0% found this document useful (0 votes)
22 views45 pages

Applied Mathematics: Partial Differential Equations

This document discusses Partial Differential Equations (PDEs), covering basic concepts, modeling of vibrating strings, and methods such as separation of variables and Fourier series. It includes examples of various equations like the wave equation, heat equation, and Laplace equation, along with boundary and initial conditions. The document also elaborates on eigenfunctions, eigenvalues, and the implications of these solutions in physical contexts.

Uploaded by

Kenny Gava
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
22 views45 pages

Applied Mathematics: Partial Differential Equations

This document discusses Partial Differential Equations (PDEs), covering basic concepts, modeling of vibrating strings, and methods such as separation of variables and Fourier series. It includes examples of various equations like the wave equation, heat equation, and Laplace equation, along with boundary and initial conditions. The document also elaborates on eigenfunctions, eigenvalues, and the implications of these solutions in physical contexts.

Uploaded by

Kenny Gava
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 45

APPLIED MATHEMATICS

Part 5:

Partial Differential Equations

Wu-ting Tsai
Contents

11 Partial Differential Equations 2


11.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . 3
11.2 Modeling: Vibrating String. Wave Equation . . . . . . . . . 5
11.3 Separation of Variables. Use of Fourier Series . . . . . . . . 7
11.4 Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . 15
11.5 Laplace Equation in a Rectangular Domain . . . . . . . . . 23
11.6 Two-Dimensional Wave Equation. Use of Double Fourier Series 27
11.7 Heat Equation: Use of Fourier Integral . . . . . . . . . . . . 34
11.8 Heat Equation: Use of Fourier Transform . . . . . . . . . . 38
11.9 Heat Equation. Use of Fourier Cosine and Sine Transforms . 41
11.10 Wave Equation. Use of Fourier Transform . . . . . . . . . . 43

1
Chapter 11

Partial Differential Equations

2
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.1 Basic Concepts

Partial differential equation ⇐⇒ Ordinary differential equation









order of differential equation


linear ⇐⇒ nonlinear


 homogeneous ⇐⇒ nonromogeneous

For examples:

∂ 2u 2
2∂ u
=c one-dimensional wave equation
∂t2 ∂x2
2
∂u 2∂ u
=c one-dimensional heat equation
∂t ∂x2

∂ 2u ∂ 2u
+ =0 two-dimensional Laplace equation
∂x2 ∂y 2

∂ 2u ∂ 2u
+ = f (x, y) two-dimensional Poisson’s equation
∂x2 ∂y 2

Note:
u(x, y) = x2 − y 2, ex cos y and ln(x2 + y) all satisfy the two-dimensional
Laplace equation
⇒ “boundary condition” makes the solution unique
(or “initial condition” when t is one of the variable).

3
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Theorem : Superposition of solutions


If u1 and u2 are any solutions of a linear and homogeneous partial differ-
ential equation in R
⇒ u = c1u1 + c2u2, where c1 and c2 are constant, is also solution of the
equation in R ✷

4
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.2 Modeling: Vibrating String. Wave Equation

Consider a vibrating, elastic string with length L and deformation u(x, t).

Assumptions:
1. homogeneous string (i.e. constant density)
2. perfectly elastic and cannot sustain bending
3. neglect gravitation force (i.e. tension  gravitational force)
4. small deformation (i.e. du/dx is small)
5. u is in a plane only

5
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Since du/dx (slope) is small


⇒ no horizontal motion
⇒ constant horizontal tension

T1 cos α = T2 cos β = T

in vertical direction:
 
2
 ∂ u
 T2 sin β − T1 sin α = ρ∆x 2
÷T
∂t

T2 sin β T1 sin α ρ∆x ∂ 2u


⇒ − = · 2
T2 cos β T1 cos α T ∂t

ρ∆x ∂ 2u
⇒ tan β − tan α = · 2
T ∂t
    
∂u  ∂u
 + ∆x −    ρ ∂ 2u
⇒ ∂x x ∂x x = · 2
∆x T ∂t
∆x → 0

∂ 2u 1 ∂ 2u T
⇒ = where c2 ≡ ✷
∂x2 c2 ∂t2 ρ

6
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.3 Separation of Variables. Use of Fourier Series

One-dimensional wave equation:

