Applied Mathematics: Partial Differential Equations
Applied Mathematics: Partial Differential Equations
Part 5:
         Wu-ting Tsai
Contents
                                   1
Chapter 11
                    2
Applied Mathematics — Partial Differential Equation                      Wu-ting Tsai
For examples:
     ∂ 2u     2
            2∂ u
          =c                         one-dimensional wave equation
     ∂t2     ∂x2
            2
     ∂u   2∂ u
        =c                           one-dimensional heat equation
     ∂t    ∂x2
     ∂ 2u ∂ 2u
         +     =0                    two-dimensional Laplace equation
     ∂x2 ∂y 2
     ∂ 2u ∂ 2u
         +     = f (x, y)            two-dimensional Poisson’s equation
     ∂x2 ∂y 2
Note:
u(x, y) = x2 − y 2, ex cos y and ln(x2 + y) all satisfy the two-dimensional
Laplace equation
⇒ “boundary condition” makes the solution unique
(or “initial condition” when t is one of the variable).
                                              3
Applied Mathematics — Partial Differential Equation            Wu-ting Tsai
                                              4
Applied Mathematics — Partial Differential Equation                    Wu-ting Tsai
Consider a vibrating, elastic string with length L and deformation u(x, t).
Assumptions:
1.   homogeneous string (i.e. constant density)
2.   perfectly elastic and cannot sustain bending
3.   neglect gravitation force (i.e. tension  gravitational force)
4.   small deformation (i.e. du/dx is small)
5.   u is in a plane only
                                              5
Applied Mathematics — Partial Differential Equation            Wu-ting Tsai
T1 cos α = T2 cos β = T
in vertical direction:
                                             
                                          2
                                      ∂ u
        T2 sin β − T1 sin α = ρ∆x        2
                                            ÷T
                                       ∂t
                       ρ∆x ∂ 2u
     ⇒ tan β − tan α =    · 2
                        T  ∂t
                                 
          ∂u           ∂u
              + ∆x −     ρ ∂ 2u
     ⇒    ∂x  x         ∂x x = · 2
                  ∆x          T ∂t
∆x → 0
       ∂ 2u   1 ∂ 2u                                  T
     ⇒      =                     where c2 ≡              ✷
       ∂x2 c2 ∂t2                                     ρ
                                                  6
Applied Mathematics — Partial Differential Equation       Wu-ting Tsai
     ∂ 2u     2
            2∂ u
          =c     ——— (1)
     ∂t2     ∂x2
Boundary conditions:
Initial conditions:
     u(x, t) = F (x)G(t)
         
         
         
         
            ∂ 2u    d2 G
         
         
         
                 = F 2 ≡ F G̈
         
         
            ∂t2     dt
     ⇒
        
         
         
         
            ∂ 2 u d2 F
         
         
         
                 =     G≡F G
             ∂x2    dx2
                                              7
Applied Mathematics — Partial Differential Equation    Wu-ting Tsai
(1) ⇒ F G̈ = c2F G
               G̈           F
     ⇒         2G
                      =              =k
             c
                         F
                              
         function of t function of x
where k is constant to be determined.
         
         
         
         
         
         
             F − kF = 0 ——— (6)
         
     ⇒
        
         
         
            G̈ − c2kG = 0 ——— (7)
F (x)
F − kF = 0 F (0) = F (L) = 0
• If k = 0      ⇒ F (x) = ax + b
     
     
      F (0) = b = 0
     
      F (L) = aL = 0
⇒a=b=0
⇒ F (x) = 0 ⇒ u(x, t) = 0 ×
⇒A=B=0
⇒ F (x) = 0 ⇒ u(x, t) = 0 ×
                                              8
Applied Mathematics — Partial Differential Equation                              Wu-ting Tsai
 •
• •   k = −p2 < 0           ⇒ F (x) = A cos px + B sin px
      
      
       F (0) = A = 0
      
       F (L) = B sin pL = 0
                                  nπ
      ⇒ pL = nπ             ⇒p=      ,       n = 1, 2, 3 . . .
                                  L
                                   nπ
      ⇒ F (x) ≡ Fn(x) = sin           x,           n = 1, 2, 3 . . .
                                   L
                              
                     nπ 2
                        2
      and k = −p = −
                     L
G(t)
                           
