Molecules 30 00851 v2
Molecules 30 00851 v2
1 Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja,
Loja 1101608, Ecuador; cparmijos@utpl.edu.ec (C.A.); lncastillo@utpl.edu.ec (L.N.C.)
2 UTPL-Alumni, Barrio San Cayetano Alto, Calle Marcelino Champagnat, Loja 1101608, Ecuador;
njespinosa1@utpl.edu.ec
3 Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq;
vidari@unipv.it
* Correspondence: jyramirez@utpl.edu.ec
Abstract: Lantana camara L., commonly known as pigeon berry, is a herbaceous plant of
growing scientific interest due to the high medicinal value. In fact, despite being catego-
rized as an invasive species, it has been used for a long time to treat different diseases
thanks to the many biological activities. Triterpenes, flavonoids, phenylpropanoids, and
iridoid glycosides are the bioactive compounds naturally occurring in L. camara that have
demonstrated anticancer, antifilarial, nematocidal, antibacterial, insecticidal, antileishma-
nial, antifungal, anti-inflammatory, and antioxidant properties. The aim of this review is
to update the information concerning the chemistry and biological activity of L. camara
extracts and their constituents, including semisynthetic derivatives, revising the literature
until June 2024. We believe that the data reported in this review clearly demonstrate the
importance of the plant as a promising source of medicines and will therefore stimulate
further investigations.
Academic Editor: H. P. Vasantha Keywords: Verbenaceae; Lantana camara; ethnobotany; phytochemistry; biological activity
Rupasinghe
Figure2.2.Worldwide
Figure Worldwidedistribution
distributionofofLantana
Lantanacamara
camaraL.L.[11].
[11].
L. camara is one of the most important herbal medicines in the world. For example, it
is well known in the Ayurvedic medicinal system with the Sanskrit names of Chaturangi
and Vanacchedi. Different parts of the plant are used as traditional remedies for the
treatment of various human ailments, such as itches, cuts, ulcers, swellings, bilious fever,
catarrh, asthma and bronchitis, eczema, chicken pox, tetanus, malaria, tumors,
Molecules 2025, 30, 851 3 of 51
L. camara is one of the most important herbal medicines in the world. For example,
it is well known in the Ayurvedic medicinal system with the Sanskrit names of Chatu-
rangi and Vanacchedi. Different parts of the plant are used as traditional remedies for
the treatment of various human ailments, such as itches, cuts, ulcers, swellings, bilious
fever, catarrh, asthma and bronchitis, eczema, chicken pox, tetanus, malaria, tumors, stom-
achache, toothache, headache, scabies, leprosy, rheumatism, and as an antiseptic agent to
treat wounds [4,5,15,16]. The essential oil has shown antibacterial, antifungal, cytotoxic,
and mosquito-repellent effects. L. camara has been found to display a variety of biologi-
cal properties, including antiarthritic, anti-aspergillus, antibacterial, anticancer, cardioac-
tive, anti-fertility, antifilarial, hepatoprotective, anti-hyperglycemic, anti-hyperlipidemic,
anti-inflammatory, insecticidal, antimicrobial, antimutagenic, anxiolytic, nematocidal, an-
tioxidant, anti-proliferative, anti-protozoal, antipyretic, antithrombin, antitumor, antiul-
cerogenic, antiurolithiasis, antiviral, and wound-healing properties. Moreover, the plant
extracts have been reported to inhibit the enzymes acetylcholinesterase, alpha amylase,
carboxylesterase, cyclooxygenase-2, inducible nitric oxide synthase (iNOS), glutathione-S-
transferase (GST), 5-lipoxygenase (5-LOX), protein kinase C, and xanthine oxidase [17,18].
Phytochemical studies conducted by different research groups have led to the isolation of
essential oils, various steroids, terpenoids, saponins, iridoids, flavonoids, phenylethanoids,
naphthoquinones, coumarins, polyphenols and other phenolics, and alkaloids [17–23].
Interestingly, the genus Lantana is free of diterpenoids [17].
The information concerning the phytochemistry and the biological activi-
ties of L. camara L. published until March 2000 has been condensed in previous
reviews [17,18,21,24]. Moreover, recent studies on ecological aspects, chemical constituents,
semisynthetic derivatives [25–27], and the biological and pharmacological activities of
L. camara have been reviewed [17,18,20–23,28–35]. However, these publications, although
dealing with different aspects of the plant, are largely incomplete. Therefore, the purpose
of this review is to update and complete the information about L. camara L. to serve as a
starting point for further investigations of the plant.
Figure 3. Flowchart for the search process and selection of the studies considered for the review.
Figure 3. Flowchart for the search process and selection of the studies considered for the review.
3. Results
3. Results
3.1. Ethnobotany
In Table 1 we have reported the distribution of L. camara L. in different regions and
3.1. Ethnobotany
countries
In Table 1ofwe
thehave
world, together
reported thewith the local of
distribution vernacular
L. camaranames, the part regions
L. in different of the plant
and used
and the
countries preparation
of the methods
world, together of the
with traditional remedies.names, the part of the plant used
local vernacular
and the preparation
Table methods
1. Distribution of traditional
and traditional uses ofremedies.
Lantana camara L. in various continents and countries of
the world.
Table 1. Distribution and traditional uses of Lantana camara L. in various continents and countries
of the world. Part of Preparation
Region Country Vernacular Name Traditional Uses Ref.
the Plant Method
Congo Vernacular Part of the Preparation
Region Country (Bouenza Name
Lantana
Leaves Decoction
Traditional Antidiarrheal
Uses Ref. [36]
Plant
(Kunyi) Method
Department)
Congo Lantana
Africa Leaves
Mwamuganga Decoction Antidiarrheal [36]
(Bouenza (Kunyi) (Mashi),
Democratic
Mavi ya kuku
Republic of Congo Leaves Decoction Antimalarial [37]
(Swahili),
(Bukavu and Uvira)
Makereshe
(Nande)
Table 1. Cont.
Table 1. Cont.
3.2. Phytochemistry
A total of 168 compounds have been described with different names in the considered
period. They include both specialized metabolites isolated from non-volatile fractions
of L. camara as well as semisynthetic derivatives. The distribution pattern of these com-
pounds includes steroids and triterpenoids (75.6%), flavonoids (14.3%), fatty acids and
other miscellaneous compounds (8.9%), and iridoid glucosides (1.2%).
lantabetulic acid (17), which is characterized by an ether β-bridge connecting C-3 with C-25,
and the highly bioactive betulinic acid (18). A total of 78 oleanane triterpenoids (19–96),
including 34 synthetic ones, and 31 ursane derivatives (97–127), including 6 synthetic ones,
have been described in the considered period. The two skeletons differ from the position of
the methyl groups C-29 and C-30, which are positioned on the quaternary carbon C-20 in
the oleanane compounds, while they are trans-oriented on the tertiary carbons C-19 and
C-20 in the ursane derivatives.
The great variety of oleanane triterpenoids from L. camara derive from a combination
of differently placed double bonds and different oxygenated groups that decorate the basic
skeleton. A β-COOH, as in compound 30, or a β-COOMe group, as in 33, is usually linked
to C-17, with cis-orientation to βH-18. When a carboxylic group is absent at C-17, a D17(18)
double bond occurs, as in triterpenoid 49; a D12(13) double bond is usually present, as in
22, while, very rarely, a double bond occurs between C-11 and C-12, as in 21, or between
C-1 and C-2, as in 78. One compound (54) containing a 9(11),12(13)-diene system has also
been isolated. A carbonyl group is usually present at C-3, as in 26, or at C-11, as in 20; in
one compound, 40, a CO occurs at C-22. An acetal system formed by a β-epoxide bridge
between C-25 and C-3 and an α-OH (or, very rarely, an α-alkoxy) group at C-3 is frequently
present in oleanane structures, as in 29 or 40. A few compounds are known to contain a
lactone ring formed by a β-oxygen atom at C-13 bonded to a β-CO group at C-17, as in 43.
One example (34) of a triterpenoid bearing a β-epoxy ring at C-21/C-22 has been isolated
from L. camara. A free βOH group usually occurs at C-3, as in 31, at C-22, as in 26, and at
C-24, as in 28; very rarely, an OH is present at C-2, as in 78, or at C-19, as in 25, at C-7, as in
23, C-9, as in 64, and C-12, as in 43. One 3-O-acyl (compound 38) and one 3-O-β-D-glucosyl
derivative (84) have been isolated. The 22-βOH is usually esterified with an acyl group,
e.g., an acetyl, as in 42, a propanoyl, as in 46, a butanoyl, as in 50, an isobutanoyl, as in
51, an angelyl [(Z)-2-methylbut-2-enoyl], as in 48, and a senecioyl (3-methylbut-2-enoyl)
residue, as in 49; rarer are the esters with (S)-2-mehylbutanoic acid, as the triterpenoid 66,
and (S)-3-hydroxy-2-methylidenebutanoic acid, as 69.
Most of these structural characteristics are shared by the ursane triterpenoids due
to the close biosynthetic origin of the oleanane and ursane families. A unique ursane
triterpenoid is the 3-O-β-D-glucosyl derivative 127, in which stearic acid is esterified to the
4-OH group of a glucosyl moiety.
The flavonoids (Table 4) are represented by 19 flavones (128–146), which are mainly
apigenin and luteolin derivatives. A semisynthetic derivative (144) is included. Three rare
O-methyl flavonols (147–149) and two isoflavones, i.e., 5,7-dihydroxy-6,3′ ,4′ -trimethoxy
isoflavone (150) and triglycoside 151, have also been isolated. The two iridoids 152 and
153 (Table 5) are the 1-O glucosides of the common aglycones genipin and 4a-OH genipin.
The fatty acids 154–162 (Table 6) include common saturated and unsaturated long-chain
homologues from C14 to C32 . Finally, the small group of miscellaneous metabolites 163–168
(Table 7) includes the toxic cyanogenic glucoside linamarin (164), the common aliphatic
alcohols phytol (165), and triacontane-1-ol (167).