∂ 2u 2
2∂ u
=c ——— (1)
∂t2 ∂x2
Boundary conditions:

u(0, t) = 0 ——— (2)

u(L, t) = 0 ——— (3)

Initial conditions:

u(x, 0) = f (x) ——— (4)



∂u 
 = g(x) ——— (5)
∂t t=0

Method of separation of variables (product method):

u(x, t) = F (x)G(t)




 ∂ 2u d2 G



 = F 2 ≡ F G̈


 ∂t2 dt
⇒
 



 ∂ 2 u d2 F



 = G≡F G
∂x2 dx2

7
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

(1) ⇒ F G̈ = c2F G

G̈ F
⇒ 2G
= =k
c
   F
  
function of t function of x
where k is constant to be determined.






F − kF = 0 ——— (6)

⇒
 


 G̈ − c2kG = 0 ——— (7)

F (x)

F − kF = 0 F (0) = F (L) = 0

• If k = 0 ⇒ F (x) = ax + b


 F (0) = b = 0

 F (L) = aL = 0

⇒a=b=0

⇒ F (x) = 0 ⇒ u(x, t) = 0 ×

• If k = µ2 > 0 ⇒ F (x) = Aeµx + Be−µx




 F (0) = A + B = 0
 F (L) = AeµL + Be−µL = 0

⇒A=B=0

⇒ F (x) = 0 ⇒ u(x, t) = 0 ×

8
Applied Mathematics — Partial Differential Equation Wu-ting Tsai


• • k = −p2 < 0 ⇒ F (x) = A cos px + B sin px


 F (0) = A = 0

 F (L) = B sin pL = 0


⇒ pL = nπ ⇒p= , n = 1, 2, 3 . . .
L

⇒ F (x) ≡ Fn(x) = sin x, n = 1, 2, 3 . . .
L

nπ 2
2
and k = −p = −
L

G(t)
  
2 nπ 2
G̈ − c − G=0
L
cnπ
⇒ G̈ + λ2nG = 0, λn =
L
G(t) ≡ Gn(t) = Bn cos λnt + Bn∗ sin λn t


• • un(x, t) = Fn (x)Gn(t)

= (Bn cos λnt + Bn∗ sin λnt) sin x (n = 1, 2, 3 . . .)
L
So far, un(x, t) satisfies the differential equation (1), and the boundary con-
ditions (2) and (3).
un (x, t) is called eigenfunction or characteristic function.
λn is called eigenvalue or characteristic value.

9
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

A single solution un (x, t) does not satisfy initial condition.


Since the differential equation (1) is linear and homogeneous, we therefore
assume the solution of (1) is:


u(x, t) = un (x, t)
n=1


 nπ
= (Bn cos λnt + Bn∗ sin λnt) sin x
n=1 L

Initial conditions:






u(x, 0) = f (x) ——— (4)


∂u 


  = g(x) ——— (5)
∂t t=0
 nπ
(4) ⇒ u(x, 0) = Bn sin x = f (x) (Fourier sine series of f (x))
n=1 L

2 L nπx
⇒ Bn = f (x) sin dx n = 1, 2, 3 . . .
L 0 L

∂u  ∞
 ∗ nπx
(5) ⇒  = (B λ n cos λ t)
n t=0 sin
∂t t=0 n=1 n L

 nπx
= Bn∗ λn sin = g(x) (Fourier sine series of g(x))
n=1 L

2 L nπx
⇒ Bn∗ λn = g(x) sin dx
L 0 L

2 L nπx
⇒ Bn∗ = g(x) sin dx n = 1, 2, 3 . . . ✷
λn L 0 L

10
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Discussion of eigenfunctions and eigenvalues:

(1) The eigenfunction



un (x, t) = (Bn cos λnt + Bn∗ sin λnt) sin x
L
λn cn
represents a harmonic motion having frequency (cycles/unit time) = .
2π 2L
This motion is called the normal mode.

(2) The frequency (eigenvalue)


cn T
wn = , c2 =
2L ρ
where T = tension, ρ = density
⇒ increase tension or reduce density will increase the frequency.

