Calculus 2 - 213 - Solutions
Calculus 2 - 213 - Solutions
CODE: 4
..............................................................................................................
Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q. 4. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
A N (1, 2, 9) B N (−1, 2, 9) C N (−1, −2, 9)
D N (1, −2, −9) E N (3, 4, 10)
1 CODE: 1764
Q. 5. Let u (x, y) be a function such that
Q. 6. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
√ √
A M (1, π3 ) B M ( 2, π4 ) C M (1, − π4 ) D M ( 2, − π4 )
E M (1, π4 )
2 −y 2
Q. 7. Which number from the following is in the range of the function f (x, y) = ex ?
A −2.71 B 0 C −0.3 D 0.2
E −0.4
2 CODE: 1764
Q. 12. The points given in the following are represented in polar coordinates. Which point
is inside the circle x2 + y 2 = 4?
A 5, − π6 B 32 , π6 C 5, π3 D 3, π2
E 6, π4
Q. 14. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
A →−u (1, 0) B → −u (−2, 5) C →−u (1, −2) D →
−
u (3, −1)
→
−
E u (4, −6)
Q. 15. Evaluate the double integral ZZ
x2 dA
D
at M (x = 0, y = 2, z = 0).
A −2 ln(2) B 0 C 3 ln(2) D 2 ln(2)
E −3 ln(2)
Q. 18. In R3 , let (C) be the intersection between the cylinder x2 + y 2 = 5 and the plane
2x + 3y − 4z + 8 = 0. Which point from the following is on the curve (C)?
A M (1, 2, −1) B M (1, 2, 1) C M (−1, 2, 1) D M (1, −2, 1)
E M (−1, −2, 1)
Q. 19. Which function from the following has a local minimum at the point M (1, 0)?
A f (x, y)
= (x − 1)2 + y 2 + 3
B f (x, y)
= − (x − 1)2 − y 2 + 3
C f (x, y)
= (x − 1) y + 3
D f (x, y)
= (x − 1) y 2 + 3
E f (x, y) = (x − 1)2 y + 3
3 CODE: 1764
Q. 20. Evaluate the double integral ZZ
3dA
D
where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
A 150 B 25 C 50 D 30
E 75
4 CODE: 1764
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
NO MATERIALS ARE ALLOWED
CODE: 1764
Q. 1. D Q. 5. B Q. 9. E Q. 13. A Q. 17. B
Q. 2. D Q. 6. B Q. 10. A Q. 14. C Q. 18. D
Q. 3. B Q. 7. D Q. 11. E Q. 15. C Q. 19. A
Q. 4. E Q. 8. C Q. 12. B Q. 16. B Q. 20. E
1 CODE: 1764
Lecturer: Approved by:
CODE: 5
..............................................................................................................
Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
Stud. Fullname: 3x3 − xyz 4 − 2xyz Page 1/51- Question sheet code 1254
g (x, y, z) = ln .
(x2 + y 4 + z 6 )8
2
ex−(y−2) −z 3
1 CODE: 1765
Q. 4. Evaluate the double integral ZZ
x2 dA
D
2 2
where D is the disk {(x, y) : x + y ≤ 9}.
27π 9π 81π
A 9π B C D
4 2 4
9π
E 4
Q. 7. Find the maximum value of the function f (x, y) = 13 − x2 − y 2 for (x, y) in the
domain
(x, y) : x4 + y 6 ≤ 1 .
√
A 14 2 B 13 C 12 D 11
√
E 12 2
where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
A 150 B 75 C 25 D 50
E 30
Q. 9. The points given in the following are represented in polar coordinates. Which point
is inside the circle x2 + y 2 = 4?