Compounds isolated from L. camara and semisynthetic derivatives are listed in the
following Tables 2–7. The compounds with the same molecular skeleton are grouped and
are then listed by increasing molecular formulae. Compounds with the same molecular
formula are listed in alphabetic order.
Molecules 2025, 30, 851 8 of 51
Table 3. Triterpenoids isolated from non-volatile fractions of Lantana camara and semisynthetic
derivatives.
Table 3. Cont.
Table 3. Cont.
Table 3. Cont.
Table 3. Cont.
Table 3. Cont.
Table 3. Cont.
Table 3. Cont.
Table 4. Flavonoids isolated from non-volatile fractions of Lantana camara and semisynthetic derivatives.
Table 4. Cont.
Molecular Molecular
N.º Compound Part of the Plant/Solvent Reference
Formula Weight
Geniposide
methyl (1S,4aS,7aS)-7-(hydroxymethyl)-1- Leaves and stems/
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) methanol
(152) C17 H24 O10 388.369 [91]
oxan-2-yl] oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran- Roots/
4-carboxylate ethanol
(Figure 14)
Theviridoside Aerial parts and roots/
methyl (1S,4aR,7aR)-4a-hydroxy-7-(hydroxymethyl)-1- ethanol
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) Leaves and stems/
(153) C17 H24 O11 404.368 [91]
oxan-2-yl] methanol
oxy-5,7a-dihydro-1H-cyclopenta[c]pyran-4-carboxylate Roots/
(Figure 14) methanol
Molecules 2025, 30, 851 19 of 51
Molecular Molecular
N.º Compound Part of the Plant/Solvent References
Formula Weight
Myristic acid
(154) C14 H28 O2 228.376 Aerial parts/petroleum ether [73]
tetradecanoic acid
Palmitic acid Aerial parts/methanol/petroleum ether
(155) C16 H32 O2 256.430 [73,77,82]
hexadecanoic acid Stems/ethanol
Linoleic acid
(156) C18 H32 O2 280.452 Aerial parts/petroleum ether [73]
(9Z,12Z)-octadeca-9,12-dienoic acid
Oleic acid
(157) C18 H34 O2 282.468 Aerial parts/petroleum ether [73]
(9Z)-octadec-9-enoic acid
Stearic acid Aerial parts/methanol
(158) C18 H36 O2 284.484 [77,82]
octadecanoic acid Stems/ethanol
Arachidic acid
(159) eicosanoid acid C20 H40 O2 312.538 Aerial parts/petroleum ether [73]
(Figure 14)
Behenic acid
(160) docosanoic acid C22 H44 O2 340.592 Aerial parts/methanol [77,82]
(Figure 14)
Lignoceric acid
(161) tetracosanoic acid C24 H48 O2 368.646 Aerial parts/methanol [106]
(Figure 14)
Lacceroic acid
(162) dotriacontanoic acid C32 H64 O2 480.862 Aerial parts/methanol [106]
(Figure 14)
Molecular Molecular
N.º Compound Part of the Plant/Solvent References
Formula Weight
Ethyl-β-D-galactopyranoside Stems/
(163) C8 H16 O6 208.210 [15]
(Figure 14) ethanol
Linamarin
Leaves and stems/
(164) 2-(β-D-Glucopyranosyloxy)-2-methylpropanenitrile C10 H17 NO6 247.247 [99]
methanol
(Figure 14)
Phytol
Leaves and stems/
(165) 3,7,11,15-tetramethyl-2-hexadecen-1-ol C20 H40 O 296.539 [75]
petroleum ether
(Figure 14)
Di-(2-ethylhexyl) phthalate Fruits/
(166) C24 H38 O4 390.564 [73]
(Figure 14) chloroform
Triacontan-1-ol Aerial parts/
(167) C30 H62 O 438.825 [73]
(Figure 14) petroleum ether
Trilinolein
Fruits/
(168) Glyceryl trilinoleate C56 H96 O6 865.37 [73]
chloroform
(Figure 14))
Figure
Figure 5. Structures of 5. Structures
compounds 16, of
17,compounds 16, 17, and 19–30.
and 19–30.
Molecules 2025, 30,
Molecules 2025, 30, 851
x FOR PEER REVIEW 28
21of 61
of 51
Figure 6.
Figure 6. Structures
Structures of
of compounds
compounds 31–47.
31–47.
Molecules 2025,
Molecules 30, x851
2025, 30, FOR PEER REVIEW 2922ofof 61
51
Figure 7. Structures
Structures of compounds 48–74.
Molecules 2025,30,
Molecules 2025, 30,851
x FOR PEER REVIEW 30
23 of 61
of 51
Figure 8.
Figure 8. Structures
Structures of
of compounds
compounds 75–90.
75–90.
Molecules 2025,
Molecules 2025, 30,
30, 851
x FOR PEER REVIEW 31
24of 61
of 51
O
12 O 28 12
11 13 R1 11 R2
H H COOH H COOR3
H H O H
O O HO
R1 24
(97)
(98) R = CHO (99) R1 = O; R2 = H; R3 = H
(100) R = H (102) R1 = H,H; R2 = H; R3 = H
(105) R1 = H,H; R2 = OH; R3 = H
(110) R1 = O; R2 = H; R3 = Me
OH
19
12
R2 O
H COOH H H COOR2
H H H
1
R HO R1
HOOC
24
(101) R1 = O; R2 = OH (103) (104) R1= O; R2 = H
(106) R1 = OH, H; R2 = H (107) R1 = OH, H; R2 = H
(109) R1 = OH, H; R2 = H; 12,13-dihydro
(113) R1 = OH, H;R2 = Me; 12,13-dihydro
12 12 22
OR1
2 HO 25 H COOR2
H COOR H COOMe 28
O H O H
H
R1O HO
1 2
(111 ) R = Me; R = H (112) (114) R1 = Ac; R2 = H
(115) R1 = Me; R2 = Me (117) R1 = Ac; R2 = Me
(116) R1 = Et; R2 = H
(118) R1 = Et; R2 = Me
OH OH
19 19
12 12
OR
H COOH H COOH
H H
HO RO
Figure
Figure 10.
10. Structures
Structures of
of compounds 97–107 and
compounds 97–107 and 109–120.
109–120.
Molecules
Molecules 2025, 30,
2025, 30,
Molecules 2025, x
x FOR
FOR PEER
30, 851 PEER REVIEW
REVIEW 33
33 of 61
26 of 61
of 51
Figure 11.
Figure 11. Structures
11. Structures of
Structures of compounds
of compounds 121–127.
compounds 121–127.
121–127.
Figure
Figure
Figure 12. of
12. Structures of
Figure 12. compounds
of compounds 128–138.
compounds 128–138.
128–138.
Molecules2025,
Molecules 2025,30,
30,851
x FOR PEER REVIEW 34
27 of 61
of 51
Figure13.
Figure 13. Structures
Structuresof
ofcompounds
compounds139–151.
139–151.
Molecules 2025,30,
Molecules2025, 30,851
x FOR PEER REVIEW 35
28 of 51
61
Figure 14.
Figure 14. Structures
Structures of
of compounds
compounds 152,
152, 153,
153,and
and159–168.
159–168.
3.3. Biological
3.3. Biological Activities
Activities
A great
A great variety
variety of of biological
biological effects
effectsexerted
exertedby byseveral
severalextracts
extractsofofdifferent
different parts
parts ofof
L.
camara
L. camara have
havebeen
been tested
testedin vitro and,
in vitro and,moremore rarely, alsoalso
rarely, in vivo
in vivo(Table
(Table8). The most
8). The relevant
most rele-
vant biological properties included significant anti-inflammatory and analgesic effectsleaf
biological properties included significant anti-inflammatory and analgesic effects of a of
aaqueous extractextract
leaf aqueous [136]; [136];
a moderate antibacterial
a moderate activity
antibacterial of leafof
activity alcoholic and aqueous
leaf alcoholic and aque- ex-
tracts
ous againstagainst
extracts Escherichia coli, Proteus
Escherichia vulgaris,
coli, Proteus and Vibrio
vulgaris, andcholerae [121], and
Vibrio cholerae against
[121], Bacillus
and against
subtilis,subtilis,
Bacillus Klebsiella pneumoniae,
Klebsiella Staphylococcus
pneumoniae, Staphylococcusaureus, and Pseudomonas
aureus, and Pseudomonas aeruginosa [137];
aeruginosa the
[137];
inhibitory properties of a 70% aqueous ethanolic flower extract
the inhibitory properties of a 70% aqueous ethanolic flower extract against the growth against the growth of the
Mycobacterium
of the Mycobacterium tuberculosis H37RVH37RV
tuberculosis strain [138];
strain the antidiabetic
[138]; effects effects
the antidiabetic of an aqueous
of an aque- leaf
extract [125]; the moderate antidiarrheal effects of an ethanol leaf
ous leaf extract [125]; the moderate antidiarrheal effects of an ethanol leaf extract [100]; extract [100]; the signif-
icant
the antioxidant
significant properties
antioxidant of methanol
properties leaf and leaf
of methanol flowerandextracts [139]; the
flower extracts highthe
[139]; in high
vitro
antiparasitic activity of dichloromethane and methanol extracts
in vitro antiparasitic activity of dichloromethane and methanol extracts of the leaves/aerial of the leaves/aerial parts
against
parts Leishmania
against amazonensis
Leishmania promastigotes
amazonensis promastigotes [64,67,109], and dichloromethane
[64,67,109], and dichloromethane and ethyl
and
acetate leaf extracts against the chloroquine-sensitive strains
ethyl acetate leaf extracts against the chloroquine-sensitive strains 3D7 and D10, and the3D7 and D10, and the chlo-
roquine-resistant strain
chloroquine-resistant W2, W2,
strain of Plasmodium
of Plasmodium falciparum [43,58,140];
falciparum the potent
[43,58,140]; in vitro
the potent in nem-
vitro
atocidal activity of a methanol extract of the aerial parts and its
nematocidal activity of a methanol extract of the aerial parts and its partitions against thepartitions against the lar-
vae of of
larvae thethe
root-knot
root-knotnematode
nematodeMeloidogyne
Meloidogyneincognita;
incognita;the thesignificant
significant in in vitro
vitro anti-COVID-
anti-COVID-
19 activity
19 activity of
of 95%
95% ethanol
ethanol extracts
extracts ofof the
the leaves
leaves and and flowers
flowers from
from different
different cultivars
cultivars [103];
[103];
the significant
the significantcancer
cancerreduction
reductionand andincreased
increasedsurvival
survival rate
rate of of
micemice exhibited
exhibited byby a metha-
a methanol
nol leaf
leaf extract
extract [141];[141];
thethe
highhigh in vitro
in vitro cytotoxicity
cytotoxicity ofof differentleaf
different leafextracts
extracts[43,58,142];
[43,58,142]; the the
DNA-protective effects
DNA-protective effects of of an
an aqueous
aqueous leaf leaf extract
extract [143];
[143]; the
thesignificant
significant hepatoprotective
hepatoprotective
effects of
effects ofaamethanol
methanolleaf leafextract
extract[130];
[130]; thethehighhigh insecticidal,
insecticidal, larvicidal,
larvicidal, andand termiticidal
termiticidal ac-
activities of different extracts, especially of the leaves in polar solvents, against several
Molecules 2025, 30, 851 29 of 51
tivities of different extracts, especially of the leaves in polar solvents, against several insects
(mosquitos, moths, termites, weevils, and bugs) [52,59,86,144–153]; the wound-healing
effects of ethanol and water leaf extracts [108,154].
