8-Lab Manual
8-Lab Manual
EXPERIMENT NO. 1
AIM:
Simulate the frequency and transient response of a first-order RC circuit.
THEORY:
  The RC circuit shown in Fig. 1 is a low pass filter having a 3-dB cut-off frequency, f c
where 𝑓 =
A capacitor can store an electrical charge and energy. The voltage across the capacitor is related to the
charge by the equation V=Q/C for steady-state values, or expressed as an instantaneous value dv=dq/C
We will study the transient response of the RC circuit, which is the response to a sudden change in
voltage.
In this experiment, we apply a pulse waveform to the RC circuit to analyze the transient response of the circuit.
The pulse-width relative to a circuit’s time constant determines how it is affected by an RC circuit.
Time Constant (τ): A measure of time required for certain changes in voltages and currents in RC and
RL circuits. Generally, when the elapsed time exceeds five-time constants (5τ) after switching has
occurred, the currents and voltages have reached their final value, which is also called a steady-state
response.
The time constant of an RC circuit is the product of equivalent capacitance and the Thévenin resistance
as viewed from the terminals of the equivalent capacitor.
Analogue Electronics Lab                                                                       15B17EC471
τ = RC (1)
A Pulse is a voltage or current that changes from one level to the other and back again. If a waveform’s
high time equals its low time, it is called a square wave. The length of each cycle of a pulse train is
termed it's period (T).
The pulse width (tp) of an ideal square wave is equal to half the period. The relation between pulse
width and frequency is then given by,
𝑓= (2)
From Kirchoff’s laws, it can be shown that the charging voltage VC (t) across the capacitor is given by:
                                                 𝑉 (𝑡) = 𝑉 1 − 𝑒        , 𝑡≥0                          (3)
Where, V is the applied source voltage to the circuit for t ≥ 0. τ =RC is the time constant.
The response curve, showing capacitor charging for Series RC circuit to a step input with
time axis normalized by τ is shown in Fig. 3.
𝑉 (𝑡) = 𝑉 𝑒 , 𝑡 ≥ 0 (4)
Where Vois the initial voltage stored in the capacitor at t = 0, and τ=RC is time constant. The response
curve is a decaying exponential as shown in Fig. 4.
PROCEDURE:
Frequency response
Transient Response
 1. Set up the circuit shown in Fig. 5 with the component values R = 1 kΩ and C =1 µF.
 2. Use a pulse voltage signal and apply it as the input voltage to the circuit as shown in Fig. 5.
 3. Observe the input square wave on channel 1 and output, across the capacitor, on channel 2 of the
    CRO. Set the volt/div same for both the channels.
 4. Observe the response of the circuit for the following three cases and record the results.
    a) tp>> 5τ: Set the frequency of the function generator output such that the capacitor has enough
        time to fully charge and discharge during each cycle of the square wave. So Let t p = 15τ and
        accordingly set the function generator frequency. Determine the time constant from the
        waveforms obtained on the CRO. (At t= τ, Vc(t) =0.63Vo )
    b) tp = 5τ: Set the frequency such that tp = 5τ. Since the pulse width is exactly 5τ, the capacitor
        should just be able to fully charge and discharge during each pulse cycle. From the figure
        determine τ.
    c) tp<< 5τ: In this case, the capacitor does not have time to charge significantly before it is switched to
         discharge and vice versa. Let tp = 0.5τ in this case and set the frequency accordingly.
