qg GU ⎛ ⎛ Pg ⎞ ⎞
Vg = = − K g ⎜⎜ ∇⎜⎜ DU ⎟ + ∇Z ⎟ 0.75
ρg γ ⎟ ⎟
⎝ ⎝ ⎠ g ⎠ krg 0.5
γg
K g = c [e(1 − Sr )]
d 0.25
µg ENPC
0
0 0.25
0
0.25 0.5
0.5
0.75 0.75
Sr 1 1 e
∂
UPC )] = −div (ρ V ) − div (ρ HU )
[nρ a (1 − S r + HS
∂t
r a g a
UNINA
H : Henry Coefficient
→ Heat transfer
“Marie Curie” Research Training Network
C T = (1 − n )ρ s C PS + θρ w C Pw + (n − θ )ρ v C PV + (n − θ )ρ g C Pg
{
“Marie Curie” Research Training Network
ENPC
UNITN
¾ Mechanical UPC
boundary conditions : Γ= Γσ∪Γu et Γσ∩Γu =«
¾ Boundary conditions - Liquid :
UNINA
Γ= Γh∪ΓQh et Γh∩ΓQh=«
¾ Boundary conditions - Air : Γ= Γg∪ΓQg et Γg∩ΓQg=«
¾ Thermal boundary conditions : Γ= ΓT∪ΓQT et ΓT∩ΓQT=«
GU
⎡ [R ] [Cw ] [DU
C ]
g [CT ] ⎤ ⎧ ∆u ⎫
⎢[C ]
⎢ wu [Cww ] + θ∆t[K ww ] [Cwg ]+ θ∆t[K wg ] [CwT ] + θ∆t[K wT ]⎥⎥ ⎪⎪∆Pw ⎪⎪
⎬=
[ ] [C ]+ θ∆t[K ] [C ]+ θ∆t[K ] [ ]
⎢ Cgu gw gw gg gg [ ] ⎨
CgT + θ∆t K gT ⎥ ⎪ ∆Pg ⎪
⎢
[C ] + θ∆t[K ] [C ]+ θ∆t[K ]
⎢⎣ [CTu ] Tw Tw Tg Tg [CTT ] + θ∆t[K TT ]⎥⎥⎦ ⎪⎩ ∆T ⎪⎭
ENPC
⎧ ∆Fσ ⎫ ⎧ 0 ⎫
⎪θ∆t∆F ⎪
⎪ w⎪
⎪F − [K ]P − K P − [K ]T ⎪
⎪ w0 ww w 0 UNITN
wg [ ]
g0 wT 0⎪
⎬ + ∆t ⎨
⎨
⎪ θ ∆ t∆ Fg⎪
F
⎪ g0 − [
K gw Pw0 ]− K gg P[ ]
g0 − K [ ]
gT T0 ⎪
⎬
⎪⎩ θ∆t∆FT ⎪⎭ ⎪⎩ FT 0 −UPC [ ]
[K Tw ]Pw 0 − K Tg Pg 0 − [K TT ]T0 ⎪⎭
UNINA
θ-STOCK Code
(Gatmiri 1997)
BG Mechanics of Unsaturated Soils for Engineering (MUSE)
Validation and applications of θ-stock code
•Thermomechanical behaviour
GU of a dry medium with a heat source
•Strip foundation ultimate load - Chen (1975)
DU
•First step
GU of θ-STOCK, A FINITE ELEMENT SOFTWARE
Preparation
DU
8 DRY SOIL
–NON-LINEAR ELASTIC MODEL
–THERMAL VON-MISES ELASTOPLASTIC MODEL
8SATURATED SOIL
ENPC
NON-LINEAR ELASTIC MODEL
→THERMAL VOID
UNITN
RATIO STATE SURFACE
ELASTOPLASTIC MODEL
• DegreeENPC
of saturation state surface
→PHASE CHANGES
UNITN
a FINAL REPORT ( GATMIRI, MARS 1997)
aNAFEMS'99 (April 1999) , IJOE ( 2002)
a BULLETIN
UPCDE LIAISON LPC (2004)
ELASTOPLASTIC MODEL UNINA
1998:
GU
DEVELOPMENT OF SATURATED MODELS
NON LINEAR ELASTIC MODEL
DU
ELASTOPLASTIC MODEL
1999:
DEVELOPMENT OF UNSATURATED MODEL
NONLINEAR ELASTIC MODEL
2000-2003: ENPC
VALIDATION AND JUSTIFICATION
COMPARISON WITH: UNITN
ANALYTICAL SOLUTIONS
OTHER NUMERICAL RESULTS
UPC
EXPERIMENTAL RESULTS
ENGINEERING APPLICATIONS ( 2D and 3D)
