0% found this document useful (0 votes)
64 views20 pages

Calculus 2 - 213 - Solutions

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
64 views20 pages

Calculus 2 - 213 - Solutions

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

Lecturer: Approved by:

CODE: 4
..............................................................................................................

Semester/ Academic year 213 2021 - 2022


MIDTERM EXAM
Date 10 July 2022
UNIVERSITY OF TECHNOLOGY Course title Calculus 2
VNUHCM Course ID MT1005
FACULTY OF AS Duration 50 mins Question sheet code: 1764

-This is a closed book exam. Total available score: 10 points.


-At the beginning of the working time, you MUST fill in your full name and student ID on this question
sheet.

Student’s full name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part I. Multiple choice (6 points, 60 minutes)


There are 20 questions.
Zx Each question is assigned 0.5 point. (L.O.1)
d p
Question 01. If f ( x ) = cos(t2 )dt, find A = f ( x ).
dx
0
cos x sin x cos x sin x
A =g p
Q. 1.A Let B Adefined
be the function = p by C A= p D A= p
3 x 3 x 2 x 2 x
Question 02. Find the approximation of3x
c such
 10  
3
−that
xyz 4 − 2xyz 1
g (x, y, z) = Z x ln .
(xf 2(t+ 4 3 z 6 )8 2
ex−(y−2) −z3
)dty= x++ 3x2 + 2x 3.
c

Evaluate gy (−1, 0, 0).



A c = 0.9717 0.8717
B c= 
C c = 0.6717 D c = 0.7717 
A −4245690 B −3753892 C 1845654 D −4194304

Question 03. If F ( x ) = x2 is an antiderivative of the function f ( x )e2x . Find the antiderivative of the function
Ef ( x−2344900
0 2x
)e . Z
A None of them B f 0 ( x )e2x dx = x2 + 
x+C 
Z Z
Q. 2. Choose a point in the domain of the function0 f 2x (x, y) = ln sin 2 1 2 from the
C f 0 ( x )e2x dx = x2 2x + C D f ( x )e dx = 2x2 + 2x + C x +y
following.
  ln
x
AQuestion 04. If
M (−0.3, F ( x ) is an antiderivative
−0.3) B M (0.1, of the function f ( x ) =
−0.3) · Calculate
C xM I = F (e) F (1).
(0.2, −0.2)
 
1 −0.3) 1
D AMI (0.2,
= B EI =M e (0.5, −0.2) C None of them D I=
e 2
2 2 2 Z
3. Let M
Q. Question 05. be a point
If the onf the
functions and gcircle (x + 2) derivative
have continuous +y = 4.
onGiven
[0, 2] andthat M the
satisfies hascondition
polar coordinates
f 0 ( x ) g( x ) dx =
Z 2 r0 , − 3π (in the standard 0
4
Z 2polar
h coordinate
i0 system x = r cos φ, y = r sin φ). What
2, f ( x ) g0 ( x ) dx = 3, then calculate f ( x ) g( x ) dx.
0is the value of r 0 ? 0
√ √  
A

Stud.
3 2 B 2 2 C 4 D 2
√Fullname: Page 1/5 - Question sheet code 1254
E 2

Q. 4. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
  
A N (1, 2, 9) B N (−1, 2, 9) C N (−1, −2, 9)
 
D N (1, −2, −9) E N (3, 4, 10)

1 CODE: 1764
Q. 5. Let u (x, y) be a function such that

ux (−1, 0) = −4, uy (−1, 0) = −2, u (−1, 0) = 3.

Consider the function F


 
(x, y) := cos (u (x, y)). 
Evaluate Fx (−1, 0).
A cos(4) B 4 sin(3) C 6 sin(3)
 
D 4 sin(3) + cos(4) E 6 sin(3) + cos(4)

Q. 6. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
  √   √
A M (1, π3 ) B M ( 2, π4 ) C M (1, − π4 ) D M ( 2, − π4 )

E M (1, π4 )
2 −y 2
Q. 7. Which number from the following is in the range of the function f (x, y) = ex ?
   
A −2.71 B 0 C −0.3 D 0.2

E −0.4

Q. 8. Let D = {(x, y) : x2 + y 2 ≤ 1, y ≤ −x}. In the polar coordinate system x =


r cos (φ) , y = r sin (φ), what is the range for (r, φ) corresponding to the domain
D?
Choose the correct statement from the following.