  RESULT:
   Cur-off Frequency=
PRECAUTIONS:
  LEARNING OUTCOMES:
Analogue Electronics Lab                                                                  15B17EC471
                                   EXPERIMENT NO. 2
  AIM:
  Implement a discrete BJT circuit on breadboard to check the dependence of β dc on the collector bias
  current
APPARATUS REQUIRED:
          S.No                 Apparatus                         Quantity
            1    Multimeter                                            2
            2    DC Regulated Power Supply                             1
            3    Bread Board                                           1
COMPONENT REQUIRED:
THEORY:
XMM1
XMM2
                                                                             VCC
                                                                             10 V
                                                    50%        Q1
                                VBB     Potentiometer
                                1V       Key = A               BC547BP
                                         100kΩ
350
300
250
200
                   β
                       150
100
50
                         0
                             0         10         20          30             40   50   60
                                                           Ic (mA)
  In the above graph, we can see that with increasing collector current βdc is becoming saturated. Thus,
  to operate at the maximum value of βdc (i.e. βdc = 330) at VCE =10V BJT must be biased at IC=9.9
  mA. Since increasing the bias current of the transistor increases power dissipation, it is clear from the
  graph that the choice of collector current IC is a trade-off between current gain βdc and power
  dissipation.
PROCEDURE:
     1. Complete the circuit as shown in figure.
     2. Vary the resistance variable to change the IB value and note corresponding IC through the
         transistor.
OBSERVATION TABLE:
RESULT:
PRECAUTIONS:
LEARNING OUTCOMES:
Analogue Electronics Lab                                                            15B17EC471
                                  EXPERIMENT NO. 3
AIM:
Implement and compare BJT based biasing techniques such as voltage divider, collector to base bias
and fixed bias for DC “Q- point” stability on breadboard.
APPARATUS REQUIRED:
   S.No     Apparatus                     Specifications           Quantity
       1    DC Regulated Power Supply                                    1
       2    Bread Board                                                  1
       3    Multimeter                                                   1
  COMPONENTS REQUIRED:
    S.No         Apparatus              Specifications              Quantity
        1   Resistor             1K                                       2
        2   Resistor             470k,225k,11k,100Ω                       1
        3   Transistor           SL100                                    3
  THEORY:
  CASE (A): Base Biasing (Fixed Biasing)
CIRCUIT DIAGRAM:
Given
  KΩ
Analogue Electronics Lab                                                                15B17EC471
  Now, we have to calculate the output voltage (VCE) and other current and voltages across
  resistors and then compare the variation of the values with other biasing techniques.
CIRCUIT DIAGRAM:
Given
KΩ
  Now, we have to calculate the output voltage (VCE) and other current and voltages across
  resistors and then compare the variation of the values with other biasing techniques.
CIRCUIT DIAGRAM:
Given
=4mA
In this case, first, we have to find out the values of the resistors R 1 and R2.
PROCEDURE:
/ (RE + re)
can write
Av = RC/(RE) ---(Equation-1)
=> RC = 10 RE
Let
RE = 100 Ω
=> RC = 1 KΩ
=>ICmax = 10.91 mA
= 4V
= 0.4V
Potential difference between the base and the ground = (VBE + VRE)
                                                           = (0.6 + 0.4)V = 1V
Analogue Electronics Lab                                                                     15B17EC471
R2) * VCC = 1V
=>R1=11*R2 ---(Equation-2)
=> Zi = 150*100 Ω
=> Zi = 15 KΩ
  Since IB is assumed to be negligible, so most of the part of the current, passing through the resistor
  R1, flows through R2.
R2 = 1 KΩ
=> R1 = 11 KΩ
KΩ
  R2 = 1 KΩ
  Now, we have to calculate the output voltage (VCE) and other current and voltages across
  resistors and then compare the variation of the values with other biasing techniques.
OBSERVATION TABLE:
RESULT:
PRECAUTIONS:
  LEARNING OUTCOMES:
Analogue Electronics Lab                                                                     15B17EC471
                                     EXPERIMENT NO. 4
AIM:
Implement the single-stage CE amplifier circuit on breadboard to determine the instantaneous node
voltages and branch currents for triangular input Vi = 1.6V (p-p) using a discrete transistor. Also,
determine the maximum amplitude of Vi whichis allowed to be used in the amplifier.