A 5, − π6 B 6, π4 C 32 , π6 D 5, π3
E 3, π2
2 −y 2
Q. 10. Which number from the following is in the range of the function f (x, y) = ex ?
A −2.71 B −0.4 C 0 D −0.3
E 0.2
2 CODE: 1765
Q. 11. In R2 , what is the greatest distance from a point on the circle x2 + y 2 = 1 to the
point M (−1, 7)?
p √ √ p √
A
p 51 + 10 2 B
p 51 C 50 + 53
√ √
D 50 + 18 2 E 51 + 53
Q. 12. In R3 , let (C) be the intersection between the cylinder x2 + y 2 = 5 and the plane
2x + 3y − 4z + 8 = 0. Which point from the following is on the curve (C)?
A M (1, 2, −1) B M (−1, −2, 1) C M (1, 2, 1) D M (−1, 2, 1)
E M (1, −2, 1)
at M (x = 0, y = 2, z = 0).
A −2 ln(2) B −3 ln(2) C 0 D 3 ln(2)
E 2 ln(2)
Q. 15. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
√
A M (1, π3 ) B M (1, π4 ) C M ( 2, π4 ) D M (1, − π4 )
√
E M ( 2, − π4 )
Q. 16. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
A N (1, 2, 9) B N (3, 4, 10) C N (−1, 2, 9)
D N (−1, −2, 9) E N (1, −2, −9)
3 CODE: 1765
Q. 19. Which function from the following has a local minimum at the point M (1, 0)?
A f (x, y)
= (x − 1)2 + y 2 + 3
B f (x, y)
= (x − 1)2 y + 3
C f (x, y)
= − (x − 1)2 − y 2 + 3
D f (x, y)
= (x − 1) y + 3
E f (x, y) = (x − 1) y 2 + 3
Q. 20. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
A →−u (1, 0) B → −u (4, −6) C →−u (−2, 5) D →
−
u (1, −2)
→
−
E u (3, −1)
4 CODE: 1765
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
NO MATERIALS ARE ALLOWED
CODE: 1765
Q. 1. C Q. 5. B Q. 9. C Q. 13. C Q. 17. A
Q. 2. D Q. 6. C Q. 10. E Q. 14. C Q. 18. E
Q. 3. E Q. 7. B Q. 11. A Q. 15. C Q. 19. A
Q. 4. D Q. 8. B Q. 12. E Q. 16. B Q. 20. D
1 CODE: 1765
Lecturer: Approved by:
CODE: 6
..............................................................................................................
Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x2 is the e2xthe
2 2
Q. Question
2.0 Which If F ( x ) =
03. number from an antiderivative
following is of in
the the
function
rangef ( x )of . Findfunction
the antiderivative
f (x, y)of=theexfunction
−y
?
f 2x
( x )e . Z
A A−2.71 B 0 C −0.4
f 0 ( x )e2x dx = x2 + x + C
D −0.3
None of them B
Z
E 0.2 Z
2x 2
0
C f ( x )e dx = x 2x + C D f 0 ( x )e2x dx = 2x2 + 2x + C
Q. 3. Let M be a point on the circle (x + 2)2 +y 2 = 4.lnGiven x that M has polar coordinates
Question 04.3π If F ( x ) is an antiderivative of the function f ( x ) = · Calculate I = F (e) F (1).
r0 , − 4 (in the standard polar coordinate system x x = r cos φ, y = r sin φ). What
1 1
I=
A is the value of r0 ? B I = e C None of them D I=
√ e √ √ 2
A 3 2 B 2 2 C 2 D Z 42 0
Question 05. If the functions f and g have continuous derivative on [0, 2] and satisfies the condition f ( x ) g( x ) dx =
E Z22 Z 2h i0 0
1 CODE: 1766
Q. 5. Evaluate the double integral ZZ
x2 dA
D
2 2
where D is the disk {(x, y) : x + y ≤ 9}.
9π 27π 81π
A 9π B C D
2 4 4
9π
E 4
at M (x = 0, y = 2, z = 0).
A −2 ln(2) B 0 C −3 ln(2) D 3 ln(2)
E 2 ln(2)
p
Q. 10. Let (C)
p be the intersection between the surface z = 8 − x2 − y 2 and the cone
z = x2 + y 2 . The projection of (C) onto the plane Oxy is a circle. Evaluate its
radius.