A 0 ≤ r ≤ 1, −π ≤ φ ≤ π

B 0 ≤ r ≤ 1, − π4 ≤ φ ≤ 3π
 4
C 0 ≤ r ≤ 1, − 5π ≤ φ ≤ − π4
 4
D 0 ≤ r ≤ 1, − π4 ≤ φ ≤ π
 4
E 0 ≤ r ≤ 1, 3π
4
≤φ≤ 3π
2

Q. 9. In R3 , let (P ) be the plane of equation 4x − 2y − 2z + 8 = 0. Which function in the


following whose graph is the plane (P )?

A f (x, y)

= 8x − 4y + 4
B f (x, y)

= 2x − 3y + 8
C f (x, y)

=x−y+2
D f (x, y)

= 2x − 2y + 1
E f (x, y) = 2x − y + 4
Q. 10. In R2 , what is the greatest distance from a point on the circle x2 + y 2 = 1 to the
point M (−1, 7)?
p √ p √ p √
A
p 51 + 10 2 B 50 + 53 C 50 + 18 2
 √ √
D 51 + 53 E 51
Q. 11. Find the maximum value of the function f (x, y) = 13 − x2 − y 2 for (x, y) in the
domain 
(x, y) : x4 + y 6 ≤ 1 .
 √    √
A 14 2 B 12 C 11 D 12 2

E 13

2 CODE: 1764
Q. 12. The points given in the following are represented in polar coordinates. Which point
is inside the circle x2 + y 2 = 4?
       
A 5, − π6 B 32 , π6 C 5, π3 D 3, π2
 
E 6, π4

Q. 13.How many saddle points



does the function f (x,y) = 2022 + 2021ye−x have?

A 0 B 1 C 2 D 3

E Infinitely many

Q. 14. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
   
A →−u (1, 0) B → −u (−2, 5) C →−u (1, −2) D →

u (3, −1)



E u (4, −6)
Q. 15. Evaluate the double integral ZZ
x2 dA
D

where D is the disk {(x, y) : x2 + y 2 ≤ 9}.


   
9π 81π 9π
A 9π B C D
 2 4 4
27π
E 4
p
Q. 16. Let (C)
p be the intersection between the surface z = 8 − x2 − y 2 and the cone
z = x2 + y 2 . The projection of (C) onto the plane Oxy is a circle. Evaluate its
radius.
   √
A 1 B 2 C 4 D 2 2
√
E 2 3
Q. 17. Evaluate the value of the function
 3 10  
3x − xyz 4 − 2xyz 1
g (x, y, z) = ln
(x2 + y 4 + z 6 )8 + 1
2
ex−(y−2) −z3

at M (x = 0, y = 2, z = 0).
   
A −2 ln(2) B 0 C 3 ln(2) D 2 ln(2)

E −3 ln(2)

Q. 18. In R3 , let (C) be the intersection between the cylinder x2 + y 2 = 5 and the plane
2x + 3y − 4z + 8 = 0. Which point from the following is on the curve (C)?
   
A M (1, 2, −1) B M (1, 2, 1) C M (−1, 2, 1) D M (1, −2, 1)

E M (−1, −2, 1)

Q. 19. Which function from the following has a local minimum at the point M (1, 0)?

A f (x, y)

= (x − 1)2 + y 2 + 3
B f (x, y)

= − (x − 1)2 − y 2 + 3
C f (x, y)

= (x − 1) y + 3
D f (x, y)

= (x − 1) y 2 + 3
E f (x, y) = (x − 1)2 y + 3

3 CODE: 1764
Q. 20. Evaluate the double integral ZZ
3dA
D

where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
   
A 150 B 25 C 50 D 30

E 75

4 CODE: 1764
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
 NO MATERIALS ARE ALLOWED
CODE: 1764
    
Q. 1. D Q. 5. B Q. 9. E Q. 13. A Q. 17. B
    
Q. 2. D Q. 6. B Q. 10. A Q. 14. C Q. 18. D
    
Q. 3. B Q. 7. D Q. 11. E Q. 15. C Q. 19. A
    
Q. 4. E Q. 8. C Q. 12. B Q. 16. B Q. 20. E

1 CODE: 1764
Lecturer: Approved by:
CODE: 5
..............................................................................................................