APPARATUS REQUIRED:
           S.No                Apparatus                      Quantity
            1     CRO                                             1
            2     DC Regulated PowerSupply                        1
            3     Bread Board                                     1
            4     Multimeter                                      1
            5     Function Generator                              1
COMPONENT REQUIRED:
THEORY:
All types of transistor amplifiers operate using AC signal input which alternates between a positive and
a negative value. Biasing is very important in amplifier design as it establishes the operating point of
the transistor amplifier ready to receive signals, thereby reducing any distortion of the output signal.
An NPN or PNP transistor works as an amplifier only if it is in the active mode of operation. In cut-off
and saturation mode, it works as a switch. So if we apply small voltage signals at the input then we get
an amplified version at the output of BJT when it is in the active region. For the computation of
amplification, we divide the analysis of the circuit in two parts dc analysis. The total output is the sum
of the two responses individually. The amplification process is used to amplify the low-quality signal
like the voice signal at the receiver side to amplify. Voltage Gain is the ratio of the amplitudes of output
to that of the input voltage signal represented by A V.
                                                          𝑣
                                                  𝐴 =
                                                          𝑣
Analogue Electronics Lab                                                                          15B17EC471
𝑉 =𝑅 𝐼 +𝑉
Fig. 2 shows the input signal (a triangular wave) with 1.6 (p-p V) 1000Hz along with corresponding
output signal. From the Fig. 2, it is clear that output waveform is clipped from the top. There can be
two possibility of the clipped output. First, the Q-point is not in the mid of the active region. Second,
the input signal does not satisfy the small signal characteristics for BJT.
PROCEDURE:
Now vary (decrease) the amplitude of triangular input signal to get the undistorted output signal (shown
in Fig. 3) and hence determine the maximum amplitude of V i which is allowed to be used in the given
amplifier circuit.
RESULT:
PRECAUTIONS:
LEARNING OUTCOMES:
Analogue Electronics Lab                                                                  15B17EC471
                                    EXPERIMENT NO. 5
AIM:
Implement a single stage BJT amplifier on breadboard for given specifications (f L=10 kHz).
APPARATUS REQUIRED:
COMPONENT REQUIRED:
2 Capacitor - -
3 Transistor BC547 2
  THEORY:
  Single Stage Amplifier means an amplifier which has only one amplifying stage or having only one
  transistor to amplify the signal. Potential divider bias circuit is based on CE configuration which has
  high voltage gain (Av), high current gain (Ai). This configuration is used for the audio frequency
  range.
Given:
                    =(2mA*600)+0.7
                   =1.2+0.7 = 1.9V
  Now 1.9 = 12 * (R2 / (R1 + R2)                      (eq. 2)
  The input impedance Zi is given as-
  Zi = β*RE
  Let β = 150 (typical)
  => Zi = 150*600 Ω
  => Zi =90 kΩ
  Since IB is assumed to be negligible, so most of the part of the current, passing through the resistor
  R1, flows through R2.
  => Zi is much higher than R2.
  In general, R2 < Zi / 10
  So, here R2 < 9 kΩ
  Let us take R2 =6.8 kΩ
  Putting this value in (eq. 2)
  => R1 = 36.14 kΩ
  So, we choose the values of R1 and R2 as
  R1 = 36.14 kΩ
  R2 =6.8 kΩ
  Step2: AC Analysis
  Voltage gain is defined as-
  Av = RC / (RE + re)
  re = Vth/Ic = 26mV/2mA = 13Ω
  Calculation of the value of Bypass capacitor Now we consider the frequency at which we require
  the desired gain 10.
  Let the frequency is 10 kHz.
  Xc=1 / 2 * π f C
  C= 1/ 2*3.14*10k*7Ω
  C=2.27 uF
  Calculation of Coupling Capacitor:
RESULT:
PRECAUTIONS:
  LEARNING OUTCOMES:
Analogue Electronics Lab                                                                 15B17EC471
                                    EXPERIMENT NO. 6
AIM:
Implement/simulate the frequency response of the Common source amplifier using N- channel
MOSFET. Determinea) Upper, lower 3-dB frequency b) Bandwidth
THEORY:
 For the CS amplifier shown in fig. 1 let us assume single-source resistance Rsig=10K, a load resistance
RL=50K and a bypass coupling capacitor of 10uF. The targeted specification for the CS Amplifier is a
mid-band gain Am=10 V/V and maximum power consumption of P=1.5 mW.