            2       nπ 2
      G̈ − c       −        G=0
                     L
                                         cnπ
      ⇒ G̈ + λ2nG = 0,            λn =
                                          L
      G(t) ≡ Gn(t) = Bn cos λnt + Bn∗ sin λn t
 •
• •   un(x, t) = Fn (x)Gn(t)
                                            nπ
      = (Bn cos λnt + Bn∗ sin λnt) sin         x          (n = 1, 2, 3 . . .)
                                            L
So far, un(x, t) satisfies the differential equation (1), and the boundary con-
ditions (2) and (3).
un (x, t) is called eigenfunction or characteristic function.
λn is called eigenvalue or characteristic value.
                                               9
Applied Mathematics — Partial Differential Equation                                 Wu-ting Tsai
                    ∞
                                                             nπ
              =          (Bn cos λnt + Bn∗ sin λnt) sin          x
                   n=1                                        L
Initial conditions:
     
     
     
     
     
     
       u(x, 0) = f (x) ——— (4)
     
     
       ∂u 
     
     
              = g(x) ——— (5)
       ∂t t=0
                                              nπ
     (4) ⇒ u(x, 0) =                  Bn sin      x = f (x) (Fourier sine series of f (x))
                              n=1              L
                    2 L           nπx
     ⇒ Bn =              f (x) sin     dx                n = 1, 2, 3 . . .
                    L 0             L
                     
           ∂u    ∞
                        ∗                     nπx
     (5) ⇒       =   (B   λ n cos λ  t)
                                     n t=0 sin
           ∂t t=0 n=1 n                        L
                     ∞
                                       nπx
                =         Bn∗ λn sin        = g(x) (Fourier sine series of g(x))
                    n=1                  L
                      2 L          nπx
     ⇒    Bn∗ λn    =      g(x) sin     dx
                      L 0            L
                   2 L           nπx
     ⇒    Bn∗   =        g(x) sin     dx                   n = 1, 2, 3 . . .   ✷
                  λn L 0           L
                                                    10
Applied Mathematics — Partial Differential Equation                  Wu-ting Tsai
                                              11
Applied Mathematics — Partial Differential Equation                                    Wu-ting Tsai
Consider the special case in which the string starts from rest, i.e. g(x) = 0,
and Bn∗ = 0, then
                ∞
                          cnπ        nπ
    u(x, t) =       Bn cos      t sin    x
               n=1          L         L
                  ∞                                          
               1             nπ                  nπ
            =         Bn sin      (x − ct) + sin     (x + ct)
               2 n=1           L                  L
               1   ∞        nπ              1   ∞        nπ
            =         Bn sin     (x − ct) +         Bn sin      (x + ct)
               2 n=1
                  
                              L
                                       
                                             2  n=1
                                                
                                                            L
                                                                     
                     Fourier sine series of f ∗ (x−ct)     Fourier sine series of f ∗ (x+ct)
                   1 ∗
               =     [f (x − ct) + f ∗(x + ct)]
                   2
where f ∗ (•) is an odd periodic function, and f (•) = f ∗ (•) for • ∈ [0, 2L].
                                                12
Applied Mathematics — Partial Differential Equation              Wu-ting Tsai
                             1
Physical meaning of u(x, t) = [f ∗ (x − ct) + f ∗ (x + ct)] :
                             2
                                              13
Applied Mathematics — Partial Differential Equation              Wu-ting Tsai
Ex :
       g(x) = 0
                 
                 
                 
                 
                 
                     2k                              L
                 
                 
                 
                 
                        x,             0<x<
                 
                    L                               2
       f (x) = 
                
                 
                 
                 
                    2k                L
                 
                 
                       (L − x),         <x<L
                     L                 2
       Bn∗ = 0
            2 L           nπx
       Bn =      f (x) sin     dx
            L 0             L
                                                           
                       n+1
              ∞
           8k   (−1)         (2n − 1)π         (2n − 1)πc 
          = 2             sin           x · cos           t
           π n=1 (2n − 1)2         L                 L
                                              14
Applied Mathematics — Partial Differential Equation             Wu-ting Tsai
Assumptions:
1. homogeneous rod with uniform cross section A and constant density ρ,
specific heat c, thermal conductivity κ
2. insulated laterally so heat flows only in x-direction only
3. temperature is constant at all points of a cross section
4. rate of heat conduction is proportional to −∂u/∂x
                                              15
Applied Mathematics — Partial Differential Equation                 Wu-ting Tsai
As ∆x → 0
                     2
      ∂u           2∂ u                              k
         (x, t) − c     (x, t) = 0            c2 =
      ∂t            ∂x2                              σρ
                                              16
Applied Mathematics — Partial Differential Equation      Wu-ting Tsai
Initial condition:
u(x, 0) = f (x) (0 ≤ x ≤ L)
Boundary condition:
u(0, t) = 0, u(L, t) = 0 (t ≥ 0)
Note:
For 3 − D heat equation (see §9.8):
                                         
