0% found this document useful (0 votes)
56 views12 pages

Dual/Quad Low Noise Operational Amplifiers: Pin Connections

The MC33078/9 series is a family of high-performance monolithic operational amplifiers designed for audio and data signal processing applications, featuring low noise, high gain bandwidth, and slew rate. Available in dual and quad versions, these amplifiers operate over a wide temperature range and offer various electrical characteristics such as low input offset voltage and high total harmonic distortion. The document includes detailed specifications, maximum ratings, and pin configurations for the MC33078 and MC33079 models.

Uploaded by

pajrulnet
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
56 views12 pages

Dual/Quad Low Noise Operational Amplifiers: Pin Connections

The MC33078/9 series is a family of high-performance monolithic operational amplifiers designed for audio and data signal processing applications, featuring low noise, high gain bandwidth, and slew rate. Available in dual and quad versions, these amplifiers operate over a wide temperature range and offer various electrical characteristics such as low input offset voltage and high total harmonic distortion. The document includes detailed specifications, maximum ratings, and pin configurations for the MC33078 and MC33079 models.

Uploaded by

pajrulnet
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

Order this document by MC33078/D





  

 
DUAL/QUAD
The MC33078/9 series is a family of high quality monolithic amplifiers
employing Bipolar technology with innovative high performance concepts for
LOW NOISE
quality audio and data signal processing applications. This family OPERATIONAL AMPLIFIERS
incorporates the use of high frequency PNP input transistors to produce
amplifiers exhibiting low input voltage noise with high gain bandwidth
product and slew rate. The all NPN output stage exhibits no deadband
DUAL
crossover distortion, large output voltage swing, excellent phase and gain
margins, low open loop high frequency output impedance and symmetrical
www.DataSheet4U.com
source and sink AC frequency performance. 8
8
1
The MC33078/9 family offers both dual and quad amplifier versions, 1

tested over the automotive temperature range and available in the plastic P SUFFIX D SUFFIX
DIP and SOIC packages (P and D suffixes). PLASTIC PACKAGE PLASTIC PACKAGE
CASE 626 CASE 751
• Dual Supply Operation: ± 5.0 V to ± 18 V (SO–8)
• Low Voltage Noise: 4.5 nV/ Hz Ǹ
PIN CONNECTIONS
• Low Input Offset Voltage: 0.15 mV
• Low T.C. of Input Offset Voltage: 2.0 µV/°C Output 1 1 8 VCC

• Low Total Harmonic Distortion: 0.002% 2



1 7 Output 2
• High Gain Bandwidth Product: 16 MHz Inputs 1
+

• High Slew Rate: 7.0 V/µs


3

6
Inputs 2
• High Open Loop AC Gain: 800 @ 20 kHz VEE 4
2
+ 5
• Excellent Frequency Stability
(Dual, Top View)
• Large Output Voltage Swing: +14.1 V/ –14.6 V
• ESD Diodes Provided on the Inputs QUAD

14
14
1
1
D SUFFIX
P SUFFIX
Representative Schematic Diagram PLASTIC PACKAGE
PLASTIC PACKAGE
CASE 751A
(Each Amplifier) CASE 646
(SO–14)
PIN CONNECTIONS
VCC
R2 Output 1 1 14 Output 4
D1
Q4 2
*1 * 13
Q9 Inputs 1
3 ) 4
) 12
Inputs 4
Q3 Q5 D3 Q11 4 11
VCC VEE
Neg Pos R7
C2 5
)2 ) 10

Amplifier
Q3 Inputs 2 6 *
3
* 9
Inputs 3
J1
Biasing Q8 D4 C3 R9 7 8
Output 2 Output 3
Q6 Vout
Q12 (Quad, Top View)
Q2 D2 Q10
R6 ORDERING INFORMATION
R4
Z1 Q1 Q7 Operating
R1 C1 R3 Q5 Device Temperature Range Package
VEE MC33078D SO–8
MC33078P Plastic DIP
TA = – 40° to +85°C
MC33079D SO–14
MC33079P Plastic DIP