With a 3.3 V power supply; the drain current of MOSFET must be limited to
ID=P/VDD=1.5mW/3.3V=0.45mA to meet the power consumption specification.
RD is calculated based on the desired voltage gain:
|Av|=gm(RD||RL||ro)=10V/V==> RD~=4.2 kΩ
Where gm=3.0 mA/V and ro=22.2 kΩ. Hence the output bias voltage is
Vo= VDD-IDRD=1.39 V. An Rs= (Vo- VDD/3)/ID=630 Ω is needed to bias the MOSFET at VDS=VDD/3.
Finally, resistors RG1=2 MΩ and RG2=1.3 MΩ are chosen to set the gate bias voltage at
VG=IDRS+VOV+Vtn~=1.29 V. Using large values for these gate resistors ensures that both their power
consumptions and the loading effect on the input signal source are negligible.
PROCEDURE:
   1. Perform a bias-point simulation to verify that the MOSFET is properly biased in the saturation
      region and the dc voltage and currents are within the desired specifications.
   2. Apply a 1-V AC voltage at the input.
Analogue Electronics Lab                                                              15B17EC471
   3. Perform an AC analysis simulation and plot the output voltage magnitude (in dB) versus
      frequency.
   4. Measure the mid-band gain Am and the 3- dB frequencies fL and fH
OBSERVATION TABLE:
    a) Upper, lower 3-dB frequency
    b) Bandwidth:
RESULT:
PRECAUTIONS:
  LEARNING OUTCOMES:
Analogue Electronics Lab                                                                          15B17EC471
                                       EXPERIMENT NO. 7
AIM:
Design and implement a basic BJT current mirror on breadboard using a discrete transistor for
reference current of 1mA
APPARATUS REQUIRED:
COMPONENT REQUIRED:
  THEORY:
  Figure 1 shows the basic current mirror. It is consisting of two matched transistors with their base and
  emitter connected together. The transistor in the circuit is transformed into a diode by short-
  circuiting the collector and the base of Q1 & Q2.
  In the current mirror circuit, reference current to the mirror IREF is determined by a Resistor R
  which is connected to the positive power supply V CC. The current IREF is given by
                                                𝑉
                                                −𝑉
                                      𝐼     =                 (1)
                                                𝑅
The output current is taken from the collector of Q2. The transistor Q2 must be kept active all
the time by keeping its collector voltage higher than that of the base.
Consider the following assumptions for current mirror:
I REF  I C 1  I B 1  I B 2
           1 I B1  I B1  I B 2
          (  1  1) I B 1  I B 2 (If both the transisto r are matched then I B1  I B2 )
          (  1  1) I B 2  I B 2
          (  1 2 ) I B 2
              1  2
                    IC2
               2
          2
IC 2               I
         1  2 REF
If  1   2   then
           1
IC 2                   I REF                                                                 (2)
         1 2
                
If β is very high then the output mirror current will be equal to the input reference current
I O  I C 2  I REF . (3)
The circuit will operate as a constant current mirror as long as Q 2 remains in the active region, or
VCB  VBE .
    PROCEDURE:
    1)   Build the circuit shown in Fig. 1 using the transistor Q2N3904.
    2)   Set Vcc = 20V,
    3)   Calculate the value of R for given Io.
    4)   Use the DMM to measure the DC voltages across RL for at least 5 different values of
         RL.
OBSERVATION TABLE:
  Rref = ……
  Iref = …….
         S. No.                 RL                  IL
Analogue Electronics Lab   15B17EC471
RESULTS:
PRECAUTIONS:
  LEARNING OUTCOMES:
Analogue Electronics Lab                                                                            15B17EC471
                                       EXPERIMENT NO. 8
AIM:
Implement/simulate a Wilson current mirror of 1mA. and determine the output resistance and current
gain error
APPARATUS REQUIRED:
COMPONENT REQUIRED:
  THEORY:
  Fig. shows the Wilson current mirror. It is consisting of three matched transistors.