Semester/ Academic year 213 2021 - 2022


MIDTERM EXAM
Date 10 July 2022
UNIVERSITY OF TECHNOLOGY Course title Calculus 2
VNUHCM Course ID MT1005
FACULTY OF AS Duration 50 mins Question sheet code: 1765

-This is a closed book exam. Total available score: 10 points.


-At the beginning of the working time, you MUST fill in your full name and student ID on this question
sheet.

Student’s full name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part I. Multiple choice (6 points, 60 minutes)


There are 20 questions.
Zx Each question is assigned 0.5 point. (L.O.1)
d p
Question 01. If f ( x ) = cos(t2 )dt, find A = f ( x ).
dx
0
cos x 2 2 sin x cos x sin x
A = Mpbe a point onB the
Q. 1.A Let A =circle
p (x + 2) +y C A= = 4.pGiven that M A = polar
D has p coordinates
3 3πx  3 x 2 x 2 x
r0 , − (in the standard polar coordinate system x = r cos φ, y = r sin φ). What
Question 02.4 Find the approximation of c such that
is the value of r0 ?
√  √ Zx √ 
A 3 2 B 2 f (t)dt = x3 + 3x2 +
C2x 2 3. 2 D 4
 c
E 2
A c = 0.9717 B c = 0.8717 C c = 0.6717 D c = 0.7717
Q. 2. Let D = {(x, y)2 : x2 + y 2 ≤ 1, y ≤ −x}. In the 2xpolar coordinate system x =
Question 03. If F ( x ) = x is an antiderivative of the function f ( x )e . Find the antiderivative of the function
f 0 ( x )re2x
cos
. (φ) , y = r sin (φ), what is the rangeZ for (r, φ) corresponding to the domain
D?
A None of them B f 0 ( x )e2x dx = x2 + x + C
Choose
Z the correct statement from the following.
Z

C 0 2x 2
f ( x )e dx = x 2x + C 0 2x 2
D f ( x )e dx = 2x + 2x + C
A 0 ≤ r ≤ 1, −π ≤ φ ≤ π

ln x

0 ≤ r04.
BQuestion ≤ 1,If F3π ≤ φ ≤ 3π
4( x ) is an antiderivative
2 of the function f ( x ) = · Calculate I = F (e) F (1).
x
π 3π
C A0 I≤= r1 ≤ 1, − 4 ≤ φ ≤ 1
 e
B I4 = e C None of them D I=
2
D 0 ≤ r ≤ 1, − 5π ≤ φ ≤ − π4
 4 Z 2
EQuestion
0 ≤ r05.
≤ 1, − π4functions
If the π g have continuous derivative on [0, 2] and satisfies the condition
≤ φ ≤f and
4 0
f 0 ( x ) g( x ) dx =
Z 2 Z 2h i0
0
Q. 2,
3. 0Let x ) dx
f ( x )gg (be the= 3, then calculate
function defined
0
( x ) g( x )
f by dx.

 10  
Stud. Fullname: 3x3 − xyz 4 − 2xyz Page 1/51- Question sheet code 1254
g (x, y, z) = ln .
(x2 + y 4 + z 6 )8
2
ex−(y−2) −z 3

Evaluate gy (−1, 0, 0).


   
A −4245690 B −2344900 C −3753892 D 1845654

E −4194304

1 CODE: 1765
Q. 4. Evaluate the double integral ZZ
x2 dA
D
2 2
where D is the disk {(x, y) : x + y ≤ 9}.
   
27π 9π 81π
A 9π B C D
 4 2 4

E 4

Q. 5. In R3 , let (P ) be the plane of equation 4x − 2y − 2z + 8 = 0. Which function in the


following whose graph is the plane (P )?

A f (x, y)

= 8x − 4y + 4
B f (x, y)

= 2x − y + 4
C f (x, y)

= 2x − 3y + 8
D f (x, y)

=x−y+2
E f (x, y) = 2x − 2y + 1
p
Q. 6. Let (C)
p be the intersection between the surface z = 8 − x2 − y 2 and the cone
z = x2 + y 2 . The projection of (C) onto the plane Oxy is a circle. Evaluate its
radius.
 √  
A 1 B 2 3 C 2 D 4
√
E 2 2

Q. 7. Find the maximum value of the function f (x, y) = 13 − x2 − y 2 for (x, y) in the
domain 
(x, y) : x4 + y 6 ≤ 1 .
 √   
A 14 2 B 13 C 12 D 11
 √
E 12 2

Q. 8. Evaluate the double integral ZZ


3dA
D

where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
   
A 150 B 75 C 25 D 50

E 30

Q. 9. The points given in the following are represented in polar coordinates. Which point
is inside the circle x2 + y 2 = 4?
       