In summary, the alcoholic and aqueous leaf extracts seem to exhibit the highest and
widest biological properties. In our opinion, the most promising biological effects of the
extracts, which have attracted the greatest interest from several research groups, are the
antiparasitic, nematocidal, and insecticidal properties.
Concerning the bioactivities of the compounds isolated from L. camara and the semisyn-
thetic derivatives (Table 9), potent nematocidal effects against Meloidogyne incognita larvae
(mortality > 80%) were shown by different oleanane triterpenoids, such as camaric acid (62),
camarin (23), camarinin (56), lantanilic acid (68), lantanolic acid (27), the ursane triter-
penoids camarinic acid (114), lantacin (119), lantic acid (102), lantoic acid (105), pomolic
acid (107), and ursolic acid (106), and the flavonoids linaroside (139) and lantanoside (140).
Other interesting properties were the in vitro antiparasitic activity (IC50 < 10 µM) to-
wards Leishmania mexicana promastigotes exhibited by camaric acid (62) and lantanilic
acid (68). On the other hand, the in vitro cytotoxicity of most triterpenoids towards dif-
ferent human tumor cell lines was from moderate to very weak (IC50 = 20–80 µM) or null
(IC50 > 100 µM), except for the high activity (IC50 < 10 µM) exhibited by camaric
acid (62), lantacamaric acid B (70), and lantanilic acid (68) towards HL-60 (JCRB0085)
leukemia cells, icterogenin (67) towards colon cancer HCT-116 and lymphocytic leukemia
L1210 cells, lantadene B (61) towards lung carcinoma A549 cells, oleanolic acid (31) towards
drug-resistant human ovarian carcinoma IGROV-1 cells, and oleanonic acid (22) towards
leukemia HL-60 and Ehrlich ascites carcinoma (EAC) cells. However, the in vivo antitumor
activity, measured by the percent mice survival and percent overall papilloma incidence,
was observed only for large doses of the administered compound, such as, for example, the
ester 78. Interesting in vivo antidiabetic effects were exhibited by urs-12-en-3β-ol-28-oic
acid 3-O-β-D-glucopyranosyl-4′ -octadecanoate (127). In vitro high antibacterial activity
against the Mycobacterium tuberculosis strain H37Rv was exhibited by acetyl lantanoside
(144). Powerful in vitro protein tyrosine phosphatase inhibition effects (IC50 < 10 µM) were
determined for camaric acid (62), di(2-ethylhexyl) phthalate (166), 24-hydroxylantadene B
(65), 22β-hydroxy-oleanolic acid (32), 22β-hydroxy-oleanonic acid (25), lantadenes A (71),
B (62) and D (54), lantanilic acid (68), oleanolic acid (31), oleanonic acid (22), and reduced
lantadenes A (75), B (76), and C (77). The in vitro anti-inflammatory activity was de-
termined by measuring the inhibition of the following two inflammatory mechanisms:
22β-hydroxy-oleanonic acid (26) and lantadene A (60) and B (61) strongly inhibited the
TNF-α-induced NF-KB activation (IC50 < 10 µM), but they were ineffective (IC50 > 100 µM)
against cyclooxygenase-2 (COX-2).
L. camara is also known for the toxicity to animals causing hepatotoxicity, photosensiti-
zation, and jaundice. Lantadene A (60) is the main toxic pentacyclic triterpenoid present in
this weed.
Table 8. Biological activities of different extracts of Lantana camara L. a, *.
Table 8. Cont.
Table 8. Cont.
Table 8. Cont.
Table 8. Cont.
Table 8. Cont.
Table 8. Cont.
Table 8. Cont.
Table 8. Cont.
Table 9. Bioactivities determined for the compounds isolated from Lantana camara and semisynthetic
derivatives.
Table 9. Cont.
Table 9. Cont.
Table 9. Cont.
Table 9. Cont.
Table 9. Cont.
In vitro antiparasitic activity against Brugia malayi: LC100 > 1.2 mM. Antibacterial activity
(disk diffusion method): diameter of inhibition zone = 14 mm for Escherichia coli, 19 mm for
β-Sitosterol (3) Staphylococcus aureus, 17 mm for Salmonella typhimurium, 24 mm for Pseudomonas aeruginosa. [73,74,170]
The cytotoxic potential was tested in vitro by an MTT assay against T47D (breast cancer cells)
and HeLa (cervical cancer cells): IC50 = 24.06 and 24.86 µM, respectively.
β-Sitosterol 3-O-β-D-
In vitro antiparasitic activity against Brugia malayi: LC100 > 0.86 mM. [71]
glucopyrano-side (4)
Stearic acid (158) In vitro antiparasitic activity against Brugia malayi: LC100 > 1.7 mM. [74,77]
In vitro antibacterial activity (disk diffusion method): diameter of inhibition zone = 20 mm
Trilinolein (168) for Escherichia coli, 19 mm for Staphylococcus aureus, 18 mm for Salmonella typhimurium, 21 mm [73]
for Pseudomonas aeruginosa.
In vivo antidiabetic activity: Wistar albino rats (150–200 g) received 0.3 mg/kg body weight
Urs-12-en-3β-ol-28-oic acid
orally for 21 days. Blood glucose levels: 8th day = 183.56 ± 3.61 mg/dL, 14th
3-O-β-D-glucopyrano- [125]
day = 143.43 ± 2.79 mg/dL, 21st day = 118.67 ± 2.40 mg/dL. In vivo anxiolytic activity:
syl-4′ -octadecano- ate (127)
dose-dependent effect.
In vitro nematocidal activity against Meloidogyne incognita larvae: 100% mortality at a
Ursolic acid (106) concentration of 1 mg/mL after 48 h. In vitro antiparasitic activity against Leishmania major [78,90]
promastigotes: IC50 = 12.4 ± 0.03 µM.
a Compounds are ordered in alphabetic order. Cytotoxicity values (IC ) are expressed in µM for homogeneity.
50
* Semisynthetic derivative. ErC50 = concentration of test substance which caused 50% reduction in growth rate
relative to the control for a 72 h exposure.
A few compounds isolated from L. camara were also submitted to molecular docking
studies (Table 10) towards the active site of RNA-dependent RNA polymerase (RdRp)
of SARS-CoV-2. The highest binding energy (around 6 kcal/mol) was determined for
camarolic acid (69) and lantoic acid (105). These values, when compared to remdesivir
(−5.75 kcal/mol), indicated that compounds 69 and 105 can serve as promising anti-
COVID-19 candidates. Moreover, lantrieuphpene B (8) and C (9) exhibited a high binding
affinity (a binding energy of around 9 kcal/mol) to the TYR-341, TYR-367, and ASP-376
residues of inducible Nitric Oxide Synthase (iNOS). In addition, a recent in silico study has
evaluated 20 selected constituents of L. camara as potent inhibitors of the human enzymes
acetylcholinesterase (hAchE), carbonic anhydrase II (hCA-II), and carboxylesterase 1 (hCES-
1), which are pharmacological targets for the treatment of neurodegenerative diseases,
glaucoma, obesity, and type 2 diabetes [171]. All of the twenty ligands docked effectively
with the CA-II enzyme. Only ursonic acid (100) was ineffective in both docking and binding
with AchE and CES-1, while lantic acid (102) exhibited the least atomic binding energy with
Molecules 2025, 30, 851 43 of 51
all three enzymes. The glucosyl flavone camaroside [17] exhibited the maximum binding
energy (−9.34 kcal/mol) with hAchE, while the phenylethanoid glycoside isonuomioside
A [17] demonstrated the highest binding energy (−9.72 kcal/mol) with hCA-II, and the
flavone pectolinarin (146) showed the highest binding energy (−9.21 kcal/mol) with
hCES-1 [172].
Finally, in unusual applications, leaf, fruit, flower, root, and seed extracts of
Lantana camara have been used to prepare several metal (Ag, Au, Fe, Cu, Zn, Pd, and
Pt) [173] and metal oxide (ZnO, SrO, CuO, NiO, and Y2 O3 ) nanoparticles with potential
photocatalytic, electrochemical, anticancer, antiarthritic, and antibacterial properties, and
other medical applications. The biomass and leaves of L. camara have also been used as a
sustainable alternative for the removal of antibiotics and metals, such as Pb (II), Zn (II), and
Mn (II) from contaminated rivers and waste waters [171,174–176].
4. Conclusions
This review, reporting on the recently published information on the phytochemistry
and bioactivities of L. camara, clearly demonstrates that this species continues to be one of
the most investigated plants due to the various traditional uses, the rich phytochemical
contents of the extracts, and the wide variety of biological activities exhibited by total
extracts, several isolated compounds, and the many semisynthetic derivatives.