UNINA
FICHE N° 38, In the frame of Project of
“Aval de cycle” EDF
6th KIWIR, Paris 2001
NUMGE, Paris 2002; RECIFE 2002; Tehran 2002
and …
Thermo-hydro-chemo-mechanic behaviour of
unsaturated media (2001-2005)
“Marie Curie” Research Training Network
Master of Hosseini
GU (2001)
Ph.D. Thesis of Ghasemzadeh
DU (2002-2005)
ENPC
5.50 5.50
5.00 5.00
UNITN
32.00 32.00
30.00 30.00
4.00 4.00
28.00 28.00
26.00 26.00
3.50 24.00 3.50 24.00
22.00 22.00
20.00 20.00
3.00 3.00
UPC
18.00 18.00
16.00 16.00
2.50 14.00 2.50 14.00
12.00 12.00
UNINA
10.00 10.00
2.00 2.00
8.00 8.00
6.00 6.00
1.50 4.00 1.50 4.00
2.00 2.00
0.00 0.00
1.00 -2.00 1.00 -2.00
0.50 0.50
0.00 0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
Solid phase
Liquid flux (advection) LIQUID
GOVERNING EQUATIONS
¾ Mass balance of each specie
∂
Mass balance of solid (θ s (1 − φ ) ) + ∇ ⋅ ( js ) = 0
∂t
∂ w
Mass balance of water
∂t
(θ l Slφ + θ gw S gφ ) + ∇ ⋅ ( jlw + jwg ) = f w
∂ a
Mass balance of air
∂t
(θ l Slφ + θ ga S gφ ) + ∇ ⋅ ( jla + jag ) = f a
∂
∂t
( Es ρ s (1 − φ ) + El ρl Slφ + Eg ρ g S gφ ) + ∇ ⋅ (i c + jE + jE + jE ) = f E
s l g
APPLICATIONS
¾ FEBEX PROJECT
T-H-M numerical simulation of a large scale heating test (Muñoz and Alonso, 2005)
BHE-0
CONCRETE FLOOR
2.00 m
RESIN PLUG
SAND BACKFILL
2.00 m
HEATER TUBE
2.00 m
HEATER
1.00 m
BUFFER
Vertical section of HE Experiment
Dismantling of the HE Experiment
Desaturated
zone
Borehole BHE-0
RH = 93%
(s = 10 MPa)
t = 95 days
0.3 m / [0.1 – 0.15 m]
(Schuster, 2002)
Matrix → eM =
(V + VV )
b
; dε = −
deM
VS vM (1 + e )
d ε ijM = d ε ij + d ε
ijb
↓ ↓ ↓
Matrix Composite Bond
behaviour behaviour behaviour
dσ ijM d σ ij dσ
ijb
⎛
⎜ −L ⎞
⎟
dσ ijM = (1 + χ ) dσ ij + χ dσ ; χ = χ0 ⋅e ⎝ 2 ⎠
ijb
mercredi 28 juin 2006
School "Applied Unsaturated Soils Mechanics"
Mechanics of Unsaturated Soils for Engineering
T0= 20 °C T = 100°C
Sr0 = 0.5 GU
GU
e0 = 0.72 DU
DU
14.6 cm
T °C
ENPC
ENPC
UNITN
UNITN
UPC
UPC UNINA
T = 28°C UNINA
15. cm
0.14
GU
0.12
DU 59 34 30
100
95
90
0.10 85
80
75
0.08 ENPC 70
65
60
UNITN
32 29 30
55
0.06 50
45
UPC 40
35
UNINA
0.04
30
28
25
0.02
29 28 28
0.00
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
NUMERICAL RESULTS
DEGREE OF SATURATION CONTOURS
“Marie Curie” Research Training Network