A 5, − π6 B 6, π4 C 32 , π6 D 5, π3
 
E 3, π2
2 −y 2
Q. 10. Which number from the following is in the range of the function f (x, y) = ex ?
   
A −2.71 B −0.4 C 0 D −0.3

E 0.2

2 CODE: 1765
Q. 11. In R2 , what is the greatest distance from a point on the circle x2 + y 2 = 1 to the
point M (−1, 7)?
p √ √ p √
A
p 51 + 10 2 B
p 51 C 50 + 53
 √  √
D 50 + 18 2 E 51 + 53

Q. 12. In R3 , let (C) be the intersection between the cylinder x2 + y 2 = 5 and the plane
2x + 3y − 4z + 8 = 0. Which point from the following is on the curve (C)?
   
A M (1, 2, −1) B M (−1, −2, 1) C M (1, 2, 1) D M (−1, 2, 1)

E M (1, −2, 1)

Q. 13. Let u (x, y) be a function such that

ux (−1, 0) = −4, uy (−1, 0) = −2, u (−1, 0) = 3.

Consider the function F


 
(x, y) := cos (u (x, y)). 
Evaluate Fx (−1, 0). 
A cos(4) B 6 sin(3) + cos(4) C 4 sin(3) D 6 sin(3)

E 4 sin(3) + cos(4)

Q. 14. Evaluate the value of the function


 3 10  
3x − xyz 4 − 2xyz 1
g (x, y, z) = ln
(x2 + y 4 + z 6 )8 + 1
2
ex−(y−2) −z3

at M (x = 0, y = 2, z = 0).
   
A −2 ln(2) B −3 ln(2) C 0 D 3 ln(2)

E 2 ln(2)

Q. 15. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
   √ 
A M (1, π3 ) B M (1, π4 ) C M ( 2, π4 ) D M (1, − π4 )
 √
E M ( 2, − π4 )

Q. 16. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
  
A N (1, 2, 9) B N (3, 4, 10) C N (−1, 2, 9)
 
D N (−1, −2, 9) E N (1, −2, −9)

Q. 17.How many saddle points


does the function f (x,y) = 2022 + 2021ye−x have?

A 0 B Infinitely many C 1 D 2

E 3
  
1
Q. 18. Choose a point in the domain of the function f (x, y) = ln sin x2 +y2 from the
following.
  
A M (−0.3, −0.3) B M (0.5, −0.2) C M (0.1, −0.3)
 
D M (0.2, −0.2) E M (0.2, −0.3)

3 CODE: 1765
Q. 19. Which function from the following has a local minimum at the point M (1, 0)?

A f (x, y)

= (x − 1)2 + y 2 + 3
B f (x, y)

= (x − 1)2 y + 3
C f (x, y)

= − (x − 1)2 − y 2 + 3
D f (x, y)

= (x − 1) y + 3
E f (x, y) = (x − 1) y 2 + 3
Q. 20. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
   
A →−u (1, 0) B → −u (4, −6) C →−u (−2, 5) D →

u (1, −2)



E u (3, −1)

4 CODE: 1765
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
 NO MATERIALS ARE ALLOWED
CODE: 1765
    
Q. 1. C Q. 5. B Q. 9. C Q. 13. C Q. 17. A
    
Q. 2. D Q. 6. C Q. 10. E Q. 14. C Q. 18. E
    
Q. 3. E Q. 7. B Q. 11. A Q. 15. C Q. 19. A
    
Q. 4. D Q. 8. B Q. 12. E Q. 16. B Q. 20. D

1 CODE: 1765
Lecturer: Approved by:
CODE: 6
..............................................................................................................

Semester/ Academic year 213 2021 - 2022


MIDTERM EXAM
Date 10 July 2022
UNIVERSITY OF TECHNOLOGY Course title Calculus 2
VNUHCM Course ID MT1005
FACULTY OF AS Duration 50 mins Question sheet code: 1766

-This is a closed book exam. Total available score: 10 points.


