0% found this document useful (0 votes)
33 views16 pages

Comm. - Itc

The document discusses information theory, focusing on concepts such as entropy, mutual information, and channel capacity. It covers the mathematical foundations of these concepts, including the conditions for maximizing entropy and the implications for data transmission rates. Additionally, it addresses coding techniques for error detection and correction in communication channels.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
33 views16 pages

Comm. - Itc

The document discusses information theory, focusing on concepts such as entropy, mutual information, and channel capacity. It covers the mathematical foundations of these concepts, including the conditions for maximizing entropy and the implications for data transmission rates. Additionally, it addresses coding techniques for error detection and correction in communication channels.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

ToPIC 5:

TNFORMATIDN THEORY
THfOPMATION ( ) :
present in an, qen event cdeperos on
intormaton
The ocCunce of tat event.
probability af o aall
occorence d event is veny
probabiliby ot
Re crtent in tRat evnt will be
inho ostton
-hen, -1Re

’ BITS and
's guen by
TN FO UNITS

T- loq ( )cets)
ENTPOPY (H): in a discee
ingor rnatn prsent
aver age amount of
The
Sounce is called as

N
N (OP)

CONDITION FOR MAX\ MIZING ENTPOP 4:

Discre te Srce :.S PCS)P


S Ps):!-p SoUYce
Hcs)=

d H)
dP

lag,
log, (i-p)
2P =|
P
matiMom ohen all A.
a soUTCe fs
wh egual pmbabilib
KoUTCe OccUT
has 'MPvenk 4Ren,
* eoTCe

logMMbilyrl
* DATA TRANSM SSION RATE

gven as poduct of soU1ce


It is
Synrtad and entrpy
Rs XH] bitsec

Q Consider a binany eou


Detrnine
otth prbailtty yand 3l4 nepectdy .

HC) -[4ct co 4

SoU1ce.
") what is he entropy of second order
HCs)=? # (s) = hH(S)

S2 SI
S S>

4.0462 +04$2 to4 66

H(S)- 1. 62 bts| anol.


HCs): 2HCa)
ENTPOPY CoNbITIO
NAL AND TOLNT B[N PELATON
M
ENTROPY: loN CoNDIT
AL
H[93:-}Z
oP[xi,
ENTROPY: M TopNT
- LY] H
ENTROP|: TYPES
OF
ayrnbd and madmoro
higheat hasing bits having ofSsyrkeol
mos
probablity Lract
ae colirg tongth
Gcheres Conapt trtpy
able Vavi in" e
V2

P(xs):S%

:-[-395+ (-or) 4coqo]

[-os+eo sa) +(-0 s13)].

H[x93: log()+ log ()+log ()+

Cos0)]
bits syrnbol 264
H):[xN]-H[
264 -|S4

2-49-|29
|:38 bits syrnbol.
MUTUAL
TNFOPMATION (1)
b<n tx and Rx in
*
wpnsents data tronte
I
itssymbd
I[x:]: HLJ- H ]bit |aymtd
(OP)'

# CHANNEL CAPACITY
marinigd Value of tro mabun
Channel apacby is,
-tsanssered ln.Tx and Rx..
UNITS: blts| symba.
(x:y))
c = MAx [1
clog M- H[
(op)
C
log
CHANNEL EFFICIENcy
C

CHAN NEL REDUNDANCY

q: Detzroine intoatirn -transkr betueen x and Y e hence


deduce channl Gapacity fo the yolloaing Comoni catn
channal.
r)

POX)- o4

P[x]
P[x] 0.6
Plx»]-o4 X

* H[9]=- fo.loy, (oe)+oyly, (o )


*

P]-0.6 P

H:-|ovalog, (o3)+ o>lag.(o2) to sloy

944356= 0 Bybikmb.
=0.
C #[3-[]
MAx

*y=o 1344
(o3) loq, o-38 4(o'62) log, 6)1+(o C
o.8
.o
3X|o302.
O3
channel. tllosoing the capacty
of Det1ntne
tie tg'
%
[Jmax
-H H -Bsc
sitslsyrnb =Ilog² H[ymax
X
P
probailbtes ve
BSc. ascalled equal
fa
CionNNEL sVMMIPIC BINAPY
CAPACITY THEOREM SHANNON
* CHAN NEL
a dizrete memny-lees RoUrce
Ihe Capasby of
qven y bits
c- Blog. (iw)
shee
"Pbb
Sipad to
TRADE OFF B/N
BW
Coni deu an mdog ignd band limitbed to 4rH