  In the current mirror circuit, reference current to the mirror IREF is determined by a Resistor
  RREF which is connected to the positive power supply V CC. The current IREF is given by
                                                      𝑉
                                                     −𝑉
                                            𝐼     =
                                                     𝑅
  The output current is taken from the collector of Q3.
  The following assumptions have been considered for current mirror:
      The three transistors are perfectly matched
Analogue Electronics Lab                                                                      15B17EC471
   Clearly the Wilson current mirror which uses an additional current amplifier at the output is much
   better that the simple current source.
We shall explain in brief one of the above points which are relevant to our experimental procedures.
  PROCEDURE:
   5) Build the circuit shown in fig. using the transistor Q2N3904.
   6) Set Vcc = 20V,
   7) Calculate the value of R for given Io.
   8) Use the DMM to measure the DC voltages across RL for at least 5 different values of
        RL.
OBSERVATION TABLE:
  Rref = ……
  Iref = …….
S. No. RL IL
RESULTS:
PRECAUTIONS:
  LEARNING OUTCOMES:
Analogue Electronics Lab                                                                       15B17EC471
                                     EXPERIMENT NO. 9
AIM:
Implement/simulate a single-stage differential amplifier and determine the following:
   a) Frequency response of differential gain Ad.
   b) Frequency response of common-mode gain ACM.
   c) Common Mode Rejection Ratio (CMRR).
APPARATUS REQUIRED:
COMPONENT REQUIRED:
  THEORY:
  UsingEquationof transistorQ9forthecircuitshowninfig.1
28.6(2Ic/β + IC ) =0.7 V
  We get the collector current through Q9 to be 0.5mA. Then we see that transistor Q 3 conduct
  .5mA and transistor Q6 conducts 2mA. The current shows transistor Q3 feeds the differential pair
  (Q1, Q2) with .5 mA. Thus each of Q1 and Q2 will be biased at .25mA. The collector of Q1 and Q2 will
  be at (+15- 0.25*20) =+10V.
Analogue Electronics Lab                                                                        15B17EC471
Fig. 1
Fig.2
  Proceeding to the second differential stage formed by Q4 and Q5, we find the voltage at their emitter
  to be (+10-0.7)=9.3V. This differential pair is biased by the current source transistor Q6 which
  supply a current of 2 mA thus Q4 and Q5 will each be biased at 1mA. We can now calculate the
  voltage at collector of Q5 as (+15-1*3) = +12V. This will cause the voltage at the emitter of PNP
  transistor Q7 to be (+15-12.7)/2.3=1mA.
Analogue Electronics Lab                                                                        15B17EC471
  The collector current of Q7, 1mA cause the voltage at the collector to be (-15+1*15.7)=+0.7
  V. The emitter of Q8 will be 0.7 V below the base thus output terminal will be at 0 Volt.
  Finally the emitter current of Q8 can be calculated to be[0-(-15)]/3=5mA.
  The upper limit on the input common mode voltage is determined by the voltage at which Q1
  and Q2 leave the active mode and enter saturation. These will happen if the input voltage exceeds the
  collector voltage which is +10 V by about .4V thus the upper limit of the common mode is +10.4 V.
  The lower limit of the input common mode range is determined by the voltage at which Q3
  leaves the active mode and thus ceases to act as a constant current source. This will happen if the
  collector voltage of Q3 goes below the voltage at its base which is -14.3 volt by more than .4 V.
  It follows that the input common mode voltage should not go lower than (-14.7+.7)=-14V.
  Figures 3, 4 and 5 shows the large-signal differential transfer characteristics, frequency response
  and common mode transfer characteristics respectively for multistage differentialamplifier.