-At the beginning of the working time, you MUST fill in your full name and student ID on this question
sheet.

Student’s full name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part I. Multiple choice (6 points, 60 minutes)


There are 20 questions.
Zx Each question is assigned 0.5 point. (L.O.1)
d p
Question 01. If f ( x ) = cos(t2 )dt, find A = f ( x ).
dx
0
cos x sin x2 cos x sin x
A= p
Q. 1.A Find the maximumB valueA= p of the function C Af=(x,py) = 13 − x D −A y=2 for
p (x, y) in the
3 x 3 x 2 x 2 x
domain  that 4
Question 02. Find the approximation of c such
(x, y) : x + y 6 ≤ 1 .
Z x
 √  f (t)dt = x3 + 3x2 + 2x 3. 
A 14 2 B 12 c C 13 D 11
 √
E 12 2
A c = 0.9717 B c = 0.8717 C c = 0.6717 D c = 0.7717

x2 is the e2xthe
2 2
Q. Question
2.0 Which If F ( x ) =
03. number from an antiderivative
following is of in
the the
function
rangef ( x )of . Findfunction
the antiderivative
f (x, y)of=theexfunction
−y
?
f 2x
( x )e .  Z
 
A A−2.71 B 0 C −0.4
f 0 ( x )e2x dx = x2 + x + C
D −0.3
 None of them B
Z
E 0.2 Z
2x 2
0
C f ( x )e dx = x 2x + C D f 0 ( x )e2x dx = 2x2 + 2x + C

Q. 3. Let M be a point on the circle (x + 2)2 +y 2 = 4.lnGiven x that M has polar coordinates
Question 04.3π If F ( x ) is an antiderivative of the function f ( x ) = · Calculate I = F (e) F (1).
r0 , − 4 (in the standard polar coordinate system x x = r cos φ, y = r sin φ). What
1 1
I=
A is the value of r0 ? B I = e C None of them D I=
√ e √  √ 2 
A 3 2 B 2 2 C 2 D Z 42 0

Question 05. If the functions f and g have continuous derivative on [0, 2] and satisfies the condition f ( x ) g( x ) dx =
E Z22 Z 2h i0 0

2, f ( x ) g0 ( x ) dx = 3, then calculate f ( x ) g( x ) dx.


0 0
Q. 4. The points given in the following are represented in polar coordinates. Which point
2 2
Stud. is inside the circle x + y = 4?
 Fullname:    Page 1/5 - Question sheet
code 1254

π 3 π π
A 5, − 6 B 2, 6 C 6, 4 D 5, π3
 
E 3, π2

1 CODE: 1766
Q. 5. Evaluate the double integral ZZ
x2 dA
D
2 2
where D is the disk {(x, y) : x + y ≤ 9}.
   
9π 27π 81π
A 9π B C D
 2 4 4

E 4

Q. 6. In R3 , let (P ) be the plane of equation 4x − 2y − 2z + 8 = 0. Which function in the


following whose graph is the plane (P )?

A f (x, y)

= 8x − 4y + 4
B f (x, y)

= 2x − 3y + 8
C f (x, y)

= 2x − y + 4
D f (x, y)

=x−y+2
E f (x, y) = 2x − 2y + 1
Q. 7. Which function from the following has a local minimum at the point M (1, 0)?

A f (x, y)

= (x − 1)2 + y 2 + 3
B f (x, y)

= − (x − 1)2 − y 2 + 3
C f (x, y)

= (x − 1)2 y + 3
D f (x, y)

= (x − 1) y + 3
E f (x, y) = (x − 1) y 2 + 3

Q. 8. In R2 , what is the greatest distance from a point on the circle x2 + y 2 = 1 to the


point M (−1, 7)?
p √ p √ √
A
p 51 + 10 2 B
p 50 + 53 C 51
 √  √
D 50 + 18 2 E 51 + 53
Q. 9. Evaluate the value of the function
 3 10  
3x − xyz 4 − 2xyz 1
g (x, y, z) = ln
(x2 + y 4 + z 6 )8 + 1
2
ex−(y−2) −z3

at M (x = 0, y = 2, z = 0).
   
