MATH 206   JAMES STEWART
CALCULUS
           METRIC VERSION, 8 E
           Early Transcendentals
SECTION 3.11
HYPERBOLIC FUNCTIONS
 Examples: 1 – 5
 Exercises:10, 12, 16, 32, 34, 37, 40
 Figures: 1, 2, 3, 8, 9 and 10.
Introduction
•   Certain combinations of the exponential functions ex and
    e–x   arise   so   frequently   in    mathematics      and   its
    applications that they deserve to be given special names.
•   In many ways they are analogous to the trigonometric
    functions, and they have the same relationship to the
    hyperbola that the trigonometric functions have to the
    circle. For this reason they are collectively called
    hyperbolic         functions    and     individually     called
    hyperbolic sine, hyperbolic cosine, and so on.
                                                                       P3
Definition of the Hyperbolic Functions
          e x  e x                   1
 sinh x                  csc h x 
              2                     sinh x
          e x  e x                  1
 cosh x                  sec h x 
              2                     cosh x
          sinh x                   cosh x
 tanh x                  coth x 
          cosh x                   sinh x
                                             P4
Figures: 1, 2, 3, 8, 9 and 10.
                                 P5
SUMMARY:HYPERBOLIC FUNCTIONS
                               P6
Hyperbolic Identities
The hyperbolic functions satisfy a number of
identities that most are similar to well-known
trigonometric identities.
sinh(  x )   sinh x
cosh(  x )  cosh x
cosh 2 x  sinh 2 x  1
1  tanh 2 x  sech 2 x
sinh( x  y )  sinh x cosh y  cosh x sinh y
cosh( x  y )  cosh x cosh y  sinh x sinh y
                                                 P7
Example 1
•      Prove that
•       (a) cosh2x – sinh2x = 1
•      (b) 1 – tanh2x = sech2x
•      Solution (a)
                                           2            2
                       e e  e e 
                                  x   x       x   x
    cosh x  sinh x  
         2            2
                                                 
                            2               2    
                     e 2 x  2  e 2 x e 2 x  2  e 2 x
                                      
                             4                   4
                     4
                   1
                                                             P8
                     4
Example 1(b)
 Solution (b)
                                 2
                             sinh x
           1  tanh x  1 
                   2
                                 2
                            cosh x
                       cosh 2 x  sinh 2 x
                     
                              cosh 2 x
                            1
                     
                       cosh 2 x
                      sech 2 x
                                             P9
 Derivatives of Hyperbolic Functions
 •   The derivatives of the hyperbolic functions are easily
     computed.
         For example,
d             d  e x  e x              e x  e x
   (sinh x )                                       cosh x
dx            dx  2                          2
d             d e e        x      x
                                          e e
                                              x      x
   (cosh x )                                           sinh x
dx            dx  2                        2
                                                                     P10
       Derivatives of Hyperbolic Functions
d                           d
   (sinh x )  cosh x          (csc h x )   csc h x coth x
dx                          dx
d                          d
   (cosh x )  sinh x         (sec h x )   sec h x tanh x
dx                         dx
d                          d
   (tanh x )  sec h 2 x      (coth x )   csc h 2 x
dx                         dx                                  P11
        Recall: (Chain Rule)      d
                                     f ( g (x )  f ( g (x )) g (x )
    •
                                  dx
Example 2
Find
     d 
     dx 
          cosh         x 
•   Solution:
                               d                     d
                                  (cosh x )  sinh x      x
                               dx                    dx
                                                     1  12
                                             sinh x   x
                                                     2
                               d              sinh x
                                  (cosh x ) 
                               dx               2 x
                                                                           P12
Inverse Hyperbolic Functions
 y  sinh 1 x  sinh y  x
 y  cosh 1 x  cosh y  x and y  0
              1
 y  tanh x  tanh y  x
                    
 sinh 1 x  ln x  x 2  1                 x
 cosh   1
             x  ln  x    x   2
                                     1    x 1
         1
        1   1 x 
 tanh x  ln                              1 x 1
         2   1 x                                    P13
INVERSE HYPERBOLIC FUNCTIONS
                               P14
 Derivatives of Inverse Hyperbolic Functions
d       1      1       d        1             1
   (sinh x )              (csc h x )  
dx             1 x 2   dx                x     x 12
d
    cosh x  
         1      1      d        1
                           (sec h x ) 
                                           1
dx              x 1
                 2      dx              x 1 x 2
d       1       1      d       1       1
   (tanh x )              (coth x ) 
dx             1 x 2
                        dx             1 x 2
                                                        P15
Example 3
•
                  1
    Show that sinh x  ln x  x 1
                               2
                                                