                    2       2         2
     ∂u        ∂ u ∂ u ∂ u
        = c2 
                 +    +     
     ∂t        ∂x2 ∂y 2 ∂z 2
                                                17
Applied Mathematics — Partial Differential Equation                      Wu-ting Tsai
(1) ⇒ F Ġ = c2F G
                                                                       2 p2 t
                          
                          
                          
                          
                          
                               p2      ⇒ Ġ = c2p2G      ⇒ G(t) = Cec            ×
                          
                          
                          
                          
                          
                          
          Ġ   F          
                          
     ⇒       =   = 0                  ⇒ Ġ = 0          ⇒ G(t) = C              ×
         c2G   F  
                  
                  
                  
                         
                          
                          
                          
                          
                          
                             −p2
         
         
         
         
            F + p2F = 0 ——— (6)
     ⇒
        
            Ġ + c2p2G = 0 ——— (7)
                                              18
Applied Mathematics — Partial Differential Equation                            Wu-ting Tsai
F (x):
 •
• •   A=0       B sin pL = 0
Since B = 0       ⇒ sin pL = 0,           i.e. pL = nπ,      n = 1, 2, 3 . . .
           nπ
⇒ p=               n = 1, 2, 3 . . .
           L
                                nπx
      Fn (x) = sin px = sin               n = 1, 2, 3 . . .
                                 L
                                              19
Applied Mathematics — Partial Differential Equation                              Wu-ting Tsai
G(t):
                                              cnπ
      (3) ⇒ Ġ + λ2nG = 0             λn =
                                               L
                              2
      ⇒ Gn(t) = Bne−λn t               n = 1, 2, 3 . . .
 •
• •   eigenf unction un(x, t) :
                                                      nπx −λ2nt
      un (x, t) = Fn (x) · Gn(t) = Bn sin                ·e
                                                       L
with corresponding eigenvalue λn :
             cnπ
      λn =
              L
        2 L
 ⇒ Bn =      f (x) sin nπxdx                 ✷
        L 0
                                                 20
Applied Mathematics — Partial Differential Equation   Wu-ting Tsai
Note:
                   ∞
                                 nπx −λ2n t
       u(x, t) =         Bn sin      ·e
                   n=1             L
⇒ the temperature alway decays.
Ex :
                                               21
Applied Mathematics — Partial Differential Equation            Wu-ting Tsai
∂u          ∂u
   (0, t) =    (L, t) = 0
∂x          ∂x
⇒ No heat transfer across x = 0 and L, i.e. these two ends are insulated,
but the temperature at these two boundary may vary.
                                              22
Applied Mathematics — Partial Differential Equation                   Wu-ting Tsai
       ∂ 2u ∂ 2u
         2
 ⇒∇ u=     +     =0                   ← two-dimensional Laplace equation
       ∂x2 ∂y 2
                                              23
Applied Mathematics — Partial Differential Equation   Wu-ting Tsai
Ex :
u(x, y) = F (x)G(y)
         d2 F    d2 G
       ⇒      G+F 2 =0
         dx2     dy
          1 d2 F   1 d2 G
       ⇒−        =        ≡k
          F dx2    G dy 2
         
         
         
         
         
             d2 F
         
         
                 + kF = 0 ——— (1)
         
         
         
            dx2
       ⇒
        
         
         
         
            d2 G
         
         
         
                 − kG = 0 ——— (2)
             dy 2
                                              24
Applied Mathematics — Partial Differential Equation                               Wu-ting Tsai
If k < 0 :
                                     √             √
                                      kx          − kx
     (1) ⇒ F (x) = Ae                      + Be
     ⇒ F (0) = 0,             F (a) = 0
           