0.14
GU
DU .47 .47 .47
0.12
0.525
0.520
0.10
0.515
.48 .48 .48
0.510
ENPC 0.505
0.500
0.08
0.495
UNITN.48 .50
0.490
.50
0.485
0.06 0.480
UPC 0.475
0.470
UNINA 0.465
0.04 .52 .52 .51
0.460
0.455
0.450
0.02 0.445
0.14
GU
DU
.76 .76 .77
0.12
0.785
0.780
0.10 .74 .74 .74 0.775
ENPC
0.770
0.765
0.08 0.760
.72
UNITN
.76 .72
0.755
0.750
0.06
0.745
UNINA
.71 0.735
0.04
0.730
0.725
0.02
.73 .70 .71
GU
DU
ENPC
UNITN
UPC
UNINA
GU
DU
UNITN
UPC
UNINA
GU
DU
UNITN
UPC
UNINA
GU
DU
UNITN
UPC
UNINA
GU
DU
ENPC
UNITN
UPC
UNINA
Geometry and boundary conditions
d é p la c e m e n t ( m )
2,5E-04
t= 6 mois
“Marie Curie” Research Training Network
1,5E-04 t= 9 mois
4,0E-04
5,0E-05 t= 1 an
GU
d é p la c e m e n t (m )
t= 5 ans
-5,0E-05
3,0E-04 0 1 2 t= 10 ans
x (m)
DU
t= 50 ans
t= 500 ans
1,0E-04
t= 1000 ans
t= 3000 ans
0,0E+00
-1,0E-04
0 20 40 60 80 100 120 140 160 180 200
ENPC
x (m)
1,4E+02
140,0
1,2E+02 120,0
UNITN
t= 0
100,0
température
t= 3 mois
80,0
1,0E+02 t= 6 mois
60,0
t= 9 mois
40,0
t= 1 an
température
8,0E+01 20,0
t= 5 ans
0,0
UPC
t= 10 ans
0 1 2 3 4 5
6,0E+01 x (m ) t= 50 ans
t= 100 ans
UNINA
t= 300 ans
4,0E+01 t= 500 ans
t= 1000 ans
t= 3000 ans
2,0E+01
0,0E+00
0 20 40 60 80 100 120 140 160 180 200
x (m)
Succion (Pa)
5,0E+07
t= 3 mois
4,0E+07
6,0E+07 t= 6 mois
3,0E+07
“Marie Curie” Research Training Network
2,0E+07 t= 9 mois
1,0E+07
5,0E+07 t= 1 an
Succion (Pa) 0,0E+00
GU
0 0,5 1 1,5 2 t= 5 ans
4,0E+07 x (m ) t= 10 ans
t= 50 ans
3,0E+07
DU t= 100 ans
t= 300 ans
t= 500 ans
2,0E+07
t= 1000 ans
t= 3000 ans
1,0E+07
0,0E+00
0 20 40 60 80 100 120 140 160 180 200
x (m)
ENPC
1,10E+07
x=0,71 m
x=6,21 m
1,00E+07 x=12,5 m
UNITN
x=105 m
9,00E+06
8,00E+06
Succion (Pa)
7,00E+06 UPC
6,00E+06 UNINA
5,00E+06
4,00E+06
3,00E+06
0,01 0,1 1 10 100 1000 10000
tem ps (ans)
0,00045
x=0,71 m
0,0004 x=6,21 m
x=12,5 m
0,00035 x=105 m
“Marie Curie” Research Training Network
0,0003
Déplacement (m)
0,00025
GU
DU
0,0002
0,00015
0,0001
0,00005
0
0,01 0,1 1 10 100 1000 10000
120
ENPC tem ps (ans)
x=0,71 m
x=6,21 m
100
UNITN x=12,5 m
x=105 m
80
UPC
température
UNINA
60
40
20
0
0,01 0,1 1 10 100 1000 10000
tem ps (ans)
Mechanics of Unsaturated Soils for Engineering
GU
Merci pour votre patience
DU
ENPC
UNITN
UPC
UNINA