A −2 ln(2) B 0 C −3 ln(2) D 3 ln(2)

E 2 ln(2)
p
Q. 10. Let (C)
p be the intersection between the surface z = 8 − x2 − y 2 and the cone
z = x2 + y 2 . The projection of (C) onto the plane Oxy is a circle. Evaluate its
radius.
  √ 
A 1 B 2 C 2 3 D 4
√
E 2 2

2 CODE: 1766
Q. 11. Let D = {(x, y) : x2 + y 2 ≤ 1, y ≤ −x}. In the polar coordinate system x =
r cos (φ) , y = r sin (φ), what is the range for (r, φ) corresponding to the domain
D?
Choose the correct statement from the following.

A 0 ≤ r ≤ 1, −π ≤ φ ≤ π

B 0 ≤ r ≤ 1, − π4 ≤ φ ≤ 3π
 4
C 0 ≤ r ≤ 1, 3π ≤φ≤ 3π
 4 2
D 0 ≤ r ≤ 1, − 5π ≤ φ ≤ − π4
 4
E 0 ≤ r ≤ 1, − π4 ≤ φ ≤ π
4
  
1
Q. 12. Choose a point in the domain of the function f (x, y) = ln sin x2 +y 2 from the
following.
  
A M (−0.3, −0.3) B M (0.1, −0.3) C M (0.5, −0.2)
 
D M (0.2, −0.2) E M (0.2, −0.3)

Q. 13. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
  
A N (1, 2, 9) B N (−1, 2, 9) C N (3, 4, 10)
 
D N (−1, −2, 9) E N (1, −2, −9)

Q. 14. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
   
A →−u (1, 0) B → −u (−2, 5) C →−u (4, −6) D →

u (1, −2)



E u (3, −1)

Q. 15.How many saddle points



does the function f (x,y) = 2022 + 2021ye−x have?

A 0 B 1 C Infinitely many D 2

E 3

Q. 16. In R3 , let (C) be the intersection between the cylinder x2 + y 2 = 5 and the plane
2x + 3y − 4z + 8 = 0. Which point from the following is on the curve (C)?
   
A M (1, 2, −1) B M (1, 2, 1) C M (−1, −2, 1) D M (−1, 2, 1)

E M (1, −2, 1)

Q. 17. Let g be the function defined by


 10  
3x3 − xyz 4 − 2xyz 1
g (x, y, z) = ln .
(x2 + y 4 + z 6 )8
2
ex−(y−2) −z 3

Evaluate gy (−1, 0, 0).


   
A −4245690 B −3753892 C −2344900 D 1845654

E −4194304

3 CODE: 1766
Q. 18. Let u (x, y) be a function such that

ux (−1, 0) = −4, uy (−1, 0) = −2, u (−1, 0) = 3.

Consider the function F


 
(x, y) := cos (u (x, y)). 
Evaluate Fx (−1, 0). 
A cos(4) B 4 sin(3) C 6 sin(3) + cos(4) D 6 sin(3)

E 4 sin(3) + cos(4)

Q. 19. Evaluate the double integral ZZ


3dA
D

where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
   
A 150 B 25 C 75 D 50

E 30

Q. 20. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
  √  
A M (1, π3 ) B M ( 2, π4 ) C M (1, π4 ) D M (1, − π4 )
 √
E M ( 2, − π4 )

4 CODE: 1766
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
 NO MATERIALS ARE ALLOWED
CODE: 1766
    
Q. 1. C Q. 5. D Q. 9. B Q. 13. C Q. 17. E
    
Q. 2. E Q. 6. C Q. 10. B Q. 14. D Q. 18. B
    
Q. 3. B Q. 7. A Q. 11. D Q. 15. A Q. 19. C
    
Q. 4. B Q. 8. A Q. 12. E Q. 16. E Q. 20. B

1 CODE: 1766
Lecturer: Approved by:
CODE: 7
..............................................................................................................

Semester/ Academic year 213 2021 - 2022


MIDTERM EXAM
Date 10 July 2022
UNIVERSITY OF TECHNOLOGY Course title Calculus 2
VNUHCM Course ID MT1005
FACULTY OF AS Duration 50 mins Question sheet code: 1767

-This is a closed book exam. Total available score: 10 points.


-At the beginning of the working time, you MUST fill in your full name and student ID on this question
sheet.