 Motorola, Inc. 1996 Rev 0


MOTOROLA ANALOG IC DEVICE DATA 1
MC33078 MC33079

MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) VS +36 V
Input Differential Voltage Range VIDR (Note 1) V
Input Voltage Range VIR (Note 1) V
Output Short Circuit Duration (Note 2) tSC Indefinite sec
Maximum Junction Temperature TJ +150 °C
Storage Temperature Tstg – 60 to +150 °C
Maximum Power Dissipation PD (Note 2) mW
NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see Figure 1).

www.DataSheet4U.com
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V) |VIO| mV
(MC33078) TA = +25°C — 0.15 2.0
TA = –40° to +85°C — — 3.0
(MC33079) TA = +25°C — 0.15 2.5
TA = –40° to +85°C — — 3.5
Average Temperature Coefficient of Input Offset Voltage ∆VIO/∆T — 2.0 — µV/°C
RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh

Input Bias Current (VCM = 0 V, VO = 0 V) IIB nA


TA = +25°C — 300 750
TA = –40° to +85°C — — 800
Input Offset Current (VCM = 0 V, VO = 0 V) IIO nA
TA = +25°C — 25 150
TA = –40° to +85°C — — 175
Common Mode Input Voltage Range (∆VIO = 5.0 mV, VO = 0 V) VICR ±13 ±14 — V
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ) AVOL dB
TA = +25°C 90 110 —
TA = –40° to +85°C 85 — —
Output Voltage Swing (VID = ±1.0V) V
RL = 600 Ω VO + — +10.7 —
RL = 600 Ω VO – — –11.9 —
RL = 2.0 kΩ VO + +13.2 +13.8 —
RL = 2.0 kΩ VO – — –13.7 –13.2
RL = 10 kΩ VO + +13.5 +14.1 —
RL = 10 kΩ VO – — –14.6 –14
Common Mode Rejection (Vin = ±13V) CMR 80 100 — dB
Power Supply Rejection (Note 3) PSR 80 105 — dB
VCC/VEE = +15 V/ –15 V to +5.0 V/ –5.0 V

Output Short Circuit Current (VID = 1.0 V, Output to Ground) ISC mA


Source +15 +29 —
Sink –20 –37 —
Power Supply Current (VO = 0 V, All Amplifiers) ID mA
(MC33078) TA = +25°C — 4.1 5.0
(MC33078) TA = –40° to +85°C — — 5.5
(MC33079) TA = +25°C — 8.4 10
(MC33079) TA = –40° to +85°C — — 11
NOTE: 3. Measured with VCC and VEE differentially varied simultaneously.

2 MOTOROLA ANALOG IC DEVICE DATA


MC33078 MC33079

AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF AV = +1.0) SR 5.0 7.0 — V/µs
Gain Bandwidth Product (f = 100 kHz) GBW 10 16 — MHz
Unity Gain Frequency (Open Loop) fU — 9.0 — MHz
Gain Margin (RL = 2.0 kΩ) CL = 0 pF Am — –11 — dB
CL = 100 pF — – 6.0

Phase Margin (RL = 2.0 kΩ) CL = 0 pF φm — 55 — Degree


CL = 100 pF — 40 s

Channel Separation (f = 20 Hz to 20 kHz) CS — –120 — dB


Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%) BWp — 120 — kHz
Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD — 0.002 — %
www.DataSheet4U.com
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| — 37 — Ω
Differential Input Resistance (VCM = 0 V) RIN — 175 — kΩ
Differential Input Capacitance (VCM = 0 V) CIN — 12 — pF
Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz) en — 4.5 — nV/ √ Hz
Equivalent Input Noise Current (f = 1.0 kHz) in — 0.5 — pA/ √ Hz

Figure 1. Maximum Power Dissipation Figure 2. Input Bias Current versus


versus Temperature Supply Voltage
P D , MAXIMUM POWER DISSIPATION (mW)

2400 800
VCM = 0 V
2000
I IB , INPUT BIAS CURRENT (nA)

MC33078P & MC33079P TA = 25°C


600
1600
MC33079D
1200 400

800
200
400 MC33078D

0 0
–55 –40 –20 0 20 40 60 80 100 120 140 160 5.0 10 15 20
TA, AMBIENT TEMPERATURE (°C) VCC, | VEE |, SUPPLY VOLTAGE (V)