                 Let y  sinh 1 x , then x  sinh y .Thus
•   Solution         e y e y
                 x 
                         2
                 2xe y  e 2 y  1
                 e 2 y  2xe y  1  0
                 e     y 2
                                        
                                2x e y  1  0
                 solve the above equation using quadratic formula for e y
                 here, a  1, b  2x , c  1
                           b  b 2  4ac 2x  4x 2  4
                 e   y
                                        
                                2a             2
                 e y  x  x 2  1,
                 e y  x  x 2 1                    x - x 2  1 <0 but e y  0
                               
                 y  ln x  x 2  1                                              P16
Example 4
• Prove that
             d
                 sinh 1
                          x  
                                 l
             dx                 1 x 2
•   Solution
               Let y  sinh 1 x
               x  sinh  y 
               differentiating implicitly with respect to x , we get
                              dy
               1  cosh  y 
                              dx
               dy         1
                   
               dx cosh  y 
               dy       1
                  
               dx   1 sinh 2 y
               dy    1
                  
               dx   1 x 2                                             P17
     Example 5:
            d
     • Find     tanh 1  sin x  
            dx
     •   Solution
d                              1       d
    tanh (sin x )  
          1
                                         (sin x )
dx                       1  (sin x ) dx
                                     2
                                            1
                                                 cos x
                                       1  sin x
                                              2
                                        cos x
                                          2
                                                 sec x
                                       cos x
                                                          P17
  Exercise 10:
      Prove the identity cosh x  sinh x  e
                                             x
  •
  •   Solution
                  e x  e x e x  e x
cosh x  sinh x             
                       2            2
                  e x  e x  e x  e x
                
                             2
                  2 e x
               
                     2
                e x
                                                  P18
     Exercise 12:
     •    Prove the identity cosh  x  y   cosh x cosh y  sinh x sinh y
     •    Solution
cosh x cosh y  sinh x sinh y
  e x  e x e y  e  y e x  e x e y  e  y
                                          
       2              2              2            2
  e x e y  e x e  y  e x e y  e x e  y e x e y  e x e  y  e x e y  e x e  y
                                             
                       4                                           4
     2e             
                          2e            
            x y                  x y
 
                         4
     e   e                      
          x y              x y
 
          2
  cosh( x  y )
                                                                                            P19
Exercise 16:
    Prove the identity cosh 2x  cosh x  sinh x
                                     2        2
•
•   Solution                             x
                                              
                                                2
                                                              x
                                                                   
                                                                     2
                                  e x
                                       e             e x
                                                            e
          cosh 2 x  sinh 2 x                                 
                                     2                   2      
                                2x              1       2 x     2x          1      2 x   
                                e     2 e x
                                                  x
                                                     e           e   2e x
                                                                                 x
                                                                                    e        
                                             e                               e
                                                                                           
                                             4                             4               
                                                                                           
                                 e 2 x  2  e 2 x   e 2 x  2  e 2 x 
                                                                       
                                         4                    4          
                                e 2 x  2  e 2 x  e 2 x  2  e 2 x 
                                                                       
                                                   4                    
                                 2e 2 x  2e 2 x 
                                                 
                                        4         
                                 e 2 x  e 2 x 
                                               
                                       2        
                                                                                                  P21
                               cosh 2x
Recall:  Power Rule 
d                                n 1 d
   f  x    n f  x           f x 
               n
dx                                    dx
Exercise 32
•   Find the derivative of   y  sin 2 
•   Solution
                  y  sin 2 
                  dy    d
                             sin   2
                  dx dx
                                    d
                      2  sin    sin  
                                   dx
                      2sin  cos
                                                  P22
Exercise 34:
•   Find the derivative of h  x   ln  cosh x 
•   Solution
         h  x   ln  cosh x 
                      1    d
       h x  
           '
                               cosh x 
                    cosh x dx
                      1
                         sinh x
                   cosh x
                   sinh x
                 
                   cosh x
      h '  x   tanh x
                                                     P22
Recall:
        d
        dx
           ef      (x )
                            e   f (x )   d
                                           dx
                                              f (x )
Exercise 37:
•   Find the derivative of     y  e cosh(3x )
•   Solution
                     y  e cosh(3x )
                    dy
                       
                    dx dx
                                  
                          d cosh(3x )
                               e              
                           cosh(3x ) d
                       e                cosh(3x ) 
                                     dx
                                               d
                        e cosh(3x ) sinh(3x )  3x 
                                              dx
                            3e cosh(3x ) sinh(3x )
                                                        P24
Exercise 40
   •   Find the derivative of   y  sinh  cosh x 
   •   Solution
             y  sinh  cosh x 
          dy d
               sinh(cosh x ) 
          dx dx
                            d
             cosh(cosh x )  cosh x 
                           dx
             cosh(cosh x )sinh x
                                                      P25