Perspectives. In our opinion, among the various biological effects exhibited by spe-
cialized metabolites from L. camara (Tables 8 and 9), the nematocidal and antiparasitic
properties of several compounds and the antimalarial effects of leaf extracts against the
chloroquine-sensitive strains 3D7 and D10, and the chloroquine-resistant strain W2, of
Plasmodium falciparum deserve further investigations with in vivo and in the field tests.
Given the various structural features of active compounds, there may also be an opportu-
nity to conduct QSAR studies and to clarify the mechanism(s) of action, and to identify
the molecular target(s) and the biological processes involved in the nematocidal and an-
tiparasitic properties. Moreover, the interesting antidiabetic and anti-COVID-19 properties
in vitro of leaf extracts and a few isolated compounds must be confirmed by additional in
silico and in vivo studies. Computational strategies involving artificial intelligence and
machine learning algorithms are expected to help in the full exploration of the biological
Molecules 2025, 30, 851 44 of 51
space of natural molecules from L. camara, and to identify the unexplored human receptors
and enzymes to which they can bind. Semisynthesis is an important technique to harness
nature’s diversity for novel drugs. In this regard, semisynthetic efforts to prepare analogs
of natural products isolated from L. camara to enhance their biological properties are limited
and, therefore, they must be intensified.
Finally, preclinical and clinical research studies, which are missing so far, are
necessary to evaluate the efficacy and safety of the products with the most promising
medicinal properties.
Author Contributions: Conceptualization, J.R. and C.A.; methodology, N.E.-O.; software, L.N.C.;
validation, J.R., N.E.-O. and L.N.C.; investigation, N.E-O.; writing—original draft preparation,
C.A. and J.R.; writing—review and final editing, J.R., C.A., L.N.C. and G.V.; supervision, J.R. and
G.V.; project administration, J.R. All authors have read and agreed to the published version of
the manuscript.
Funding: This research was funded by the Universidad Técnica Particular de Loja (UTPL). Nº Grant:
PROY_PROY_ARTIC_QU_2022_3652.
Acknowledgments: We are grateful to the Universidad Técnica Particular de Loja (UTPL) for
supporting open-access publication.
References
1. Byng, J.W.; Chase, M.W.; Christenhusz, M.J.; Fay, M.F.; Judd, W.S.; Mabberley, D.J. An update of the angiosperm phylogeny group
classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20.
2. WFO Plant List. Snapshots of the Taxonomy. Search for Lantana L. WFO Plant List | World Flora Online. Available online:
https://wfoplantlist.org/taxon/wfo-4000020568-2023-12?page=1 (accessed on 9 March 2024).
3. Cardoso, P.H.; O’Leary, N.; Olmstead, R.G.; Moroni, P.; Thode, V.A. An update of the Verbenaceae genera and species numbers.
Plant Ecol. Evol. 2021, 154, 80–86. [CrossRef]
4. Lu-Irving, P.; Bedoya, A.M.; Salimena, F.R.G.; dos Santos Silva, T.R.; Viccini, L.F.; Bitencourt, C. Phylogeny of Lantana, Lippia, and
related genera (Lantaneae: Verbenaceae). Am. J. Bot. 2021, 108, 1354–1373. [CrossRef]
5. Babar, V.B.; Khapale, P.R.; Nagarale, S.N. Preliminary investigation and in-vitro anticancer activity of Lantana camara L. (Verbe-
naceae). J. Pharmacogn. Phytochem. 2019, 8, 2524–2527.
6. El Baroty, G.S.; Goda, H.M.; Khalifa, E.A.; Abd El Baky, H.H. Antimicrobial and antioxidant activities of leaves and flowers
essential oils of Egyptian Lantana camara L. Der Pharma Chem. 2014, 6, 246–255.
7. Saraf, A.; Quereshi, S.; Sharma, K.; Khan, N.A. Antimicrobial activity of Lantana camara L. J. Exp. Sci. 2011, 2, 50–54.
8. Al-Hakeim, H.K.; Al-Zabibah, R.S.; Alzihari, H.F.; Almensoori, A.K.; Al-Zubaidi, H.A.; Hassan, L.E.A.H. Anticancer and
antiangiogenic activities of alkaloids isolated from Lantana camara by adsorption on the magnetic nanoparticles. Karbala Int. J.
Mod. Sci. 2021, 7, 11. [CrossRef]
9. Sharma, G.P.; Raghubanshi, A.S.; Singh, J.S. Lantana invasion: An overview. Weed Biol. Manag. 2005, 5, 157–165. [CrossRef]
10. Day, M.D.; Zalucki, M.P. Lantana camara Linn. (Verbenaceae). In Biological Control of Tropical Weeds Using Arthropods; Cambridge
University Press: Cambridge, UK, 2009; pp. 211–246.
11. Thomas, S.E. Lantana camara (lantana). In CABI Compendium; CABI Digital Library: Wallingford, UK, 2022. [CrossRef]
12. Goyal, N.; Sharma, G.P. Lantana camara L. (sensu lato): An enigmatic complex. NeoBiota 2015, 25, 15–26.
13. Sanders, R.W. Taxonomy of Lantana Sect. Lantana (Verbenaceae): II. Taxonomic revision. J. Bot. Res. Inst. Texas 2012, 6, 403–441.
14. Urban, A.J.; Simelane, D.O.; Retief, E.; Heystek, F.; Williams, H.E.; Madire, L.G. The invasive “Lantana camara L.” hybrid complex
(Verbenaceae): A review of research into its identity and biological control in South Africa. Afr. Entomol. 2011, 19, 315–348.
[CrossRef]
15. Begum, S.; Zehra, S.Q.; Syed, I.; Hassan, S.I.; Siddiqui, B.S. Noroleanane triterpenoids from the aerial parts of Lantana camara.
Helv. Chim. Acta 2008, 91, 460–467. [CrossRef]
16. Begum, S.; Wahab, A.; Siddiqui, B.S.; Qamar, F. Nematocidal constituents of the aerial parts of Lantana camara. J. Nat. Prod. 2000,
63, 765–767. [CrossRef] [PubMed]
17. Hussain, H.; Hussain, J.; Al-Harrasi, A.; Shinwari, Z.K. Chemistry of some species genus Lantana. Pak. J. Bot. 2011, 43, 51–62.
Molecules 2025, 30, 851 45 of 51
18. Ved, A.; Arsi, T.; Prakash, O.; Gupta, A. A Review on phytochemistry and pharmacological activity of Lantana camara Linn. Int. J.
Pharm. Sci. Res. 2018, 9, 37–43. [CrossRef]
19. Al-Fadhli, A.A.; Nasser, J.A. Constituents from the root of Lantana camara. Asian J. Chem. 2014, 26, 8019–8021. [CrossRef]
20. Madke, G.; Bhutkar, K.; Chaudhari, S.R. Overview on Lantana camara showing various pharmacological benefits. Int. Adv. Res. J.
Sci. Eng. Technol. 2024, 11, 86–92. [CrossRef]
21. Kumar, M.A.; Santoshi, S.; Patil, S.M.; Bhatt, S.P. A review on phytochemical and pharmacological profiling of Lantana camara
Linn. W. J. Pharm. Pharm. Sci. 2023, 12, 15–25.
22. Naphade, V.; Bhamre, J.S.; Avaghade, M.M.; Kale, M.S.; Bendale, A.R.; Borse, S.L.; Borse, L.B. Phytochemical and pharmacological
potential of Lantana Camara Linn. Int. J. Life Sci. Pharma Res. 2023, 13, 70–80. [CrossRef]
23. Shah, M.; Alharby, H.F.; Hakeem, K.R.; Munawar, M. A Comprehensive review on Lantana camara: An important medicinal and
ornamental plant. Life Sci. J. 2024, 21, 10–17.
24. Ghisalberti, E.L. Lantana camara L. (Verbenaceae). Fitoterapia 2000, 71, 467–486. [CrossRef]
25. Beeby, P.J. Chemical modification of triterpenes from Lantana camara. 22β-Ester analogues of lantadene A. Aust. J. Chem. 1978, 31,
1313–1322. [CrossRef]
26. Begum, S.; Raza, S.M.; Siddiqui, B.S.; Siddiqui, S. Triterpenoids from the aerial parts of Lantana camara. J. Nat. Prod. 1995, 58,
1570–1574. [CrossRef]
27. Barua, A.K.; Chakrabarti, P.; Sanyal, P.K.; Das, B.C. Triterpenoids: XXXII. The structure of lantic acid—A new triterpene from Lantana
camara. J. Indian Chem. Soc. 1969, 46, 100–101. [CrossRef]
28. Sharma, O.P.; Sharma, S.; Pattabhi, V.; Mahato, S.B.; Sharma, P.D. A review of the hepatotoxic plant Lantana camara. Crit. Rev.
Toxicol. 2007, 37, 313–352. [CrossRef]
29. Ntalo, M.; Ravhuhali, K.E.; Moyo, B.; Hawu, O.; Msiza, N.H. Lantana camara: Poisonous species and a potential browse species for
goats in southern Africa—A review. Sustainability 2022, 14, 751. [CrossRef]
30. Kalita, S.; Kumar, G.; Karthik, L.; Rao, K.V.B. A review on medicinal properties of Lantana camara Linn. Res. J. Pharm. Technol.
2012, 5, 711–715.
31. Reddy, N.M. Lantana camara Linn. Chemical constituents and medicinal properties: A review. Acad. J. Pharm. 2013, 2, 445–448.
32. Kumar, R.; Katiyar, R.; Kumar, S.; Kumar, T.; Singh, V. Lantana camara: An alien weed, its impact on animal health and strategies
to control. J. Exp. Biol. Agric. Sci. 2016, 4, 321–337. [CrossRef]
33. Al-Snafi, A.E. Chemical constituents and pharmacological activities of Lantana camara—A review. Asian J. Pharm. Clin. Res. 2019,
12, 10–20. [CrossRef]
34. Battase, L.; Attarde, D. Phytochemical and medicinal study of Lantana camara Linn (Verbenaceae)—A review. Asian J. Pharm. Clin.