Figure 3. Input Bias Current versus Temperature Figure 4. Input Offset Voltage versus Temperature
1000 2.0
VCC = +15 V
VCC = +15 V VEE = –15 V
V IO, INPUT OFFSET VOLTAGE (mV)
I IB , INPUT BIAS CURRENT (nA)

VEE = –15 V RS = 10 Ω Unit 1


800
VCM = 0 V 1.0 VCM = 0 V
AV = +1
600
Unit 2
0
400
Unit 3
–1.0
200

0 –2.0
–55 –25 0 25 50 75 100 125 –55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C)

MOTOROLA ANALOG IC DEVICE DATA 3


MC33078 MC33079

Figure 5. Input Bias Current versus Figure 6. Input Common Mode Voltage
Common Mode Voltage Range versus Temperature

V ICR , INPUT COMMON MODE VOLTAGE RANGE (V)


600 VCC –0
VCC = +15 V
VEE = –15 V VCC –0.5 +VCM
I IB, INPUT BIAS CURRENT (nA)

500 TA = 25°C VCC = +3.0 V to +15 V


VCC –1.0 VEE = –3.0 V to –15 V
400 ∆VIO = 5.0 mV
VCC –1.5
VO = 0 V
Voltage
300 Range
VEE +1.5
200
VEE +1.0
100 –VCM
VEE +0.5
0 VEE +0
–15
www.DataSheet4U.com –10 – 5.0 0 5.0 10 15 – 55 – 25 0 25 50 75 100 125
VCM, COMMON MODE VOLTAGE (V) TA, AMBIENT TEMPERATURE (°C)

Figure 7. Output Saturation Voltage versus Figure 8. Output Short Circuit Current
Load Resistance to Ground versus Temperature

| I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)


50
Vsat , OUTPUT SATURATION VOLTAGE (V)

VCC –1.0 VCC = +15 V


–55°C Sink
VCC = +15 V VEE = –15 V
VCC –3.0 25°C VEE = –15 V 40 RL < 100 Ω
VID = 1.0 V
VCC –5.0 125°C Source
30
125°C
VEE +5.0 25°C
20
VEE +3.0
–55°C

VEE +1.0 10
0 1.0 2.0 3.0 4.0 – 55 – 25 0 25 50 75 100 125
RL, LOAD RESISTANCE TO GROUND (kΩ) TA, AMBIENT TEMPERATURE (°C)

Figure 10. Common Mode Rejection


Figure 9. Supply Current versus Temperature versus Frequency
10 160
CMR, COMMON MODE REJECTION (dB)

VCM = 0 V –
±15 V ±10 V RL = ∞ 140 ∆ VCM ADM ∆ VO
I CC , SUPPLY CURRENT (mA)

8.0 VO = 0 V +
±5.0 V VCM
120
CMR = 20Log × ADM
6.0 VO
MC33079 100

±15 V ±10 V MC33078 VCC = +15 V


4.0 80
VEE = –15 V
±5.0 V VCM = 0 V
60
∆VCM = ±1.5 V
2.0 Supply Voltages TA = 25°C
40
0 20
– 55 – 25 0 25 50 75 100 125 100 1.0 k 10 k 100 k 1.0 M 10 M
TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (Hz)

4 MOTOROLA ANALOG IC DEVICE DATA


MC33078 MC33079

Figure 11. Power Supply Rejection Figure 12. Gain Bandwidth Product
versus Frequency versus Supply Voltage
140 30
∆VO/ADM ∆VO/ADM

GWB, GAIN BANDWIDTH PRODUCT (MHz)


PSR, POWER SUPPLY REJECTION (dB)

+PSR = 20Log –PSR = 20Log RL = 10 kΩ


120 ∆VCC ∆VCC
CL = 0 pF
+PSR ∆VCC f = 100 kHz
20
100 – TA = 25°C
ADM ∆VO
+
80
–PSR VEE
60 10

40
VCC = +15 V
20 VEE = –15 V
TA = 25°C
0 0
100 1.0 k 10 k 100 k 1.0 M 10 M 5.0 10 15 20
www.DataSheet4U.com f, FREQUENCY (Hz) VCC |VEE| , SUPPLY VOLTAGE (V)

Figure 13. Gain Bandwidth Product Figure 14. Maximum Output Voltage
versus Temperature versus Supply Voltage
20 20
GWB, GAIN BANDWIDTH PRODUCT (MHz)