11
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Discussion of the solution:




u(x, t) = un(x, t)
n=1

 nπ
= (Bn cos λnt + Bn∗ sin λnt) sin x
n=1 L
cnπ
λn =
L




2 L nπx


 Bn = f (x) sin dx, u(x, 0) = f (x)



 L 0 L

 




 ∗ 2 L nπx ∂u 

 Bn = g(x) sin dx,  = g(x)

λn L 0 L ∂t t=0

Consider the special case in which the string starts from rest, i.e. g(x) = 0,
and Bn∗ = 0, then

 cnπ nπ
u(x, t) = Bn cos t sin x
n=1 L L
∞  
1  nπ nπ
= Bn sin (x − ct) + sin (x + ct)
2 n=1 L L
1  ∞ nπ 1  ∞ nπ
= Bn sin (x − ct) + Bn sin (x + ct)
2 n=1

L
 
2 n=1

L
 
Fourier sine series of f ∗ (x−ct) Fourier sine series of f ∗ (x+ct)
1 ∗
= [f (x − ct) + f ∗(x + ct)]
2
where f ∗ (•) is an odd periodic function, and f (•) = f ∗ (•) for • ∈ [0, 2L].

12
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

1
Physical meaning of u(x, t) = [f ∗ (x − ct) + f ∗ (x + ct)] :
2

13
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Ex :

g(x) = 0





2k L




x, 0<x<

 L 2
f (x) = 
 



 2k L


 (L − x), <x<L
L 2
Bn∗ = 0

2 L nπx
Bn = f (x) sin dx
L 0 L
 
n+1

8k   (−1) (2n − 1)π (2n − 1)πc 
= 2  sin x · cos t
π n=1 (2n − 1)2 L L

14
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.4 Heat Equation

Consider the heat conduction along a heat-conducting homogeneous rod with


temperature distribution u(x, t).

Assumptions:
1. homogeneous rod with uniform cross section A and constant density ρ,
specific heat c, thermal conductivity κ
2. insulated laterally so heat flows only in x-direction only
3. temperature is constant at all points of a cross section
4. rate of heat conduction is proportional to −∂u/∂x

We are going to derive the differential equation governing the temperature


distribution u(x, t) along the rod by conservation of energy.

The amount of internal energy within ∆x segment is:


 x+∆x
Q(x, t) = x
σρAu(x̃, t)dx̃

where σ = specific heat (amount of energy required to raise the temperature


of a unit mass by one unit).

15
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

• Rate of change of internal energy within ∆x


∂Q  x+∆x ∂u
= = x σρA (x̃, t)dx̃
∂t ∂t
• Rate at which heat flows into ∆x
∂u
= −κA (x, t)
∂x
• Rate at which heat flows out of ∆x
∂u
= −κA (x + ∆x, t)
∂x

• • conservation of energy requires that
∂Q  x+∆x ∂u
= x σρA (x̃, t)dx̃
∂t ∂t
∂u
= σρA (ξ, t)∆x (x < ξ < x + ∆x) [by mean value theorem]
∂t
∂u ∂u
= −κA (x, t) + κA (x + ∆x, t)
∂x ∂x
 
∂u ∂u ∂u
⇒ σρA (ξ, t)∆x = κA  (x + ∆x, t) − (x, t)
∂t ∂x ∂x
 
∂u ∂u
∂u

κ ∂x (x + ∆x, t) − (x, t)
⇒ (ξ, t) − ∂x =0
∂t σρ ∆x

As ∆x → 0
2
∂u 2∂ u k
(x, t) − c (x, t) = 0 c2 =
∂t ∂x2 σρ

16
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Initial condition:

u(x, 0) = f (x) (0 ≤ x ≤ L)

Boundary condition:

u(0, t) = 0, u(L, t) = 0 (t ≥ 0)

Note:
For 3 − D heat equation (see §9.8):
 
2 2 2
∂u ∂ u ∂ u ∂ u
= c2 
 + + 
∂t ∂x2 ∂y 2 ∂z 2

17
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Fourier series solution of the heat equation:


2
∂u 2∂ u
−c = 0 for t ≥ 0, 0 ≤ x ≤ L ——— (1)
∂t ∂x2

u(0, t) = 0 for t ≥ 0, x = 0 

——— (2)
u(L, t) = 0 for t ≥ 0, x = L 

u(x, 0) = f (x) for t = 0, 0 ≤ x ≤ L ——— (3)

By method of separation of variables:

u(x, t) = F (x) · G(t)

(1) ⇒ F Ġ = c2F G
 2 p2 t





p2 ⇒ Ġ = c2p2G ⇒ G(t) = Cec ×






Ġ F 

⇒ = = 0 ⇒ Ġ = 0 ⇒ G(t) = C ×
c2G F 



 





 −p2




 F + p2F = 0 ——— (6)
⇒
 
 Ġ + c2p2G = 0 ——— (7)

18
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

F (x):

(6) ⇒ F (x) = A cos px + B sin px

(2) ⇒ F (0)G(t) = 0, F (L)G(t) = 0


Since G(t) = 0 ⇒ F (0) = F (L) = 0


• • A=0 B sin pL = 0
Since B = 0 ⇒ sin pL = 0, i.e. pL = nπ, n = 1, 2, 3 . . .