Res. 2021, 14, 20–27. [CrossRef]
35. Kathuria, I.; Joshi, M.; Patel, B.M.; Dhobi, M. Phytoconstituents of Lantana camara L.: Rekindling hope in the cancer treatment.
Curr. Bioact. Compd. 2022, 18, e311221199740.
36. Kimpouni, V.; Mamboueni, J.C.; Tsoungould, F.G.M.; Mikoko, E.N. Ethnobotanical and phytotherapeutic study from Kouni
community of the sub-prefecture of Kayes (Bouenza—Congo). Heliyon 2019, 5, e02007. [CrossRef] [PubMed]
37. Manya, M.H.; Keymeulen, F.; Ngezahayo, J.; Bakari, A.S.; Kalonda, M.E.; Kahumba, B.J. Antimalarial herbal remedies of Bukavu
and Uvira areas in DR Congo: An ethnobotanical survey. J. Ethnopharmacol. 2020, 249, 112422. [CrossRef] [PubMed]
38. Pathy, K.K.; Flavien, N.B.; Honoré, B.K.; Vanhove, W.; Patrick, V.D. Ethnobotanical characterization of medicinal plants used in
Kisantu and Mbanza-Ngungu territories, Kongo-Central Province in DR Congo. J. Ethnobiol. Ethnomed. 2021, 17, 5.
39. Geremew, Y.A.; Desta, Y.D.; Kumar, P.A.; Tonjo, Z.T. Traditional medicinal plants used by people in Libo-Kemkem District, South
Gondar, Ethiopia. Asian J. Agric. Sci. 2012, 4, 171–176.
40. Lulekal, E.; Kelbessa, E.; Bekele, T.; Yineger, H. An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern
Ethiopia. J. Ethnobiol. Ethnomed. 2008, 4, 10. [CrossRef]
41. Mesfin, F.; Demissew, S.; Teklehaymanot, T. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia.
J. Ethnobiol. Ethnomed. 2009, 5, 28. [CrossRef]
42. Giday, M.; Asfaw, Z.; Woldu, Z. Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. J. Ethnopharmacol. 2010,
132, 75–85. [CrossRef]
43. Jonville, M.C.; Kodja, H.; Humeau, L.; Fournel, J.; De Mol, P.; Cao, M. Screening of medicinal plants from Reunion Island for
antimalarial and cytotoxic activity. J. Ethnopharmacol. 2008, 120, 382–386. [CrossRef] [PubMed]
44. Magassouba, F.B.; Diallo, A.; Kouyaté, M.; Mara, F.; Mara, O.; Bangoura, O. Ethnobotanical survey and antibacterial activity of
some plants used in Guinean traditional medicine. J. Ethnopharmacol. 2007, 114, 44–53. [CrossRef] [PubMed]
45. Njoroge, G.N.; Bussmann, R.W. Traditional management of ear, nose and throat (ENT) diseases in Central Kenya. J. Ethnobiol.
Ethnomed. 2006, 2, 54. [CrossRef] [PubMed]
46. Njoroge, G.N.; Bussmann, R.W. Diversity and utilization of antimalarial ethnophytotherapeutic remedies among the Kikuyus
(Central Kenya). J. Ethnobiol. Ethnomed. 2006, 2, 8. [CrossRef] [PubMed]
Molecules 2025, 30, 851 46 of 51
47. Kareru, P.G.; Kenji, G.M.; Gachanja, A.N.; Keriko, J.M.; Mungai, G. Traditional medicines among the Embu and Mbeere people of
Kenya. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 75–86. [CrossRef] [PubMed]
48. Geissler, P.W.; Harris, S.A.; Prince, R.J.; Olsen, A.; Odhiambo, R.A.; Oketch-Rabah, H. Medicinal plants used by Luo mothers and
children in Bondo district, Kenya. J. Ethnopharmacol. 2002, 83, 39–54. [CrossRef] [PubMed]
49. Nguta, J.M.; Mbaria, J.M.; Gakuya, D.W.; Gathumbi, P.K.; Kiama, S.G. Antimalarial herbal remedies of Msambweni, Kenya.
J. Ethnopharmacol. 2010, 128, 424–432. [CrossRef]
50. Seyoum, A.; Pålsson, K.; Kung’a, S.; Kabiru, E.W.; Lwande, W.; Killeen, G.F. Traditional use of mosquito-repellent plants in
western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: Ethnobotanical studies and
application by thermal expulsion and direct burning. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 225–231. [CrossRef] [PubMed]
51. Rivière, C.; Nicolas, J.P.; Caradec, M.L.; Désiré, O.; Schmitt, A. Les plants médicinales de la région nord de Madagascar une
approche ethnopharmacologique. Ethnopharmacologia 2005, 36, 1–295.
52. Egunyomi, A.; Gbadamosi, I.T.; Osiname, K.O. Comparative effectiveness of ethnobotanical mosquito repellents used in Ibadan,
Nigeria. J. Appl. Biosci. 2010, 36, 2383–2388.
53. Tabuti, J.R.S. Herbal medicines used in the treatment of malaria in Budiope county, Uganda. J. Ethnopharmacol. 2008, 116, 33–42.
[CrossRef]
54. Baana, K.; Angwech, H.; Malinga, G.M. Ethnobotanical survey of plants used as repellents against housefly, Musca domestica L.
(Diptera: Muscidae) in Budondo Subcounty, Jinja District, Uganda. J. Ethnobiol. Ethnomed. 2018, 14, 35. [CrossRef]
55. Kamatenesi, M.M.; Acipa, A.; Oryem-Origa, H. Medicinal plants of Otwal and Ngai Sub Counties in Oyam District, Northern
Uganda. J. Ethnobiol. Ethnomed. 2011, 7, 7. [CrossRef] [PubMed]
56. Gou, Y.; Li, Z.; Fan, R.; Guo, C.; Wang, L.; Sun, H.; Li, J.; Zhou, C.; Wang, C.; Wang, Y. Ethnobotanical survey and evaluation of
traditional mosquito repellent plants of Dai people in Xishuangbanna, Yunnan Province, China. J. Ethnopharmacol. 2020, 262,
113124. [CrossRef]
57. Namsa, N.D.; Mandal, M.; Tangjang, S. Anti-malarial herbal remedies of northeast India, Assam: An ethnobotanical survey.
J. Ethnopharmacol. 2011, 133, 565–572. [CrossRef] [PubMed]
58. Kamaraj, C.; Kaushik, N.K.; Rahuman, A.A.; Mohanakrishnan, D.; Bagavan, A.; Elango, G. Antimalarial activities of medicinal
plants traditionally used in the villages of Dharmapuri regions of South India. J. Ethnopharmacol. 2012, 141, 796–802. [CrossRef]
[PubMed]
59. Rao, M.R.K. Lethal efficacy of phytochemicals as sustainable sources of insecticidal formulations derived from the leaf extracts of
Indian medicinal plants to control Dengue and Zika vector, Aedes aegypti (Dipetra: Culicide). Int. Res. J. Environ. Sci. 2020, 9,
44–54.
60. Kumar, V.P.; Chauhan, N.S.; Padh, H.; Rajani, M. Search for antibacterial and antifungal agents from selected Indian medicinal
plants. J. Ethnopharmacol. 2006, 107, 182–188. [CrossRef] [PubMed]
61. Obico, J.J.; Ragragio, E.M. A survey of plants used as repellents against hematophagous insects by the Ayta people of Porac,
Pampanga province, Philippines. Philipp. Sci. Lett. 2014, 7, 179–186.
62. Lee, C.; Kim, S.Y.; Eum, S.; Paik, J.H.; Bach, T.T.; Darshetkar, A.M. Ethnobotanical study on medicinal plants used by local Van
Kieu ethnic people of Bac Huong Hoa nature reserve, Vietnam. J. Ethnopharmacol. 2019, 231, 283–294. [CrossRef]
63. Hussein, S.; Dhabe, A. Ethnobotanical study of folk medicinal plants used by villagers in Hajjah district—Republic of Yemen.
J. Med. Plants Stud. 2018, 6, 24–30.
64. Delgado-Altamirano, R.; Monzote, L.; Piñón-Tápanes, A.; Vibrans, H.; Fausto Rivero-Cruz, J.; Ibarra-Alvarado, C.; Rojas-Molina,
A. In vitro antileishmanial activity of Mexican medicinal plants. Heliyon 2017, 3, e00394. [CrossRef] [PubMed]
65. González-Esquinca, A.R.; Luna-Cazáres, L.M.; Gispert-Cruells, M.; Schlie-Guzmán, M.A.; Gutiérrez-Jiménez, J. Plantas Medicinales
Zoques: Padecimientos Gastrointestinales y Respiratorios; Colección Jaguar; UNICACH: Tuxtla Gutiérrez, Mexico, 2013; Volume 1,
pp. 39–40.
66. Hernández, T.; Canales, M.; Avila, J.G.; Duran, A.; Caballero, J.; Romo de Vivar, A. Ethnobotany and antibacterial activity of some
plants used in traditional medicine of Zapotitlán de las Salinas, Puebla (México). J. Ethnopharmacol. 2003, 88, 181–188. [CrossRef]
[PubMed]
67. Braga, F.G.; Bouzada, M.L.M.; Fabri, R.L.; Matos, M.; Moreira, F.O.; Scio, E. Antileishmanial and antifungal activity of plants used
in traditional medicine in Brazil. J. Ethnopharmacol. 2007, 111, 396–402. [CrossRef] [PubMed]
68. Van’t Klooster, C.; van Andel, T.; Reis, R. Patterns in medicinal plant knowledge and use in a Maroon village in Suriname. J.