TA = 25°C VO +
15 RL = 10 kΩ
VO , OUTPUT VOLTAGE (Vp)

15 10 RL = 2.0 kΩ
5.0
10 0
VCC = +15 V –5.0
VEE = –15 V
5.0 f = 100 kHz –10 RL = 2.0 kΩ
RL = 10 kΩ
CL = 0 pF –15 RL = 10 kΩ
VO –
0 –20
–55 –25 0 25 50 75 100 125 5.0 10 15 20
TA, AMBIENT TEMPERATURE (°C) VCC |VEE| , SUPPLY VOLTAGE (V)

Figure 16. Open Loop Voltage Gain


Figure 15. Output Voltage versus Frequency versus Supply Voltage
35 110
A VOL, OPEN LOOP VOLTAGE GAIN (dB)

RL = 2.0 kΩ
30 f ≤ 10 Hz
∆VO = 2/3 (VCC –VEE)
VO, OUTPUT VOLTAGE (Vpp )

25 TA = 25°C
100
20

15 VCC = +15 V
VCC = –15 V
RL = 2.0 kΩ 90
10 AV = +1.0
THD ≤ 1.0%
5.0 TA = 25°C
0 80
10 100 1.0 k 10 k 100 k 1.0 M 10 M 5.0 10 15 20
f, FREQUENCY (Hz) VCC |VEE| , SUPPLY VOLTAGE (V)

MOTOROLA ANALOG IC DEVICE DATA 5


MC33078 MC33079

Figure 17. Open Loop Voltage Gain Figure 18. Output Impedance
versus Temperature versus Frequency
110 50
A VOL, OPEN LOOP VOLTAGE GAIN (dB)

VCC = +15 V VCC = +15 V

| Z O |, OUTPUT IMPEDANCE ( Ω )
VEE = –15 V VEE = –15 V
40
105 RL = 2.0 kΩ VO = 0 V
f ≤ 10 Hz TA = 25°C
∆VO = –10 V to +10 V
30
100
20

95
10 AV = 1000 AV = 100 AV = 10
AV = 1.0
90 0
–55 –25 0 25 50 75 100 125 1.0 k 10 k 100 k 1.0 M 10 M
www.DataSheet4U.com TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (Hz)

Figure 19. Channel Separation Figure 20. Total Harmonic Distortion


versus Frequency versus Frequency
160 1.0
Drive Channel THD, TOTAL HARMONIC DISTORTION (%) VCC = +15 V
MC33078 VCC = +15 V
CS, CHANNEL SEPARATION (dB)

150 VEE = –15 V –


VEE = –15 V VO = 1.0 Vrms VO
RL = 2.0 KΩ +
TA = 25°C
140 MC33079 ∆VOD = 20 Vpp 0.1
2.0 kΩ
TA = 25°C
130 100 Ω 10 kΩ


120 VOM 0.01
+

110 100 Ω
∆VOA
CS = 20 Log
Measurement Channel ∆VOM
100 0.001
10 100 1.0 k 10 k 100 k 10 100 1.0 k 10 k 100 k
f, FREQUENCY (Hz) f, FREQUENCY (Hz)

Figure 21. Total Harmonic Distortion


versus Output Voltage Figure 22. Slew Rate versus Supply Voltage
1.0 10
THD, TOTAL HARMONIC DISTORTION (%)

VCC = +15 V Vin = 2/3 (VCC –VEE)


VEE = –15 V AV = 1000 TA = 25°C
0.5 f = 2.0 kHz
8.0
TA = 25°C Falling
SR, SLEW RATE (V/ µ s)

AV = 100
0.1
RA 10 kΩ 6.0 Rising

0.05 VO
Vin +
2.0 kΩ
AV = 10 4.0
0.01 –
VO
∆Vin +
AV = 1.0 2.0 2.0 kΩ
0.005

0.001 0
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 5.0 10 15 20
VO, OUTPUT VOLTAGE (Vrms) VCC |VEE| , SUPPLY VOLTAGE (V)

6 MOTOROLA ANALOG IC DEVICE DATA


MC33078 MC33079

Figure 24. Voltage Gain and Phase


Figure 23. Slew Rate versus Temperature versus Frequency
10 120 0

A VOL , OPEN LOOP VOLTAGE GAIN (dB)