⇒ p= n = 1, 2, 3 . . .
L

nπx
Fn (x) = sin px = sin n = 1, 2, 3 . . .
L

19
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

G(t):
cnπ
(3) ⇒ Ġ + λ2nG = 0 λn =
L
2
⇒ Gn(t) = Bne−λn t n = 1, 2, 3 . . .


• • eigenf unction un(x, t) :
nπx −λ2nt
un (x, t) = Fn (x) · Gn(t) = Bn sin ·e
L
with corresponding eigenvalue λn :
cnπ
λn =
L

In order to satisfy initial conduction (3) at t = 0 :



 ∞
 nπx −λ2nt
u(x, t) = un (x, t) = Bn sin e
n=1 n=1 L

 nπx
⇒ u(x, 0) = f (x) = Bn sin (Fourier sine series of f (x))
n=1 L

2 L
⇒ Bn = f (x) sin nπxdx ✷
L 0

20
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Note:

 nπx −λ2n t
u(x, t) = Bn sin ·e
n=1 L
⇒ the temperature alway decays.

Ex :

21
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Physical meanings of the boundary conditions

u(0, t) = u(L, t) = constant


⇒ Temperatures at x = 0 and L remain constant, but heat can still transfer
across x = 0 and L

∂u ∂u
(0, t) = (L, t) = 0
∂x ∂x
⇒ No heat transfer across x = 0 and L, i.e. these two ends are insulated,
but the temperature at these two boundary may vary.

(See Page 654, Problem Set 11.5, Problem 13)

22
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.5 Laplace Equation in a Rectangular Domain

Consider the steady-state two-dimensional heat flow:


 
2 2
∂u ∂ u ∂ u
= c2 

2
+ 2  = 0 (••• steady state)
∂t ∂x ∂y

∂ 2u ∂ 2u
2
⇒∇ u= + =0 ← two-dimensional Laplace equation
∂x2 ∂y 2

• Boundary value problem (bvp) :

If the boundary conditions are given as








u given ⇒ Dirichlet problem











 ∂u



 given ⇒ Neumann problem
∂n












∂u




u given on some boundary , given on the rest boundary



∂n

 ⇒ mixed problem

23
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Ex :

Method of separation of variables :

u(x, y) = F (x)G(y)

d2 F d2 G
⇒ G+F 2 =0
dx2 dy

1 d2 F 1 d2 G
⇒− = ≡k
F dx2 G dy 2





d2 F


 + kF = 0 ——— (1)



 dx2
⇒




 d2 G



 − kG = 0 ——— (2)
dy 2

24
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

If k < 0 :
√ √
kx − kx
(1) ⇒ F (x) = Ae + Be

Boundary conditions: u(0, y) = 0 and u(a, y) = 0

⇒ F (0) = 0, F (a) = 0


 A +√ B = 0 √
⇒
 Ae ka + Be− ka = 0
√ √
ka − ka
⇒ A(e −e )=0


• • A = 0, B=0 ×

If k > 0 :
√ √
(1) ⇒ F (x) = A cos kx + B sin kx

Boundary conditions:

F (0) = 0 ⇒A=0
√ √ nπ
F (a) = 0 ⇒ F (a) = B sin ka = 0 ⇒ k=
a

nπ 2
⇒ kn =
a


and Fn (x) = sin x
a

25
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

d2 G
(2) ⇒ − kn G = 0
dy 2
√ √
kn y − kn y
⇒ G(y) = Gn(y) = Ane + Bn e

Boundary condition:
u(x, 0) = 0 ⇒ G(0) = 0

⇒ A n + Bn = 0
√ √
kn y − kn y

kn y

− kn y (e −e )
⇒ Gn (y) = An(e −e ) = 2An
2


• • Gn(y) = A∗n sinh kn y A∗n ≡ 2An


• • un (x, y) = Fn (x) · Gn(y)
nπx nπy
= A∗n sin sinh
a a

 ∞
 nπx nπy
⇒ u(x, y) = un (x, y) = A∗n sin sinh
n=1 n=1 a a
Since u(x, b) = f (x) :

 nπb nπx
⇒ u(x, b) = A∗n sinh sin = f (x)
n=1   a a
≡ bn
nπb 2  a nπx
⇒ bn = A∗n sinh = 0 f (x) sin dx
a a a
2  a nπx
• ∗
• • An = f (x) sin dx ✷
a sinh( nπb
a
) 0 a

26
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.6 Two-Dimensional Wave Equation. Use of Double Fourier


Series

Consider the motion of a stretched elastic membrane, such as a drumhead.

⇒ Two dimensional wave equation:

∂ 2u 2
2 ∂ u ∂ 2u T
= c ( 2 + 2 ), c2 =
∂t2 ∂x ∂y ρ

u(x, y, t) = vertical deformation


T = tension force per unit length
ρ = mass of the membrane per unit area

27
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Consider the problem of a vibrating rectangular membrane:


 
2 2 2
∂ u 2 ∂ u ∂ u
= c  + , 0 ≤ x ≤ a, 0 ≤ y ≤ b ——— (1)
∂t2 ∂x2 ∂y 2
Boundary conditions:

u(x, y, t) = 0 on the boundary for t ≥ 0 ——— (2)

Initial condition:






u(x, y, 0) = f (x, y) ——— (3)









∂u

 (x, y, 0) = g(x, y) ——— (4)
∂t

By method of separation of variables we first determine the solutions of (1)


that satisfy the boundary condition (2) :

u(x, y, t) = F (x, y) · G(t)

(1) ⇒ F G̈ = c2(Fxx G + Fyy G) ÷ (c2F G)

G̈ 1 2
⇒ = (Fxx + Fyy ) ≡ −ν (cannot be zero or posititice)
c2G F




 G̈ + λ2G = 0 (λ ≡ cν) ——— (6)
⇒
 
 Fxx + Fyy + ν 2F = 0 ——— (7)

28
Applied Mathematics — Partial Differential Equation Wu-ting Tsai





 G̈ + λ2G = 0 ——— (6)



 Fxx + Fyy + ν 2F = 0 ——— (7)

(7) is called two-dimensional Helmholtz equation, if ν = 0 it become Laplace


equation.

29
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

• Solution of Helmholtz equation (7) Fxx + Fyy + ν 2F = 0


Again, using method of separation of variables :

F (x, y) = H(x) Q(y)

d2 H d2 Q
(7) ⇒ 2
Q + H 2 + ν 2HQ = 0 ÷ (HQ)
dx dy

1 d2 H 1 d2 Q 2 2
⇒ = − ( + ν Q ) ≡ −k (must be negative)
H dx2 Q dy 2


 d2 H





 2
+ k 2H = 0


 dx
⇒
 


 d2 Q




 2
+ (ν 2 − k 2)Q = 0 (ν 2 − k 2 ≡ p2)
dy


 H(x) = A cos kx + B sin kx

⇒
  Q(y) = C cos py + D sin py

Since u(x, y, t) = 0 on x = 0, x = a, y = 0, y = b,






H(0) = 0 ⇒A=0





 mπ





H(a) = 0 ⇒ sin ka = 0 ⇒k= , m = 1, 2, 3 . . .
 a
⇒
 



Q(0) = 0 ⇒C=0



 nπ






Q(b) = 0 ⇒ sin pb = 0 ⇒p= , n = 1, 2, 3 . . .
 b

30
Applied Mathematics — Partial Differential Equation Wu-ting Tsai





mπx




H(x) = Hm (x) = sin
• a
• • 
 nπy



 Q(y) = Q (y) = sin
 n
b

⇒ F (x, y) = Fmn (x, y) = Hm(x) Qn (y)


mπx nπy
= sin sin (m, n = 1, 2, 3 . . .)
a b

• Solution of (6) G̈ + λ2G = 0

λ = cν p2 = ν 2 − k 2
√  !
! mπ nπ
⇒ λ = c ν = c p + k = c"(
2 2 2 )2 + ( )2
a b
!
m2 n2
!
!
⇒ λ = λmn "
= cπ 2 + 2
a b

(6) ⇒ G̈ + λ2mnG = 0

⇒ G(t) = Gmn(t) = Bmn cos λmnt + Bmn sin λmnt


• • umn (x, y, t) = Fmn (x, y) · Gmn(t)
∗ mπx nπy
= ( Bmn cos λmnt + Bmn sin λmn t ) · sin · sin
a b

umn (x, y, t) is the eigenfunction with the corresponding eigenvalue λmn .