Student’s full name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 1:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invigilator 2:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part I. Multiple choice (6 points, 60 minutes)


There are 20 questions.
Zx Each question is assigned 0.5 point. (L.O.1)
d p
Question 01. If f ( x ) = cos(t2 )dt, find A = f ( x ).
dx
0
cos x sin x cos x sin x
A = points
Q. 1.A The p given inBthe A =following
p C A = p in polar coordinates.
are represented D A = p Which point
3 x 2 23 x 2 x 2 x
is inside the circle x + y = 4?

Question  of 
02. Find the approximation c such that    
A 5, − π6 B 32 , π6 Z x C 5, π3 D 6, π4
 
E 3, π2 f (t)dt = x3 + 3x2 + 2x 3.
c

Q. 2.A Find
c = 0.9717 the maximumB value of the function
c = 0.8717 C c f=(x,
0.6717 y) = 13 − x2D −c =y 20.7717
for (x, y) in the
domain  of the function
Question 03. If F ( x ) = x2 is an antiderivative 4
2x
6 f ( x )e . Find the antiderivative of the function
0 2x
f ( x )e . (x, y) : x + y ≤ 1 .
Z
 √ of them
A None  B f 0 ( x)e2x dx = x2 + x + C 
A 14Z 2 B 12 Z C 11 D 13
C √ f 0 ( x )e2x dx = x2 2x + C D f 0 ( x )e2x dx = 2x2 + 2x + C
E 12 2
ln x
Q. Question
3. In R04.
3 If F(C)
, let ( x ) isbe
an antiderivative of the function
the intersection between f ( x )the · Calculate
= cylinder +Fy(e2) = F5(1)and
x2I = . the plane
x
1 1
I =+ 3y − 4z + 8 =B0.I Which
A 2x =e point fromC the None following
of them is on the D I= curve (C)?
 e   2
A M (1, 2, −1) B M (1, 2, 1) C M (−1, 2, 1) Z 2
 
Question 05. If the functions f and g have continuous derivative on [0, 2] and satisfies the condition f 0 ( x ) g( x ) dx =
D ZM (−1, −2, 1) E MZ(1,h −2, 1) i 0
2 2 0
2, f ( x ) g0 ( x ) dx = 3, then calculate f ( x ) g( x ) dx.
3
Q. 4. 0In R , let (P ) be the plane0 of equation 4x − 2y − 2z + 8 = 0. Which function in the
following whose graph is the plane (P )?
Stud. Fullname: Page 1/5 - Question sheet code 1254

A f (x, y)

= 8x − 4y + 4
B f (x, y)

= 2x − 3y + 8
C f (x, y)

=x−y+2
D f (x, y)

= 2x − y + 4
E f (x, y) = 2x − 2y + 1

1 CODE: 1767
Q. 5. Evaluate the double integral ZZ
x2 dA
D
2 2
where D is the disk {(x, y) : x + y ≤ 9}.
   
9π 81π 27π
A 9π B C D
 2 4 4

E 4

Q. 6. Let (S) be the paraboloid z = 10 − (x − 1)2 − (y − 2)2 , and let M be the highest
point (relative to the plane Oxy) on (S). Let (P ) be the tangent plane to (S) at M .
Which point from the following is on the plane (P )?
   
A N (1, 2, 9) B N (−1, 2, 9) C N (−1, −2, 9) D N (3, 4, 10)

E N (1, −2, −9)

Q. 7. Let D = {(x, y) : x2 + y 2 ≤ 1, y ≤ −x}. In the polar coordinate system x =


r cos (φ) , y = r sin (φ), what is the range for (r, φ) corresponding to the domain
D?
Choose the correct statement from the following.

A 0 ≤ r ≤ 1, −π ≤ φ ≤ π

B 0 ≤ r ≤ 1, − π4 ≤ φ ≤ 3π
 4
C 0 ≤ r ≤ 1, − 5π ≤ φ ≤ − π4
 4
D 0 ≤ r ≤ 1, 3π ≤φ≤ 3π
 4 2
E 0 ≤ r ≤ 1, − π4 ≤ φ ≤ π4

Q. 8. Let u (x, y) be a function such that

ux (−1, 0) = −4, uy (−1, 0) = −2, u (−1, 0) = 3.