VCC = +15 V VCC = +15 V
VEE = –15 V VEE = –15 V
∆Vin = 20 V 100

φ, EXCESS PHASE (DEGREES)


RL = 2.0 kΩ
8.0
SR, SLEW RATE (V/ µ s)

TA = 25°C 45
Falling 80
Rising
6.0 60 Phase 90
Gain

VO 40
4.0 ∆Vin + 135
2.0 kΩ
20

2.0 0 180
–55 –25 0 25 50 75 100 125 1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
www.DataSheet4U.com TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (Hz)

Figure 25. Open Loop Gain Margin and Figure 26. Overshoot versus Output
Phase Margin versus Load Capacitance Load Capacitance
14 0 100
A m , OPEN LOOP GAIN MARGIN (dB)

– 125°C
VO –
φ m, PHASE MARGIN (DEGREES)

12 Vin + 10 VO
2.0 kΩ CL Phase 80 ∆Vin + 25°C
25°C CL
os, OVERSHOOT (%)

10 20 – 55°C
–55°C
60
8.0 30
125°C
6.0 125°C 40 40
VCC = +15 V
4.0 50 VEE = –15 V
VCC = +15 V 20 ∆Vin = 100 mV
2.0 VEE = –15 V 25°C –55°C 60
VO = 0 V Gain
0 70 0
1 10 100 1000 10 100 1.0 k 10 k
CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF)

Figure 27. Input Referred Noise Voltage and Figure 28. Total Input Referred Noise Voltage
Current versus Frequency versus Source Resistance
i n, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz )
e n , INPUT REFERRED NOISE VOLTAGE ( nV/ √ Hz )

1000
Vn, REFERRED NOISE VOLTAGE (nV/ √ Hz)

100 10
80 VCC = +15 V
VCC = +15 V
50 VEE = –15 V VEE = –15 V
TA = 25°C f = 1.0 kHz
30
20 100 TA = 25°C
Ǹ
Vn(total) = (inRs)2 ) en2 ) 4KTRS

10
8.0
5.0 Voltage 10
3.0
2.0 Current

1.0 0.1 1.0


10 100 1.0 k 10 k 100 k 10 100 1.0 k 10 k 100 k 1.0 M
f, FREQUENCY (Hz) RS, SOURCE RESISTANCE (Ω)

MOTOROLA ANALOG IC DEVICE DATA 7


MC33078 MC33079

Figure 29. Phase Margin and Gain Margin versus


Differential Source Resistance
14 70

φ m , PHASE MARGIN (DEGREES)


12 60
Gain

Am, GAIN MARGIN (dB)


10 50
R1 Phase

8.0 VO 40
+
R2
6.0 30
VCC = +15 V
VEE = –15 V
4.0 20
RT = R1 +R2
AV = +100
2.0 VO = 0 V 10
TA = 25°C
0 0
10 100 1.0 k 10 k 100 k
www.DataSheet4U.com RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)

Figure 30. Inverting Amplifier Slew Rate Figure 31. Noninverting Amplifier Slew Rate

V O , OUTPUT VOLTAGE (5.0 V/DIV)


VCC = +15 V VCC = +15 V
V O , OUTPUT VOLTAGE (5.0 V/DIV)

VEE = –15 V VEE = –15 V


AV = –1.0 AV = +1.0
RL = 2.0 kΩ RL = 2.0 kΩ
CL = 100 pF CL = 100 pF
TA = 25°C TA = 25°C

t, TIME (2.0 µs/DIV) t, TIME (2.0 µs/DIV)

Figure 33. Low Frequency Noise Voltage


Figure 32. Noninverting Amplifier Overshoot versus Time
e n , INPUT NOISE VOLTAGE (100 nV/DIV)
V O , OUTPUT VOLTAGE (5.0 V/DIV)

VCC = +15 V VCC = +15 V


VEE = –15 V VEE = –15 V
RL = 2.0 kΩ BW = 0.1 Hz to 10 Hz
CL = 100 pF TA = 25°C
AV = +1.0
TA = 25°C

t, TIME (200 µs/DIV) t, TIME (1.0 sec/DIV)