31
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Since every umn(x, y, t) satisfies (1) and (2), so is the summation:



 ∞

u(x, y, t) = umn (x, y, t)
m=1 n=1


 ∞
 mπx nπy

= ( Bmn cos λmnt + Bmn sin λmnt ) · sin · sin
m=1 n=1 a b

Now apply the initial conditions (3) and (4):


 ∞ ∞
   mπx nπy





(3) ⇒ u(x, y, 0) = Bmn sin sin = f (x, y) ——— (8)

 m=1 n=1 a b





 ∞  ∞

 ∂u  ∗ mπx nπy



 (4) ⇒ (x, y, 0) = Bmn λmn sin sin = g(x, y) − (9)
∂t m=1 n=1 a b

(8) and (9) are called double Fourier series of f (x, y) and g(x, y).

We can generalized the Euler formula in one dimension to two dimension:


 ba m πx n πy
0 0
(8) sin sin dxdy
a b
 ∞
a b  ∞
 mπx m πx nπy n πy
⇒ 0 0 m=1 n=1
Bmn sin · sin · sin · sin dxdy
a a b b
 ab m πx n πy
= 0 0
f (x, y) sin · sin dxdy
a b

 ∞
 #
a$ mπx m πx %  b$ nπy n πy %&
⇒ Bmn 0
sin · sin dx × 0 sin · sin dy
m=1 n=1 a a b b
 ab m πx n πy
= 0 0
f (x, y) sin · sin dxdy
a b

32
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

 a mπx m πx
0
sin · sin dx
a a
1  a# πx nπx &
= 0 cos(m − m ) − cos(m + m ) dx
2 a   a 
=0
1a πx
= 0 cos(m − m ) dx
2 a


 0 if m = m
=
 1
2 a if m = m

Similarly,

 b nπy n πy 
 0 if n = n
0
sin · sin dy = 
 1 b if
b b 2 n=n
  
a  b  a  b mπx nπy
⇒ Bmn = 0 0 f (x) sin · sin dxdy
2 2 a b

• 4  a b mπx nπy
• • Bmn = f (x, y) sin · sin dxdy (m, n = 1, 2, 3 . . .)
ab 0 0 a b
Similarly, from (9) we have:

∗ 4 ab mπx nπy


Bmn = g(x, y) sin · sin dxdy ✷
abλmn 0 0 a b

33
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.7 Heat Equation: Use of Fourier Integral

Consider the heat equation along a heat conducting rod extending to ±∞:

 2



∂u 2∂ u

 =c (−∞ < x < +∞)


∂t ∂x2







 u(x, 0) = f (x) (−∞ < x < +∞)

Again by method of separation of variables:

u(x, t) = F (x) · G(t)








F + p2F = 0 ⇒ F (x) = A cos px + B sin px




 2 p2 t

 Ġ + c2p2G = 0 ⇒ G(t) = e−c

• 2 p2 t
• • u(x, t; p) = F (x) · G(t) = (A cos px + B sin px)e−c

Note that there are no boundary conditions to determine p


This means any values of p is fine.

• • We therefor write
 p
u(x, t) = 0
u(x, t; p)dp
 p 2 p2 t
−c
= 0
[A cos px + B sin px]e dp

34
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

$ %

Recall the Fourier integral for f (x) −∞
|f (x)| dx < ∞
 ∞
f (x) = 0
[A(w) cos wx + B(w) sin wx]dw
 
 1 ∞




A(w) = π −∞
f (x̃) cos wx̃dx̃


 



 1 ∞
B(w) = π −∞
f (x̃) sin wx̃dx̃

Now apply the initial conditions:


 ∞
u(x, 0) = 0
[A cos px + B sin px]dp = f (x)
 