Consider the function F


 
(x, y) := cos (u (x, y)). 
Evaluate Fx (−1, 0).
A cos(4) B 4 sin(3) C 6 sin(3)
 
D 6 sin(3) + cos(4) E 4 sin(3) + cos(4)

Q. 9. Let M be a point on the circle (x + 2)2 +y 2 = 4. Given that M has polar coordinates
r0 , − 3π
4
(in the standard polar coordinate system x = r cos φ, y = r sin φ). What
is the value of r0 ?
√ √  √
A 3 2 B 2 2 C 4 D 2

E 2

Q. 10. Evaluate the double integral ZZ


3dA
D

where D is the triangular region with vertices: A (−3, 0) , B (0, 5) and C (7, 0).
   
A 150 B 25 C 50 D 75

E 30

2 CODE: 1767
Q. 11. In R2 , what is the greatest distance from a point on the circle x2 + y 2 = 1 to the
point M (−1, 7)?
p √ p √ p √ √
A
p 51 + 10 2 B 50 + 53 C 50 + 18 2 D 51
 √
E 51 + 53
  
1
Q. 12. Choose a point in the domain of the function f (x, y) = ln sin x2 +y2 from the
following.
  
A M (−0.3, −0.3) B M (0.1, −0.3) C M (0.2, −0.2)
 
D M (0.5, −0.2) E M (0.2, −0.3)

Q. 13.How many saddle points



does the function f (x,y) = 2022 + 2021ye−x have?
A 0 B 1 C 2
 
D Infinitely many E 3

Q. 14. Evaluate the value of the function


 3 10  
3x − xyz 4 − 2xyz 1
g (x, y, z) = ln
(x2 + y 4 + z 6 )8 + 1
2
ex−(y−2) −z3

at M (x = 0, y = 2, z = 0).
   
A −2 ln(2) B 0 C 3 ln(2) D −3 ln(2)

E 2 ln(2)

Q. 15. Which function from the following has a local minimum at the point M (1, 0)?

A f (x, y)

= (x − 1)2 + y 2 + 3
B f (x, y)

= − (x − 1)2 − y 2 + 3
C f (x, y)

= (x − 1) y + 3
D f (x, y)

= (x − 1)2 y + 3
E f (x, y) = (x − 1) y 2 + 3
Q. 16. Let g be the function defined by
 10  
3x3 − xyz 4 − 2xyz 1
g (x, y, z) = ln .
(x2 + y 4 + z 6 )8
2
ex−(y−2) −z 3

Evaluate gy (−1, 0, 0).


   
A −4245690 B −3753892 C 1845654 D −2344900

E −4194304
2 −y 2
Q. 17. Which number from the following is in the range of the function f (x, y) = ex ?
   
A −2.71 B 0 C −0.3 D −0.4

E 0.2

3 CODE: 1767
p
Q. 18. Let (C)
p be the intersection between the surface z = 8 − x2 − y 2 and the cone
2 2
z = x + y . The projection of (C) onto the plane Oxy is a circle. Evaluate its
radius.
   √
A 1 B 2 C 4 D 2 3
√
E 2 2

Q. 19. Among the following directions, which one that the function f (x, y) =
1
x2 +y 4
sin (x2 + y 4 ) goes uphill most rapidly at M (−1, 1)?
   
A →−u (1, 0) B → −u (−2, 5) C →−u (1, −2) D →

u (4, −6)



E u (3, −1)

Q. 20. Let M be a point different from the origin and on the intersection between the line
y − x = 0 and the parabola x − y 2 = 0. Which one from the following is the polar
coordinates of M (in the standard polar coordinate system x = r cos φ, y = r sin φ)?
  √  
A M (1, π3 ) B M ( 2, π4 ) C M (1, − π4 ) D M (1, π4 )
 √
E M ( 2, − π4 )

4 CODE: 1767
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

—————————————————
ANSWER KEYS
SUBJECT: CALCULUS 2
DURATION: 50 MINUTES
 NO MATERIALS ARE ALLOWED
CODE: 1767
    
Q. 1. B Q. 5. C Q. 9. B Q. 13. A Q. 17. E
    
Q. 2. D Q. 6. D Q. 10. D Q. 14. B Q. 18. B
    
Q. 3. E Q. 7. C Q. 11. A Q. 15. A Q. 19. C
    
Q. 4. D Q. 8. B Q. 12. E Q. 16. E Q. 20. B

1 CODE: 1767

You might also like