Ethnopharmacol. 2016, 189, 319–330. [CrossRef] [PubMed]
69. Vásquez, J.; Alarcón, J.C.; Jiménez, S.L.; Jaramillo, G.I.; Gómez-Betancur, I.C.; Rey-Suárez, J.P. Main plants used in traditional
medicine for the treatment of snake bites in the regions of the department of Antioquia, Colombia. J. Ethnopharmacol. 2015, 170,
158–166. [CrossRef]
70. Boulogne, I.; Germosén-Robineau, L.; Ozier-Lafontaine, H.; Fleury, M.; Loranger-Merciris, G. TRAMIL ethnopharmalogical
survey in Les Saintes (Guadeloupe, French West Indies): A comparative study. J. Ethnopharmacol. 2011, 133, 1039–1050. [CrossRef]
Molecules 2025, 30, 851 47 of 51
71. Huang, K.F.; Huang, K.W. Constituents from the stems of Lantana camara (III). J. Chin. Med. 2004, 15, 109–114.
72. Juang, F.C.; Chen, Y.F.; Lin, F.M.; Huang, K.F. Constituents from the leaves of Lantana camara (IV). J. Chin. Med. 2005, 16, 149–155.
73. Gebre, Z.; Tariku, Y.; Jayakumar, V. Bio-assay guided isolation of bioactive molecules from chloroform extract of fruits of
Lantana camara (L.). J. Pharmacogn. Phytochem. 2019, 8, 1335–1342. [CrossRef]
74. Misra, L.; Laatsch, H. Triterpenoids, essential oil and photo-oxidative 28 → 13-lactonization of oleanolic acid from Lantana camara.
Phytochemistry 2000, 54, 969–974. [CrossRef] [PubMed]
75. Misra, N.; Sharma, M.; Raj, K.; Dangi, A.; Srivastava, S.; Misra-Bhattacharya, S. Chemical constituents and antifilarial activity of
Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent
hosts. Parasitol. Res. 2007, 100, 439–448. [CrossRef]
76. Ðậu, N.V.; Huyền, L.T. Các tritecpen oleanan từ cây bông ổi Lantana camara L. Tạp Chí Hóa Học 2009, 47, 144–148.
77. Begum, S.; Wahab, A.; Siddiqui, B.S. Pentacyclic triterpenoids from the aerial parts of Lantana camara. Chem. Pharm. Bull. 2003, 51,
134–137. [CrossRef]
78. Begum, S.; Ayub, A.; Zehra, S.Q.; Siddiqui, B.S.; Choudhary, M.I.; Samreen. Leishmanicidal triterpenes from Lantana camara.
Chem. Biodivers. 2014, 11, 709–718. [CrossRef] [PubMed]
79. Patil, G.; Khare, A.B.; Huang, K.-F.; Lin, F.-M. Bioactive chemical constituents from the leaves of Lantana camara L. Indian J. Chem.
2015, 54, 691–697.
80. Wu, P.; Song, Z.; Wang, X.; Li, Y.; Li, Y.; Cui, J.; Tuerhong, M.; Jin, D.-Q.; Abudukeremu, M.; Lee, D.; et al. Bioactive triterpenoids
from Lantana camara showing anti-inflammatory activities in vitro and in vivo. Bioorg. Chem. 2020, 101, 104004. [CrossRef]
[PubMed]
81. Darwish, R.S.; El-Banna, A.A.; Ghareeb, D.A.; El-Hosseny, M.F.; Seadawy, M.G.; Dawood, H.M. Chemical profiling and unraveling
of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis,
in vitro study and molecular docking. J. Ethnopharmacol. 2022, 291, 115038. [CrossRef]
82. Begum, S.; Ayub, A.; Siddiqui, B.S.; Fayyaz, S.; Kazi, F. Nematocidal triterpenoids from Lantana camara. Chem. Biodivers. 2015, 12,
1435–1442. [CrossRef] [PubMed]
83. Begum, S.; Zehra, S.Q.; Siddiqui, B.S. Two new pentacyclic triterpenoids from Lantana camara LINN. Chem. Pharm. Bull. 2008, 56,
1317–1320. [CrossRef]
84. Abdjul, D.B.; Yamazaki, H.; Maarisit, W.; Rotinsulu, H.; Wewengkang, D.S.; Sumilat, D.A.; Kapojos, M.M.; Losung, F.;
Ukai, K.; Namikoshi, M. Oleanane triterpenes with protein tyrosine phosphatase 1B inhibitory activity from aerial parts of
Lantana camara collected in Indonesia and Japan. Phytochemistry 2017, 144, 106–112. [CrossRef] [PubMed]
85. Begum, S.; Siddiqui, B.S.; Wahab, A. Two new pentacyclic triterpenoids from the aerial parts of Lantana camara Linn. Heterocycles
2000, 53, 681–687. [CrossRef]
86. Fatope, M.O.; Salihu, L.; Asante, S.K.; Takeda, Y. Larvicidal activity of extracts and triterpenoids from Lantana camara. Pharm. Biol.
2002, 40, 564–567. [CrossRef]
87. Gupta, S.; Kalani, K.; Saxena, M.; Srivastava, S.K.; Agrawal, S.K.; Suri, N. Cytotoxic evaluation of semisynthetic ester and amide
derivatives of oleanolic acid. Nat. Prod. Commun. 2010, 5, 1567–1570. [CrossRef] [PubMed]
88. Ghosh, S.; Das Sarma, M.; Patra, A.; Hazra, B. Anti-inflammatory and anticancer compounds isolated from
Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn. J. Pharm. Pharmacol. 2010, 62, 1158–1166.
[CrossRef] [PubMed]
89. Begum, S.; Zehra, S.Q.; Wahab, A.; Siddiqui, B.S. Triterpenoidal secondary metabolites from Lantana camara LINN. Helv. Chim.
Acta 2006, 89, 1932–1941. [CrossRef]
90. Begum, S.; Zehra, S.Q.; Siddiqui, B.S.; Fayyaz, S.; Ramzan, M. Pentacyclic triterpenoids from the aerial parts of Lantana camara
and their nematocidal activity. Chem. Biodivers. 2008, 5, 1856–1866. [CrossRef] [PubMed]
91. Sharma, O.P.; Singh, A.; Sharma, S. Levels of lantadenes, bioactive pentacyclic triterpenoids, in young and mature leaves of
Lantana camara var. aculeata. Fitoterapia 2000, 71, 487–491. [CrossRef] [PubMed]
92. Sharma, M.; Sharma, P.D. Optimization of lantadenes isolation and preparation of 22β-hydroxyoleanonic. Chem. Nat. Compd.
2006, 42, 357–358. [CrossRef]
93. Sharma, M.; Sharma, P.D.; Bansal, M.P.; Singh, J. Synthesis, cytotoxicity, and antitumor activity of lantadene—A congeners. Chem.
Biodivers. 2007, 4, 932–939. [CrossRef] [PubMed]
94. Sharma, M.; Sharma, P.D.; Bansal, M.P. Lantadenes and their esters as potential antitumor agents. J. Nat. Prod. 2008, 71, 1222–1227.
[CrossRef] [PubMed]
95. Tailor, N.K.; Boon, H.L.; Sharma, M. Synthesis and in vitro anticancer studies of novel C-2 arylidene congeners of lantadenes. Eur.
J. Med. Chem. 2013, 64, 285–291. [CrossRef] [PubMed]
96. Suthar, S.K.; Lee, H.B.; Sharma, M. The synthesis of non-steroidal anti-inflammatory drug (NSAID)-lantadene prodrugs as novel
lung adenocarcinoma inhibitors via the inhibition of cyclooxygenase-2 (COX-2), cyclin D1 and TNF-α-induced NF-κB activation.
RSC Adv. 2014, 4, 19283–19293. [CrossRef]
Molecules 2025, 30, 851 48 of 51
97. Sharma, M.; Sharma, P.D.; Bansal, M.P.; Singh, J. Synthesis and antitumor activity of novel pentacyclic triterpenoid lantadene D.
Lett. Drug Des. Discov. 2007, 4, 201–206. [CrossRef]
98. Delgado-Altamirano, R.; López-Palma, R.I.; Monzote, L.; Delgado-Domínguez, J.; Becker, I.; Rivero-Cruz, J.F.; Esturau-Escofet, N.;
Vázquez-Landaverde, P.A.; Rojas-Molina, A. Chemical constituents with leishmanicidal activity from a pink-yellow cultivar of
Lantana camara var. aculeata (L.) collected in Central Mexico. Int. J. Mol. Sci. 2019, 20, 872. [CrossRef]
99. Ono, M.; Hashimoto, A.; Miyajima, M.; Sakata, A.; Furusawa, C.; Shimode, M. Two new triterpenoids from the leaves and stems
of Lantana camara. Nat. Prod. Res. 2020, 35, 3757–3765. [CrossRef] [PubMed]
100. Sagar, L.; Sehgal, R.; Ojha, S. Evaluation of antimotility effect of Lantana camara L. var. aculeata constituents on neostigmine induced
gastrointestinal transit in mice. BMC Complement. Altern. Med. 2005, 5, 18. [CrossRef]
101. Banik, R.M.; Pandey, D.K. Optimizing conditions for oleanolic acid extraction from Lantana camara roots using response surface
methodology. Ind. Crops Prod. 2008, 27, 241–248. [CrossRef]
102. Verma, S.C.; Jain, C.L.; Nigam, S.; Padhi, M.M. Rapid extraction, isolation, and quantification of oleanolic acid from
Lantana camara L. roots using microwave and HPLC-PDA techniques. Acta Chromatogr. 2013, 25, 181–199. [CrossRef]
103. Pour, M.B.; Latha, L.Y.; Sasidharan, S. Cytotoxicity and oral acute toxicity studies of Lantana camara leaf extract. Molecules 2011, 16,
3663–3674. [CrossRef]
104. Ma, L.-h.; Wu, H.-b.; Wu, H.-b. A new oleanane triterpene with allelopathic activity from Lantana camara. Chem. Nat. Compd. 2023,
59, 709–711. [CrossRef]
105. Ayub, A.; Begum, S.; Ali, S.N.; Ali, S.T.; Siddiqui, B.S. Triterpenoids from the aerial parts of Lantana camara. J. Asian Nat. Prod. Res.