√
A 1 B 2 C 2 3 D 4
√
E 2 2
2 CODE: 1766
Q. 11. Let D = {(x, y) : x2 + y 2 ≤ 1, y ≤ −x}. In the polar coordinate system x =
r cos (φ) , y = r sin (φ), what is the range for (r, φ) corresponding to the domain
D?
Choose the correct statement from the following.
A 0 ≤ r ≤ 1, −π ≤ φ ≤ π
B 0 ≤ r ≤ 1, − π4 ≤ φ ≤ 3π
4
C 0 ≤ r ≤ 1, 3π ≤φ≤ 3π
4 2
D 0 ≤ r ≤ 1, − 5π ≤ φ ≤ − π4
4
E 0 ≤ r ≤ 1, − π4 ≤ φ ≤ π
4
1
Q. 12. Choose a point in the domain of the function f (x, y) = ln sin x2 +y 2 from the
following.
A M (−0.3, −0.3) B M (0.1, −0.3) C M (0.5, −0.2)
D M (0.2, −0.2) E M (0.2, −0.3)
Q. 13. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
A N (1, 2, 9) B N (−1, 2, 9) C N (3, 4, 10)
D N (−1, −2, 9) E N (1, −2, −9)
Q. 14. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
A →−u (1, 0) B → −u (−2, 5) C →−u (4, −6) D →
−
u (1, −2)
→
−
E u (3, −1)
Q. 16. In R3 , let (C) be the intersection between the cylinder x2 + y 2 = 5 and the plane
2x + 3y − 4z + 8 = 0. Which point from the following is on the curve (C)?
A M (1, 2, −1) B M (1, 2, 1) C M (−1, −2, 1) D M (−1, 2, 1)
E M (1, −2, 1)
3 CODE: 1766
Q. 18. Let u (x, y) be a function such that
where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
A 150 B 25 C 75 D 50
E 30
Q. 20. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
√
A M (1, π3 ) B M ( 2, π4 ) C M (1, π4 ) D M (1, − π4 )
√
E M ( 2, − π4 )
4 CODE: 1766
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
NO MATERIALS ARE ALLOWED
CODE: 1766
Q. 1. C Q. 5. D Q. 9. B Q. 13. C Q. 17. E
Q. 2. E Q. 6. C Q. 10. B Q. 14. D Q. 18. B
Q. 3. B Q. 7. A Q. 11. D Q. 15. A Q. 19. C
Q. 4. B Q. 8. A Q. 12. E Q. 16. E Q. 20. B
1 CODE: 1766
Lecturer: Approved by:
CODE: 7
..............................................................................................................
Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q. 2.A Find
c = 0.9717 the maximumB value of the function
c = 0.8717 C c f=(x,
0.6717 y) = 13 − x2D −c =y 20.7717
for (x, y) in the
domain of the function
Question 03. If F ( x ) = x2 is an antiderivative 4
2x
6 f ( x )e . Find the antiderivative of the function
0 2x
f ( x )e . (x, y) : x + y ≤ 1 .
Z
√ of them
A None B f 0 ( x)e2x dx = x2 + x + C
A 14Z 2 B 12 Z C 11 D 13
C √ f 0 ( x )e2x dx = x2 2x + C D f 0 ( x )e2x dx = 2x2 + 2x + C
E 12 2
ln x
Q. Question
3. In R04.
3 If F(C)
, let ( x ) isbe
an antiderivative of the function
the intersection between f ( x )the · Calculate
= cylinder +Fy(e2) = F5(1)and
x2I = . the plane
x
1 1
I =+ 3y − 4z + 8 =B0.I Which
A 2x =e point fromC the None following
of them is on the D I= curve (C)?
e 2
A M (1, 2, −1) B M (1, 2, 1) C M (−1, 2, 1) Z 2
Question 05. If the functions f and g have continuous derivative on [0, 2] and satisfies the condition f 0 ( x ) g( x ) dx =
D ZM (−1, −2, 1) E MZ(1,h −2, 1) i 0
2 2 0
2, f ( x ) g0 ( x ) dx = 3, then calculate f ( x ) g( x ) dx.