 1 ∞




A(p) = π −∞ f (x̃) cos px̃dx̃

⇒
 



 1 ∞
B(p) = π −∞ f (x̃) sin px̃dx̃

• 1∞ ∞
• • u(x, t) = [ ( −∞ f (x̃) cos px̃dx̃ ) cos px
π 0
 ∞ 2 p2 t
−c
+( −∞
f (x̃ ) sin px̃dx̃ ) sin px ] e dp
1∞ ∞ −c2 p2 t
= [ f (x̃)(cos px̃ cos px + sin px̃ sin px)dx̃ ] e dp
π 0 −∞
1∞ ∞ −c2 p2 t
= [ f (x̃) cos p(x̃ − x)dx̃ ] e dp
π 0 −∞
1∞  ∞
−c2 p2 t
= f (x̃) [ cos p(x̃ − x) · e dp ] dx̃
π −∞  0  

35
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

s ds
Let p ≡ √ , dp = √
c t c t
 ∞ 2 p2 t
0
cos p(x̃ − x) · e−c dp
 ∞ s 2 ds (x̃ − x)
= 0
cos √ (x̃ − x) · e−s √ b≡ √
c t c t 2c t
1 $ ∞ −s2
= √ cos 2bs· e ds )
c t 0
√ 
1  π −b2 
= √  e 
c t 2
√ 2
π − (x̃−x)
= √ e 4c2t
2c t


√ 
2

1 ∞ π (x̃−x)

• • u(x, t) = f (x̃) 
 √ e− 4c2t  dx̃
π −∞ 2c t
1 ∞ (x̃−x)2
− 2
= √ f (x̃) · e 4c t dx̃
2c πt −∞

36
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Ex :
If f (x) =

2
u0  1 − (x̃−x)
u(x, t) = √ −1
e 4c2 t dx̃
2c πt

If U0 = 100 0C, c2 = 1 cm2/sec.

37
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.8 Heat Equation: Use of Fourier Transform



 2

 ∂u 2∂ u



 =c (−∞ < x < ∞) ——— (1)

∂t ∂x2







 u(x, 0) = f (x) (−∞ < x < ∞) ——— (2)

Recall that:
1 ∞
û(w) = F{u(x)} = √ −∞
u(x)e−iwx dx

F{u (x)} = iwF{u(x)}

F{u (x)} = −w2F{u(x)}

Take Fourier Transform of (1),


   
∂u    ∂ 2u 
 
2 2 2
⇒F =c F ∂x2  = −c w F{u}
∂t

Also,
 
∂u 
 1  ∞ ∂u −iwx 1 ∂ # ∞ −iwx
& ∂
F = √ e dx = √ ue dx = F{u}
∂t 2π −∞ ∂t 2π ∂t −∞ ∂t

38
Applied Mathematics — Partial Differential Equation Wu-ting Tsai


⇒ F{u} = −c2w2F(u)
∂t
∂ û(w, t)
i.e. = −c2w2û(w, t) ——— (3)
∂t

• • we have transformed the partial differential equation (1) into an ordinary
differential equation (3) !!

Similarly, taking Fourier transform of the initial condition (2), gives:

û(w, 0) = fˆ(w) ——— (4)

2 w2t
(3) ⇒ û(w, t) = Ce−c

(4) ⇒ û(w, 0) = C = fˆ(w)

• 2 2
• • û(w, t) = fˆ(w) · e−c w t

39
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Take inverse Fourier transform of û(w, t):


  ∞

 √1 −iwx




û(w) = 2π −∞
u(x)e dx


  ∞

û(w)eiwxdw



 u(x) = √1
2π −∞

2 2
û(w, t) = fˆ(w) · e−c w t

1 ∞ ˆ −c2 w 2 t iwx
⇒ u(x, t) = √ f (w) · e · e dw
2π −∞

1 ∞ 1 ∞ −iwx̃ −c2 w 2 t iwx


= √ [ √ f (x̃)e dx̃ ] e · e dw
2π −∞ 2π −∞

1 ∞ ∞ −iw(x̃−x) −c2 w 2 t
= [ f (x̃)e dx̃ ] · e dw
2π −∞ −∞
1 ∞  ∞
−iw(x̃−x) −c2 w 2 t
= f (x̃) [ e · e dw ] dx̃
2π −∞ −∞