2017, 21, 141–149. [CrossRef] [PubMed]
106. Begum, S.; Wahab, A.; Siddiqui, B.S. Three new pentacyclic triterpenoids from Lantana camara. Helv. Chim. Acta. 2002, 85,
2335–2341. [CrossRef]
107. Kalita, S.; Kumar, G.; Karthik, L.; Rao, K.V.B. Phytochemical composition and in vitro hemolytic activity of Lantana Camara L.
(Verbenaceae) leaves. Pharmacologyonline 2011, 1, 59–61.
108. Ali-Emmanuel, N.; Moudachirou, M.; Akakpo, J.A.; Quetin-Leclercq, J. Treatment of bovine dermatophilosis with Senna alata,
Lantana camara and Mitracarpus scaber leaf extracts. J. Ethnopharmacol. 2003, 86, 167–171. [CrossRef] [PubMed]
109. Shamsee, Z.R.; Al-Saffar, A.Z.; Al-Shanon, A.F.; Al-Obaidi, J.R. Cytotoxic and cell cycle arrest induction of pentacyclic triter-
penoides separated from Lantana camara leaves against MCF-7 cells in vitro. Mol. Biol. Rep. 2019, 46, 381–390. [CrossRef]
[PubMed]
110. Kong, C.H.; Wang, P.; Zhang, C.X.; Zhang, M.X.; Hu, F. Herbicidal potential of allelochemicals from Lantana camara against
Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res. 2006, 46, 290–295. [CrossRef]
111. Giri, A.G.; Oza, R. Isolation, purification and characterization of triterpenes from Lantana camara. Chem. Sci. Rev. Lett. 2015, 4,
520–525.
112. Sharma, M.; Rakhi, A.; Dalal, N.; Sharma, N. Design, synthesis and evaluation of lantadene A congener with hydroxyl functionality
in ring A as an antitumour agent. Nat. Prod. Res. 2011, 25, 387–396. [CrossRef]
113. Grace-Lynn, C.; Darah, I.; Chen, Y.; Latha, L.Y.; Jothy, S.L.; Sasidharan, S. In vitro antioxidant activity potential of lantadene A, a
pentacyclic triterpenoid of Lantana plants. Molecules 2012, 17, 11185–11198. [CrossRef] [PubMed]
114. Jaafar, N.D.; Al-Saffar, A.Z.; Yousif, E.A. Genotoxic and cytotoxic activities of lantadene A-loaded gold nanoparticles (LA-AuNPS)
in MCF-7 cells: An in vitro assessment. Int. J. Toxicol. 2020, 39, 422–432. [CrossRef] [PubMed]
115. Dawood, D.A.S.; Chua, L.S.; Tan, T.S.; Alshemary, A.F. Apoptotic mechanism of lantadene A from Lantana camara leaves against
prostatic cancer cells. Egypt. J. Chem. 2021, 64, 7503–7510. [CrossRef]
116. Litaudon, M.; Jolly, C.; Le Callonec, C.; Dao, D.C.; Retailleau, P.; Nosjean, O. Cytotoxic pentacyclic triterpenoids from
Combretum sundaicum and Lantana camara as inhibitors of Bcl-xL/BakBH3 domain peptide interaction. J. Nat. Prod. 2009,
72, 1314–1320. [CrossRef]
117. Delgado-Altamirano, R.; Rojas, A.; Esturau-Escofet, N. 1 H and 13 C NMR reassignment of some chemical shifts of lantanilic acid
and camaric acid. Magn. Reson. Chem. 2019, 57, 320–325. [CrossRef] [PubMed]
118. Qamar, F.; Begum, S.; Raza, S.M.; Wahab, A.; Siddiqui, B.S. Nematocidal natural products from the aerial parts of Lantana camara
Linn. Nat. Prod. Res. 2005, 19, 609–613. [CrossRef]
119. Kartika, M.Z.; Suryati, S.; Efdi, M. A triterpenoid compound from the leaves of Tahi ayam (Lantana camara Linn). Indones. J.
Fundam. Appl. Chem. 2018, 3, 18–22.
120. Seepe, H.A.; Raphoko, L.; Amoo, S.O.; Nxumalo, W. Lantadene A and boswellic acid isolated from the leaves of Lantana camara L.
have the potential to control phytopathogenic Fusarium species. Heliyon 2022, 8, e12216. [CrossRef] [PubMed]
121. Begum, S.; Zehra, S.Q.; Ayub, A.; Siddiqui, B.S. A new 28-noroleanane triterpenoid from the aerial parts of Lantana camara Linn.
Nat. Prod. Res. 2010, 24, 1227–1234. [CrossRef] [PubMed]
122. Ediruslan, E.; Manjang, Y.; Suryati, S.; Aziz, H. Structure elucidation of brine shrimp toxic compound from Lantana camara L.
leaves. J. Chem. Pharm. Res. 2015, 7, 250–255.
Molecules 2025, 30, 851 49 of 51
123. Suryati; Efdi, M.; Oktavia, S.H.; Aziz, H. Antibacterial and antifungal activity of lantanilic acid isolated from Lantana camara Linn.
Der Pharma Chem. 2017, 9, 105–108.
124. Suryati, S.; Mardiah, E.; Efdi, M.; Kartika, M.Z.; Sari, Y.M. Bioactivity of compounds isolated from the leaves of the Lantana camara
Linn plant. J. Chin. Pharm. Sci. 2019, 28, 360–368.
125. Kazmi, I.; Rahman, M.; Afzal, M.; Gupta, G.; Saleem, S.; Afzal, O.; Shaharyar, M.A.; Nautiyal, U.; Ahmed, S.; Anwar, F. Anti-
diabetic potential of ursolic acid stearoyl glucoside: A new triterpenic glycosidic ester from Lantana camara. Fitoterapia 2012, 83,
142–146. [CrossRef] [PubMed]
126. Kazmi, I.; Saleem, S.; Ahmad, T.; Afzal, M.; Al-Abbasi, F.A.; Kumar, V.; Anwar, F. Protective effect of oleane-12-en-3β-ol-28-oic
acid 3β-D-glucopyranoside in ethanol induced gastric ulcer by enhancing the prostaglandin E2 level. J. Ethnopharmacol. 2018, 211,
394–399. [CrossRef] [PubMed]
127. Yadav, S.B.; Tripathi, V. A new triterpenoid from Lantana camara. Fitoterapia 2003, 74, 320–321. [CrossRef]
128. Sathish, R.; Vyawahare, B.; Natarajan, K. Antiulcerogenic activity of Lantana camara leaves on gastric and duodenal ulcers in
experimental rats. J. Ethnopharmacol. 2011, 134, 195–197. [CrossRef] [PubMed]
129. Begum, S.; Wahab, A.; Siddiqui, B.S. Ursethoxy acid, a new triterpene from Lantana camara. Nat. Prod. Lett. 2002, 16, 235–238.
[CrossRef] [PubMed]
130. Yadav, S.B.; Tripathi, V. Chemical components of Lantana camara Linn. Indian J. Heterocyclic Chem. 2000, 10, 71–72.
131. Xavier, M.R.; da Fonseca, A.M.; Gonçalves Cruz, B.; dos Santos Mendes, A.M.; Oliveira, L.S.; Bandeira, P.N.; Colares, R.P.;
Braz-Filho, R.; Marinho, E.S.; Freitas, T.S.; et al. Modulating antibacterial activity against multidrug-resistant Escherichia coli and
Staphylococcus aureus of the flavonoid pectolinarin isolated from Lantana camara leaves. J. Anal. Pharm. Res. 2021, 10, 217–220.
[CrossRef]
132. El-Kassem, L.T.A.; Mohammed, R.S.; El Souda, S.S.; El-Anssary, A.A.; Hawas, U.W.; Mohmoud, K. Digalacturonide flavones
from Egyptian Lantana camara flowers with in vitro antioxidant and in vivo hepatoprotective activities. Z. Naturforsch. C 2012, 67,
381–390. [CrossRef] [PubMed]
133. Qureshi, H.; Anwar, T.; Ali, Q.; Haider, M.Z.; Habib, N.; Fatima, S. Isolation of natural herbicidal compound from Lantana camara.
Int. J. Environ. Anal. Chem. 2019, 101, 631–638. [CrossRef]
134. Begum, S.; Wahab, A.; Siddiqui, B.S. Antimycobacterial activity of flavonoids from Lantana camara Linn. Nat. Prod. Res. 2008,
22, 467–470. [CrossRef]
135. Benjamin, R.; Akilan, A.; Senguttuvan, S. Isolation, characterization, and anti-cancer activity of kaempferol-6-methoxy-7-O-
glucoside from Lantana camara flowers. Orient. J. Chem. 2022, 38, 72–76. [CrossRef]
136. Millycent, S.A.; Mwonjoria, M.; Juma, K.K.; Ngugi, M.P.; Njagi, E. Evaluation of analgesic, anti-inflammatory and toxic effects of
Lantana camara. Int. J. Phytopharm. 2017, 8, 89–97.
137. Naz, R.; Bano, A. Phytochemical screening, antioxidants and antimicrobial potential of Lantana camara in different solvents. Asian
Pac. J. Trop. Dis. 2013, 3, 480–486. [CrossRef]
138. Indrayani, F.; Wirastuty, R.Y. In-vitro anti-tuberculosis activity and phytochemical screening of Lantana (Lantana camara L.) flower.
Pharm. J. Indones. 2021, 18, 413–421. [CrossRef]
139. Mahdi-Pour, B.; Jothy, S.L.; Latha, L.Y.; Chen, Y.; Sasidharan, S. Antioxidant activity of methanol extracts of different parts of
Lantana camara. Asian Pac. J. Trop. Biomed. 2012, 2, 960–965. [CrossRef]
140. Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G. In vitro antiplasmodial activity of medicinal
plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [CrossRef] [PubMed]
141. Sharma, M.; Sharma, P.D.; Bansal, M.P. Chemopreventive effect of Lantana camara leaf extract on 7,12-dimethylbenz[a]anthracene-
induced squamous cell carcinoma of skin in Swiss albino mice. Pharm. Biol. 2007, 45, 145–148. [CrossRef]
142. Arbiastutie, Y.; Marsono, D.; Hartati, M.S.; Purwanto, R. The potential of understorey plants from Gunung Gede Pangrango
National Park (West Java, Indonesia) as cervixs anticancer agents. Biodiversitas 2017, 18, 109–115. [CrossRef]
143. Ruslin; Yamin; Rahma, N.A.; Imawati; Rohman, A. UPLC MS/MS profile and antioxidant activities from nonpolar fraction of
patiwala (Lantana camara) leaves extract. Separations 2022, 9, 75. [CrossRef]
144. Erdoğan, P.; Üstündağ, S. Lantana camara Ekstraktının Patates güvesi [Phthorimae operculella (Zeller) (Lepidoptera: Gelechiidae)]’ne
İnsektisit Etkileri. Int. J. Sivas Univ. Sci. Technol. 2022, 1, 63–75.