3
Q. 4. 0In R , let (P ) be the plane0 of equation 4x − 2y − 2z + 8 = 0. Which function in the
following whose graph is the plane (P )?
Stud. Fullname: Page 1/5 - Question sheet code 1254
A f (x, y)
= 8x − 4y + 4
B f (x, y)
= 2x − 3y + 8
C f (x, y)
=x−y+2
D f (x, y)
= 2x − y + 4
E f (x, y) = 2x − 2y + 1
1 CODE: 1767
Q. 5. Evaluate the double integral ZZ
x2 dA
D
2 2
where D is the disk {(x, y) : x + y ≤ 9}.
9π 81π 27π
A 9π B C D
2 4 4
9π
E 4
Q. 6. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
A N (1, 2, 9) B N (−1, 2, 9) C N (−1, −2, 9) D N (3, 4, 10)
E N (1, −2, −9)
Q. 9. Let M be a point on the circle (x + 2)2 +y 2 = 4. Given that M has polar coordinates
r0 , − 3π
4
(in the standard polar coordinate system x = r cos φ, y = r sin φ). What
is the value of r0 ?
√ √ √
A 3 2 B 2 2 C 4 D 2
E 2
where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
A 150 B 25 C 50 D 75
E 30
2 CODE: 1767
Q. 11. In R2 , what is the greatest distance from a point on the circle x2 + y 2 = 1 to the
point M (−1, 7)?
p √ p √ p √ √
A
p 51 + 10 2 B 50 + 53 C 50 + 18 2 D 51
√
E 51 + 53
1
Q. 12. Choose a point in the domain of the function f (x, y) = ln sin x2 +y2 from the
following.
A M (−0.3, −0.3) B M (0.1, −0.3) C M (0.2, −0.2)
D M (0.5, −0.2) E M (0.2, −0.3)
at M (x = 0, y = 2, z = 0).
A −2 ln(2) B 0 C 3 ln(2) D −3 ln(2)
E 2 ln(2)
Q. 15. Which function from the following has a local minimum at the point M (1, 0)?
A f (x, y)
= (x − 1)2 + y 2 + 3
B f (x, y)
= − (x − 1)2 − y 2 + 3
C f (x, y)
= (x − 1) y + 3
D f (x, y)
= (x − 1)2 y + 3
E f (x, y) = (x − 1) y 2 + 3
Q. 16. Let g be the function defined by
10
3x3 − xyz 4 − 2xyz 1
g (x, y, z) = ln .
(x2 + y 4 + z 6 )8
2
ex−(y−2) −z 3
3 CODE: 1767
p
Q. 18. Let (C)
p be the intersection between the surface z = 8 − x2 − y 2 and the cone
2 2
z = x + y . The projection of (C) onto the plane Oxy is a circle. Evaluate its
radius.
√
A 1 B 2 C 4 D 2 3
√
E 2 2
Q. 19. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
A →−u (1, 0) B → −u (−2, 5) C →−u (1, −2) D →
−
u (4, −6)
→
−
E u (3, −1)
Q. 20. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
√
A M (1, π3 ) B M ( 2, π4 ) C M (1, − π4 ) D M (1, π4 )
√
E M ( 2, − π4 )
4 CODE: 1767
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
NO MATERIALS ARE ALLOWED
CODE: 1767
Q. 1. B Q. 5. C Q. 9. B Q. 13. A Q. 17. E
Q. 2. D Q. 6. D Q. 10. D Q. 14. B Q. 18. B
Q. 3. E Q. 7. C Q. 11. A Q. 15. A Q. 19. C
Q. 4. D Q. 8. B Q. 12. E Q. 16. E Q. 20. B
1 CODE: 1767