-tansnitkd tinunua 'hansd ving 3-bib PCM ysten


higher than-ae
The' sampling ate ysed is as
vale.The syclero uUses hannshose'Bw is tokte

has sign to moice sato ef, 20dB.


betexnone tie tollbing?
) strate o the PeM Syeten.

then

) Dekrmine tie Coposty a dnned hence hed hethey


dta can be tx on channl
C

30d8 to.
C- lox o lo toi)

NoTE:
2
lk BW Constnt or eroy-tree, Tx
keeping

he mfin. BWgue d by the ohanne by trmpng


BW
mine sodB -for dtrtsn lecs Tx?
fu) Deter
constant at
SAP
BWmin ?
:30xo
BWonin lo9, (1+1o0)

ML DECODING SCH CMES IN DETERMINNG


MAf
* USE OF
m

Tx ( )
() 2()
P()P(m)
P()
P()

PC) mi P()
MAP RULE 2
Yo, M, is Tx

P(m) F()4> P(*.)r C );

ML RULE: P(m) = P(ni)


Fnd the Pe
Anany
MAP and Ml decodng algo thms

P(r)=o

P(m o"3 ,
Sol:
MAP:

P(mo) ( P(m) P)
(0)0 1)
stx

Pe -(o")(o-)+(o.3) (o-4)

ML:
(1o)s0 (h-o)ao+
* TOPC 6: CHANNE L

TyPES oF CObING
SoWCe cong
2 channad cading
SoURCE coDING (x)

In sounte oing Vaiable leng codng


hemes an
per symbd tHence
uced to wduce , Re onoof bite duces
bandu ( BW)
bit vate () &
Eq: ttausman coding
shannon- faro Cocing
CHeN NEL CON 6?
In hanel coing enha Gits (paity
bits) ae added at the end of data als e doi,
he Tx.
.This is dore to enhance the dota
" The bit vate M6) BN requies
Ez* Block Codes
Convolotn Codes.
* LIN EAR BLOCK CD DES
preserted as (o)
nhere, k ’ no-of data bits
n no-f bit în code oox
- paiby bits exta Gb nondant bike

n6

n -k -3
5 y MATIC
t
ae oddet
odded ether ot trhe end af
parity bite
-the the data bil 4hen
tavig
its o1) at he
s said to
to be
be sycleratbc
ie code added in betuen -he data bits,
bits avo
is
eaid to be'
ode
hen -the

P
P d P

CoDE:
LINEAR
X
Scheme s ead to bi lintan, SUr

aesulk în a coee coond. of t6e


two Code oonde again
MODULO-2 AbbitioN
Same

ui(ni) 3)
P did
P =d ds

d P2 Hbls t dn
d

2 2
W

3 4
2

CG
3 3

L
C3
* HAMMING WElGHT :
's psent in 4 qien
he no of
Called as
* HAMM|N6 DISTANCE:
-he mo.of locatons in which e
This fndicaks
Succecsive Code C0ords diter
* MINIMUM 4AM MING <TANCE (dmin)
bao euCes`ive
The smallect harnring drtance oln any hoo
Code oode.
detect e c Comctin
uooud. Capulbitba
of agueri Code
.he smalletb hareing: weight ercept tor a
Code od is
harring didance (din).
* ERROR DETECTIGN E COPPECTION CAPABILITIES
Anw ln.) brer bloct code ohidh Capable of
Gondtar.
Coechng i shaold Sabty -ie fulloing

.2t|,
ti|

Ahy buk). inear dock Kode, Capatle ot dekcg


should catsby cordi tbon.
dntn ttl|
HAMMING
40v)) bnear bloct code Te cad to
L hannino

Code 1 -ntl

(G;3) hartsrg cnde.


(34) 141
Atttamm.rg
anming Code.
CHECK
CYCLIC PEDUN DAN CY (co)
Ths ts only an eror debçtin algrithm.
Enoy tomectirn ts not
poctible nith, this alqoithrn

i< gven by g x"+X tl, deterine -tse codeiey


Tk toro th arnel o the obove data
Sol?

o at the end.of data a ceovdina to -the


Add noof
ovder of glx
T 10 o )4too000o(oDObIolo

. Bnal
0o000 rem ainderis
o0000
o0||
Oo 00 0 PAPITY BIts

CHE=E SUM BITS


Px: |0o) ooI o11||1o00otn
I0011

oo0oI

oo

i. inal Check cum panity bte aome oo

:, No ERPOR OCUPED.sr
Dischd'pans ty bits and take data bik
are nonzeo
0snd.
Bx code ovd +ty Cude
Ast for etrans is $ln’ AR
3thutornahc Repeat

You might also like