145. Kamaraj, C.; Rahuman, A.A.; Bagavan, A.; Elango, G.; Zahir, A.A.; Santhoshkumar, T. Larvicidal and repellent activity of
medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors. Asian Pac. J. Trop. Med. 2011,
4, 698–705. [CrossRef] [PubMed]
146. Verma, R.K.; Verma, S.K. Phytochemical and termiticidal study of Lantana camara var. aculeata leaves. Fitoterapia 2006, 77, 466–468.
[CrossRef]
147. Barre, J.; Jenber, A.J. Evaluation of selected botanicals for the management of maize weevil (Sitophilus zeamais) on maize
(Zea mays L.) grain under laboratory condition in Gabilay District, Somaliland. Heliyon 2022, 8, e11859. [CrossRef]
Molecules 2025, 30, 851 50 of 51
148. Kayesth, S.; Gupta, K.K. Impact of Lantana camara hexane extract on survival, growth and development of Dysdercus koenigii
Fabricius (Heteroptera: Pyrrhocoriedae). Acta Ecol. Sin. 2018, 38, 187–192. [CrossRef]
149. Alghamdi, A.A.; Basher, N.S.H. Efficacy of leaves and flowers ethanol extracts of the invasive species Lantana camara Linn as a
mosquito larvicidal. Int. J. Mosq. Res. 2020, 7, 43–47.
150. Hemalatha, P.; Elumalai, D.; Janaki, A.; Babu, M.; Velu, K.; Velayutham, K. Larvicidal activity of Lantana camara aculeata against
three important mosquito species. J. Entomol. Zool. Stud. 2015, 3, 174–181.
151. Sharma, M.; Alexander, A.; Nakhate, K.T.; Nagwanshi, K.K.; Ajazuddin. Evaluation of the mosquito larvicidal potential and
comparative assessment of the juice of Lantana camara Linn and Ocimum gratissimum Linn. Exp. Parasitol. 2023, 249, 108521.
[CrossRef]
152. Kamatchi, P.A.C.; Maheswaran, R.; Ignacimuthu, S. Evaluation of larval toxicity of Lantana camara L. and Catharanthus roseus L.
against Culex quinquefasciatus say and Aedes aegypti L. Entomol. Ornithol. Herpetol. 2016, 5, 170.
153. Taha, K.A.; Osman, H.E.; Sidahmed, O.A.A. Larvicidal effects of some plant extracts against Anopheles arabiensis Patton Larvae
(Diptera: Culicidae). J. Sci. Technol. 2011, 12, 67–74.
154. Gindri, D.M.; Coelho, C.M.M.; Uarrota, V.G.; Rebelo, A.M. Herbicidal bioactivity of natural compounds from Lantana camara on
the germination and seedling growth of Bidens pilosa. Pesqui. Agropecu. Trop. 2020, 50, e57746. [CrossRef]
155. Tuyiringire, N.; Taremwa Mugisha, I.; Tusubira, D.; Munyampundu, J.P.; Mambo Muvunyi, C.; Vander Heyden, Y. In vitro
antimycobacterial activity of medicinal plants Lantana camara, Cryptolepis sanguinolenta, and Zanthoxylum leprieurii. J. Clin. Tuberc.
Other Mycobact. Dis. 2022, 27, 100307. [CrossRef] [PubMed]
156. Bangou, M.J.; Almaraz-Abarca, N.; Méda, N.T.R.; Zeba, B.; Kiendrebéogo, M.; Millogo-Rasolodimby, J. Polyphenolic composition
of Lantana camara and Lippia chevalieri, and their antioxidant and antimicrobial activities. Phytomedicine 2012, 4, 115–124.
157. Pradeep, B.V.; Tejaswini, M.; Nishal, P.; Pardhu, G.; Shylaja, S.; Kumar, K.C. Phytochemical screening and antimicrobial activities
of plant extract of Lantana camara. J. Environ. Biol. 2013, 34, 645–649.
158. El Gendy, S.N.; Ezzat, M.I.; EL Sayed, A.M.; Saad, A.S.; Elmotayam, A.K. HPLC-PDA-ESI-MS-MS analysis of acids content of
Lantana camara L. flower extract and its anticoagulant activity. Egypt. J. Chem. 2023, 66, 249–256.
159. Mengistu, G.; Engidawork, E.; Nedi, T. Evaluation of the antidiarrhoeal activity of 80% methanol extract and solvent fractions of
the leaves of Lantana camara Linn (Verbenaceae) in mice. Ethiop. Pharm. J. 2015, 31, 107–120. [CrossRef]
160. Sousa, E.O.; Miranda, C.M.B.A.; Nobre, C.B.; Boligon, A.A.; Athayde, M.L.; Costa, J.G.M. Phytochemical analysis and antioxidant
activities of Lantana camara and Lantana montevidensis extracts. Ind. Crops Prod. 2015, 70, 7–15. [CrossRef]
161. Suryati; Santoni, A.; Kartika, M.Z.; Aziz, H. Antioxidant activity and total phenolic content of ethyl acetate extract and fractions
of Lantana camara L. leaf. Der Pharma Chem. 2016, 8, 92–96.
162. Kalita, S.; Kumar, G.; Karthik, L.; Rao, K.V.B. In vitro antioxidant and DNA damage inhibition activity of aqueous extract of
Lantana camara L. (Verbenaceae) leaves. Asian Pac. J. Trop. Biomed. 2012, 2, 1675–1679. [CrossRef]
163. Kazmi, I.; Afzal, M.; Ali, B.; Damanhouri, Z.A.; Ahmaol, A.; Anwar, F. Anxiolytic potential of ursolic acid derivative-a stearoyl
glucoside isolated from Lantana camara L. (Verbanaceae). Asian Pac. J. Trop. Med. 2013, 6, 433–437. [CrossRef]
164. Parimoo, H.A.; Sharma, R.; Patil, R.D.; Sharma, O.P.; Kumar, P.; Kumar, N. Hepatoprotective effect of Ginkgo biloba leaf extract
on lantadenes-induced hepatotoxicity in guinea pigs. Toxicon 2014, 81, 1–12. [CrossRef] [PubMed]
165. Veraplakorn, V. In vitro micropropagation and allelopathic effect of lantana (Lantana camara L.). Agric. Nat. Resour. 2017, 51,
478–484. [CrossRef]
166. Motwani, G.S.; Golani, N.; Solanki, H.A. Allelopathic effects of aqueous leaf leachates of Lantana camara on Eichhornia crassipes.
Life Sci. Leaf 2013, 1, 83–90.
167. Saxena, M.K.; Gupta, J.; Singh, N. Allelopathic potential of callus extract of Lantana camara. Int. J. Recent Sci. Res. 2013, 4,
1628–1630.
168. Veraplakorn, V. Allelopathic hormesis and slow release of lantana (Lantana camara L.) callus extract. Agric. Nat. Resour. 2018, 52,
335–340. [CrossRef]
169. Nayak, B.S.; Raju, S.S.; Eversley, M.; Ramsubhag, A. Evaluation of wound healing activity of Lantana camara L.—A preclinical
study. Phytother. Res. 2009, 23, 241–245. [CrossRef]
170. Suryati, A.S.; Imelda, R.V.U. Cytotoxic and molecular docking potential of β-sitosterol isolated from Lantana camara leaves against
breast (T47D) and cervical cancer (HeLa) cell lines. Trop. J. Nat. Prod. Res. 2024, 8, 6911–6917.
171. Wang, J.; Lu, X.; Jing, Q.; Zhang, B.; Ye, J.; Zhang, H.; Xiao, Z.; Zhang, J. Spatiotemporal characterization of heavy metal and
antibiotics in the Pearl River Basin and pollutants removal assessment using invasive species-derived biochars. J. Hazard. 2023,
454, 131409. [CrossRef]
172. Surya Prakash, V.; Radhakrishnan, N.; Vasantha-Srinivasan, P.; Veeramani, C.; El Newehy, A.S.; Alsaif, M.A.; Al-Numair, K.S. In
silico analysis of selected nutrition rich fruit of Bunch berry (Lantana camara) constituents as human acetylcholinesterase (hAchE),
carbonic anhydrase II (hCA-II) and carboxylesterase 1 (hCES-1) inhibitory agents. Saudi J. Biol. Sci. 2023, 30, 103847. [CrossRef]
Molecules 2025, 30, 851 51 of 51
173. Patil, S.P.; Sahu, K.G.; Andhale, G.S. Lantana camara mediated green synthesis of metallic nanoparticles: A mini review. Inorg.
Chem. Commun. 2024, 160, 111853. [CrossRef]
174. Hussein, L.M.; Hasan, A.Y. Biosynthesis of zinc oxide nanoparticles by Lantana camara flowers extract characterization and their
antibacterial potential against pathogenic bacteria isolated from wounds infections. J. Pharm. Negat. 2022, 13, 451–458.
175. Hamdiani, S.; Shih, Y.F. Environmentally methods for the loaded of silver and zinc oxide nanoparticles on diatomite as a potential
nanofiller for industrial application. AIP Conf. Proc. 2023, 2619, 040008.
176. Negi, A.; Joshi, S.K.; Bhandari, N.S. Estimation of sorption-desorption characteristics of biosorbent of Lantana camara leaves for
removal of Pb (II) ions from wastewater. Environ. Monit. Assess. 2023, 195, 42. [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.