1∞  ∞
−c2 w 2 t
= f (x̃) [ cos w(x̃ − x) · e dw ] dx̃
π −∞ 0
√  
π −(x̃−x)
= √ e 4c2t
2c t

Same as using Fourier integral !! ✷

40
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.9 Heat Equation. Use of Fourier Cosine and Sine Trans-


forms

Consider the heat equation along a semi-infinite rod:


2
∂u 2∂ u
=c (0 ≤ x < ∞)
∂t ∂x2
Recall Fourier cosine and sine transforms of derivatives :
 
2



 Fc {f } = wFs{f } − π
f (0)



 Fs {f } = −wFc{f }
 
 2 2



 Fc {f } = −w Fc{f } − π
f (0)
 

 2 2

 Fs {f } = −w Fs{f } + π
wf (0)
 
2 ∞
where Fc {f } = fˆc(w) = π 0
f (x) cos wxdx
 
2 ∞
Fs {f } = fˆs(w) = π 0 f (x) sin wxdx

If the boundary condition at x = 0 is :
u(0.t) = g(t) we use Fourier sine transform
∂u
(0, t) = g(t) we use Fourier cosine transform
∂x

41
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

Ex :
∂u ∂u
= c2 2 0 ≤ x < ∞ ——— (1)
∂t ∂x
u(x, 0) = f (x) 0 ≤ x < ∞ ——— (2)

u(0, t) = 0 t ≥ 0 ——— (3)

Take Fourier sine transform of (1) :


    !
∂u  ∂ ûs
  ∂ 2u 
  !2
!
2 2 2
⇒ Fs   = = c Fs 
 2 

= −c w Fs {u} + " wu(0, t)
∂t ∂t ∂x π

= −c2w2ûs(w, t)

∂ ûs
i.e. = −c2w2ûs
∂t
2w2t
⇒ ûs (w, t) = C(w)e−c

Take Fourier sine transform of the initial condition (2): u(x, 0) = f (x)

⇒ ûs (w, 0) = fˆs (w) = C(w)


 
!
! 2 
• 2 2 ! ∞  2 w2t
• • ûs (w, t) = fˆs (w)e−c w t = "

0
f (x̃) sin wx̃dx̃ e−c
π

Take inverse Fourier sine Transform:


• 2 ∞∞ −c2 w 2 t
• • u(x, t) = f (x̃) sin w x̃ · e · sin wx dx̃dw ✷
π 0 0

42
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

11.10 Wave Equation. Use of Fourier Transform

Consider wave equation along an infinitely long string :





 ∂ 2u 2
2∂ u



 =c (−∞ < x < ∞) ——— (1)






∂t2 ∂x2





 u(x, 0) = f (x) ——— (2)











ut (x, 0) = 0 ——— (3)







 u → 0, ux → 0 as |x| → ∞ ——— (4)

Take Fourier transform of (1):


   
2
 ∂u  ∂ 
 ∂ 2u 

F 2  = 2
F{u} = c2F  2
 ∂x  = −c2 2
w F{u}
∂t ∂t

⇒ ûtt + c2w2û = 0, û = û(w, t)



• • û(w, t) = A(w) cos cwt + B(w) sin cwt

Take Fourier transform of the initial conditions (2) and (3):

û(w, 0) = fˆ(w) = A(w)

ût (w, 0) = 0 = cwB(w)

⇒ û(w, t) = fˆ(w) cos cwt


1ˆ # &
icwt −icwt
= f (w) e +e
2

43
Applied Mathematics — Partial Differential Equation Wu-ting Tsai

1 ∞ −iwx
F{f (x − a)} = √ f (x − a)e dx x − a ≡ p, dx = dp
2π −∞

1 ∞
= √
−∞
f (p)e−iw(p+a)dp

1 −iwa  ∞ −iwp
=√ e −∞
f (p)e dp

i.e. F{f (x − a)} = e−iwaF{f (x)}


• • F −1 {F{f (x − a)}} = F −1 {e−iwaF{f (x)}} = f (x − a)

i.e. the inverse Fourier Transform of e−iwaF{f (x)} is f (x − a)

Similarly, the inverse Fourier transform of e+iwaF{f (x)} is f (x + a)

1ˆ # &
icwt −icwt
Since û(w, t) = f (w) e +e
2

• 1
• • u(x, t) = [f (x − ct) + f (x + ct)] ✷
2

44

You might also like