3.
11 Hyperbolic functions
Definition (Hyperbolic functions)
                 ex − e−x
        sinh x =          (hyperbolic sine)
                     2
        domain : R range : R
               ex + e−x
       cosh x =          (hyperbolic cosine)
                   2
      domain : R range : [1, ∞)
                                               1
         sinh x
tanh x =        (hyperbolic tangent)
         cosh x
domain : R range : (−1, 1)
y = ±1 are horizontal asymptotes
of y = tanh x.
                  1                   1                  cosh x
     cschx =          ,   sechx =          ,   cothx =
               sinh x               cosh x               sinh x
                                                                  2
Theorem (Hyperbolic identities)
(1) sinh(−x) = − sinh x
(2) cosh(−x) = cosh x
(3) cosh2 x − sinh2 x = 1
(4) 1 − tanh2 x = sech2 x
(5) sinh(x + y) = sinh x cosh y + cosh x sinh y
(6) cosh(x + y) = cosh x cosh y + sinh x sinh y
Proof.
(1)                       e−x − ex     ex − e−x
              sinh(−x) =           =−             = − sinh x
                             2             2
(3)                                   2                2
                             e + e−x         ex − e−x
                            x            
             2        2
         cosh x − sinh x =              −
                                 2                2
                           1 2x                 1
                         = (e + 2 + e−2x ) − (e2x − 2 + e−2x )
                           4                    4
                         =1
(4)                         cosh2 x − sinh2 x = 1
                        cosh2 x    sinh2 x       1
                      ⇒      2  −          =
                        cosh x     cosh2 x    cosh2 x
                      ⇒ 1 − tanh2 x = sech2 x
                                                                 3
4
Theorem (Derivatives of hyperbolic functions)
           d                                        d
      (1)    (sinh x) = cosh x                 (2)    (cschx) = −cschx cothx
          dx                                       dx
           d                                        d
      (3)    (cosh x) = sinh x                 (4)    (sechx) = −sechx tanhx
          dx                                       dx
           d                                        d
      (5)    (tanh x) = sech2 x                (6)    (coth x) = −csch2 x
          dx                                       dx
Proof. (1)
                                    ex − e−x             ex + e−x
                                                
              d             d
                (sinh x) =                           =            = cosh x
             dx            dx           2                    2
(5)
                                      
        d             d       sinh x           cosh x · cosh x − sinh x · sinh x
          (tanh x) =                       =
       dx            dx       cosh x                       cosh2 x
                       cosh2 x − sinh2 x      1
                   =                     =         = sech2 x
                            cosh2 x        cosh2 x
                                                                                   5
Example
                         √
Differentiate y = cosh       x.
Solution.                                          √
                  d      √         √     d √   sinh x
                    (cosh x) = sinh x ·     x=    √
                 dx                     dx       2 x
                                                        6
Definition (Inverse hyperbolic functions)
                      y = sinh−1 x   ⇔      x = sinh y
                                                  y = sinh−1 x
                                            domain = R,      range = R
                y = cosh−1 x   ⇔     x = cosh y and y ≥ 0
                                              y = cosh−1 x
                                      domain = [1, ∞),       range = [0, ∞)
                                                                              7
                       y = tanh−1 x     ⇔     x = tanh y
                                                  y = tanh−1 x
                                            domain = (−1, 1),      range = R
                                            x = ±1 are vertical asymptote.
sinh and tanh are one-to-one functions and so they have inverse functions
denoted by sinh−1 and tanh−1 .
cosh is not one-to-one, but when restricted to the domain [0, ∞], it becomes
one-to-one. The inverse hyperbolic cosine function is defined as the inverse of
this restricted function.
                                                                                  8
Theorem
                      p
(1) sinh−1 x = ln(x +  x2 + 1), x ∈ R
                      p
(2) cosh−1 x = ln(x + x2 − 1), x ≥ 1
                         
        −1      1     1+x
(3) tanh x = ln             , −1 < x < 1
                2     1−x
                                                 ey − e−y
Proof. (1) Let y = sinh−1 x. Then x = sinh y =            . So
                                                     2
                             ey − 2x − e−y = 0
                          ⇔ e2y − 2x · ey − 1 = 0
                          ⇔ (ey )2 − 2x(ey ) − 1 = 0
Solving by the quadratic formula, we get
                                √
                           2x ± 4x2 + 4       p
                    ey =                 = x ± x2 + 1
                                 2
                           √
Note that ey > 0, but x − x2 + 1 < 0. Thus the minus sign is inadmissible
and we have                            p
                              ey = x + x2 + 1
Therefore                                  p       
                        y = ln(ey ) = ln x + x2 + 1
                                                                            9
Theorem (Derivatives of inverse hyperbolic functions)
     d                  1                        d                   1
(1)    (sinh−1 x) = √        , x∈R        (2)      (csch−1 x) = − √         , x ̸= 0
    dx                1 + x2                    dx               |x| x2 + 1
     d                  1                      d                   1
(3)    (cosh−1 x) = √        , x>1        (4)    (sech−1 x) = − √        , 0<x<1
    dx                x2 − 1                  dx               x 1 − x2
     d                 1                       d                 1
(5)    (tanh−1 x) =        , |x| < 1      (6)    (coth−1 x) =        , |x| > 1
    dx              1 − x2                    dx              1 − x2
Proof.
(1)
(i) Let y = sinh−1 x (x ∈ R). Then x = sinh y. Differentiating x = sinh y
implicitly with respect to x, we get
                                       dy
                               cosh y ·    =1
                                       dx
Since cosh2 y − sinh2 y = 1 and cosh y ≥ 0,
                                     q
                            cosh y = 1 + sinh2 y
So
                  dy     1           1              1
                     =        = p             = √
                  dx   cosh y     1 + sinh2 y     1 + x2
                                                                                       10
(ii)
        d              d        p       
          sinh−1 x =
                  
                         ln x + x2 + 1
       dx             dx
                           1       d      p       
                    =     √            x + x2 + 1
                      x + x + 1 dx
                             2
                                                
                           1               x
                    =     √         1+ √
                      x + x2 + 1          x2 + 1
                           √
                               2
                             x +1+x                1
                    =      √       √        = √
                       x + x2 + 1 x2 + 1          x2 + 1
                                                           11
Example
        d
Find      [tanh−1 (sin x)].
       dx
Solution.
                    d                         1       d
                       tanh−1 (sin x) =
                                     
                                                          (sin x)
                   dx                    1 − (sin x)2 dx
                                             1
                                       =            cos x
                                         1 − sin2 x
                                         cos x
                                       =         = sec x
                                         cos2 x
                                                                    12