8 MOTOROLA ANALOG IC DEVICE DATA


MC33078 MC33079

Figure 34. Voltage Noise Test Circuit


(0.1 Hz to 10 Hzp–p)

0.1 µF

100 kΩ
10 Ω

2.0 kΩ
D.U.T. + 22 µF
1/2 4.3 kΩ
+ 4.7 µF MC33078 Scope
– ×1
Rin = 1.0 MΩ
100 kΩ
Voltage Gain = 50,000 2.2 µF
24.3 kΩ 110 kΩ
0.1 µF
www.DataSheet4U.com

Note: All capacitors are non–polarized.

MOTOROLA ANALOG IC DEVICE DATA 9


MC33078 MC33079

OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K

8 5

NOTES:
–B– 1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
1 4 2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
F
MILLIMETERS INCHES
NOTE 2 –A– DIM MIN MAX MIN MAX
L A 9.40 10.16 0.370 0.400
B 6.10 6.60 0.240 0.260
C 3.94 4.45 0.155 0.175
www.DataSheet4U.com D 0.38 0.51 0.015 0.020
C F 1.02 1.78 0.040 0.070
G 2.54 BSC 0.100 BSC
H 0.76 1.27 0.030 0.050
–T– J J 0.20 0.30 0.008 0.012
N K 2.92 3.43 0.115 0.135
SEATING
PLANE L 7.62 BSC 0.300 BSC
M M ––– 10_ ––– 10_
D K N 0.76 1.01 0.030 0.040
H G
0.13 (0.005) M T A M B M

D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R

NOTES:
A D 1. DIMENSIONING AND TOLERANCING PER ASME
C
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
8 5 3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
E H 0.25 M B M
5. DIMENSION B DOES NOT INCLUDE MOLD
1 PROTRUSION. ALLOWABLE DAMBAR
4 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
h X 45 _
q MILLIMETERS
B e DIM MIN MAX
A 1.35 1.75
A A1 0.10 0.25
C B 0.35 0.49
SEATING C 0.18 0.25
PLANE D 4.80 5.00
L E 3.80 4.00
0.10 e 1.27 BSC
H 5.80 6.20
A1 B h 0.25 0.50
L 0.40 1.25
0.25 M C B S A S
q 0_ 7_

10 MOTOROLA ANALOG IC DEVICE DATA


MC33078 MC33079

OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
14 8 MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
B FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
1 7 FLASH.
4. ROUNDED CORNERS OPTIONAL.
INCHES MILLIMETERS
A DIM MIN MAX MIN MAX
A 0.715 0.770 18.16 19.56
F L B 0.240 0.260 6.10 6.60
C 0.145 0.185 3.69 4.69
D 0.015 0.021 0.38 0.53
F 0.040 0.070 1.02 1.78
www.DataSheet4U.com C G 0.100 BSC 2.54 BSC
H 0.052 0.095 1.32 2.41
J J 0.008 0.015 0.20 0.38
N K 0.115 0.135 2.92 3.43
L 0.300 BSC 7.62 BSC
SEATING
PLANE K M 0_ 10_ 0_ 10_
H G D M N 0.015 0.039 0.39 1.01

D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
–A– Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
14 8 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
–B– P 7 PL 5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
1 7
0.25 (0.010) M B M PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
MILLIMETERS INCHES
G R X 45 _ F DIM MIN MAX MIN MAX
C A 8.55 8.75 0.337 0.344
B 3.80 4.00 0.150 0.157
C 1.35 1.75 0.054 0.068
D 0.35 0.49 0.014 0.019
–T– F 0.40 1.25 0.016 0.049
K M J G 1.27 BSC 0.050 BSC
SEATING D 14 PL
PLANE J 0.19 0.25 0.008 0.009
0.25 (0.010) M T B S A S K 0.10 0.25 0.004 0.009
M 0_ 7_ 0_ 7_
P 5.80 6.20 0.228 0.244
R 0.25 0.50 0.010 0.019

MOTOROLA ANALOG IC DEVICE DATA 11


MC33078 MC33079

www.DataSheet4U.com

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:


USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

12 ◊ MOTOROLA ANALOG IC DEVICE DATA


MC33078/D

*MC33078/D*

You might also like