                                                 Fig. 3
Analogue Electronics Lab                                                                   15B17EC471
Fig. 4
Fig. 5
PROCEDURE:
Part A
   1. Perform a DC analysis with the differential voltage input Vd (shown in fig. 2
            swept over the range –VEE to +VCC.
   2. Plot      the corresponding          output      voltage     Vout. The slope    of    the
       characteristics corresponds to the differentials gain of the amplifier.
Analogue Electronics Lab                                                                      15B17EC471
Part B
      1)   Set the differential input voltage Vd to be a 1-V ac signal (with 0-V dc level).
      2)   Perform AC analysissimulation.
      3)   Plot the output voltage magnitude |Vout| versus frequency.
      4)   Calculate fH.
Part C
  Perform a DC analysis simulation with the input common mode voltage swept over the range –
  VEE to VCC while maintaining Vd constant at –Vos in order to cancel the output offset voltage.
     1) Draw the graph between Vout and VCM.
     2) Find the input common mode range.
OBSERVATION TABLE:
fH=
RESULT:
PRECAUTIONS:
LEARNING OUTCOMES:
  ECE, JIIT                                                                                         31
Analogue Electronics Lab                                                                    15B17EC471
                                          EXPERIMENT NO. 10
AIM: Implement and validate applicability of Op-Amp on breadboard using 741 IC in different
applications (Integrator and Differentiator)
THEORY:
Integrator: A circuit in which the output voltage is the integration of the input voltage is called an
integrator.
In the practical integrator to reduce the error voltage at the output, a resistor R F is connected
across the feedback capacitor CF. Thus, RF limits the low-frequency gain and hence minimizes the
variations in the output voltage
  ECE, JIIT                                                                                       32
Analogue Electronics Lab                                                                   15B17EC471
The frequency response of the integrator is shown in the fig. 2.1. f b is the frequency at which the
gain is 0 dB and is given by
                                 fb = 1/2π R1Cf.
In this fig. there is some relative operating frequency, and for frequencies from f to
fa the gain RF/R1 is constant. However, after fa the gain decreases at a rate of 20 dB/decade.
In other words, between fa and fb the circuit of fig. 2.1 acts as an integrator. The gain-
limiting frequency fa is given by
fa = 1/2π RfCf.
Normally fa<fb. From the above equation, we can calculate Rf by assuming fa & Cf.
This is very important frequency. It tells us where the useful integration range starts.
If fin < fa - circuit acts like a simple inverting amplifier and no integration results,
  ECE, JIIT                                                                                         33
Analogue Electronics Lab                                                               15B17EC471
INTEGRATOR:
EXPECTED WAVEFORM
PROCEDURE:
 1. Connect the components/equipment as shown in the circuit diagram.
 2. Switch ON the power supply.
 3. Apply sine wave at the input terminals of the circuit using function Generator.
 4. Connect channel-1 of CRO at the input terminals and channel-2 at the
    output terminals.
 5. Observe the output of the circuit on the CRO which is a cosine wave (90o phase
    shifted from the sine wave input) and note down the position, the amplitude and
    the time period of Vin & Vo.
 6. Now apply the square wave as input signal.
 7. Observe the output of the circuit on the CRO which is a triangular wave and
    note down the position, the amplitude and the time period of Vin & Vo.
 8. Plot the output voltages corresponding to sine and square                         wave   inputs.
    ECE, JIIT                                                                                34
Analogue Electronics Lab                                                             15B17EC471
DIFFERENTIATOR:
Both the stability and the high-frequency noise problems can be corrected by the
addition of two components: R1 and Cf, as shown in the circuit diagram. This circuit is a
practical differentiator.
The input signal will be differentiated properly if the time period T of the input
signal is larger than or equal to RfC1. That is, T>= RfC1
Differentiator can be designed by implementing the following steps.
  ECE, JIIT                                                                                  35
Analogue Electronics Lab                                                       15B17EC471
PROCEDURE:
EXPECTED WAVEFORM
RESULT:
LEARNING OUTCOME
ECE, JIIT 36