           
              A +√ B = 0 √
     ⇒
              Ae ka + Be− ka = 0
                √              √
                    ka        − ka
     ⇒ A(e               −e          )=0
      •
     • •   A = 0,         B=0              ×
If k > 0 :
                                       √                   √
     (1) ⇒ F (x) = A cos                   kx + B sin kx
Boundary conditions:
     F (0) = 0           ⇒A=0
                                                  √                √        nπ
     F (a) = 0           ⇒ F (a) = B sin ka = 0                ⇒       k=
                                                                             a
                     
            nπ 2
     ⇒ kn =
             a
                                nπ
     and Fn (x) = sin              x
                                 a
                                                      25
Applied Mathematics — Partial Differential Equation                                                Wu-ting Tsai
           d2 G
     (2) ⇒      − kn G = 0
           dy 2
                                          √                  √
                                           kn y             − kn y
     ⇒ G(y) = Gn(y) = Ane                         + Bn e
Boundary condition:
     u(x, 0) = 0       ⇒ G(0) = 0
     ⇒ A n + Bn = 0
                                                                     √                √
                                                                         kn y        − kn y
                             √
                              kn y
                                            √
                                           − kn y               (e              −e            )
     ⇒ Gn (y) = An(e                 −e               ) = 2An
                                                                                2
      •
                                     √
     • •    Gn(y) =   A∗n sinh        kn y             A∗n ≡ 2An
      •
     • •   un (x, y) = Fn (x) · Gn(y)
                               nπx      nπy
                     = A∗n sin     sinh
                                a        a
                       ∞
                                                 ∞
                                                               nπx      nπy
     ⇒ u(x, y) =             un (x, y) =              A∗n sin       sinh
                      n=1                     n=1                a        a
Since u(x, b) = f (x) :
                      ∞
                                         nπb     nπx
     ⇒ u(x, b) =           A∗n sinh           sin     = f (x)
                     n=1                a      a
                                ≡ bn
                           nπb 2  a        nπx
     ⇒ bn =    A∗n sinh       = 0 f (x) sin     dx
                            a  a             a
                     2         a           nπx
      •   ∗
     • • An   =                   f (x) sin     dx                   ✷
                a sinh( nπb
                         a
                            )  0             a
                                                       26
Applied Mathematics — Partial Differential Equation            Wu-ting Tsai
     ∂ 2u       2
             2 ∂ u ∂ 2u                                T
          = c ( 2 + 2 ),                        c2 =
     ∂t2       ∂x  ∂y                                  ρ
                                              27
Applied Mathematics — Partial Differential Equation                           Wu-ting Tsai
Initial condition:
     
     
     
     
     
     
         u(x, y, 0) = f (x, y) ——— (3)
     
     
     
     
     
     
     
     
     
         ∂u
     
           (x, y, 0) = g(x, y) ——— (4)
         ∂t
              G̈   1                   2
     ⇒           =   (Fxx + Fyy ) ≡ −ν               (cannot be zero or posititice)
             c2G F
             
             
             
             
                G̈ + λ2G = 0       (λ ≡ cν) ——— (6)
     ⇒
            
                Fxx + Fyy + ν 2F = 0 ——— (7)
                                              28
Applied Mathematics — Partial Differential Equation              Wu-ting Tsai
     
     
     
     
        G̈ + λ2G = 0 ——— (6)
     
     
     
        Fxx + Fyy + ν 2F = 0 ——— (7)
                                              29
Applied Mathematics — Partial Differential Equation                            Wu-ting Tsai
      d2 H      d2 Q
(7) ⇒    2
           Q + H 2 + ν 2HQ = 0                             ÷ (HQ)
      dx        dy
       1 d2 H     1 d2 Q     2          2
     ⇒        = −  (     + ν   Q ) ≡ −k                        (must be negative)
       H dx2      Q dy 2
         
         
            d2 H
         
         
         
         
         
               2
                  + k 2H = 0
         
         
            dx
     ⇒
        
         
         
            d2 Q
         
         
         
         
               2
                  + (ν 2 − k 2)Q = 0          (ν 2 − k 2 ≡ p2)
             dy
         
         
            H(x) = A cos kx + B sin kx
         
     ⇒
           Q(y) = C cos py + D sin py
Since u(x, y, t) = 0 on x = 0, x = a, y = 0, y = b,
         
         
         
         
         
         
             H(0) = 0       ⇒A=0
         
         
         
         
         
                                                          mπ
         
         
         
         
         
             H(a) = 0       ⇒ sin ka = 0             ⇒k=      , m = 1, 2, 3 . . .
                                                           a
     ⇒
        
         
         
         
             Q(0) = 0       ⇒C=0
         
         
         
                                                          nπ
         
         
         
         
         
         
             Q(b) = 0       ⇒ sin pb = 0             ⇒p=      , n = 1, 2, 3 . . .
                                                           b
                                              30
Applied Mathematics — Partial Differential Equation                     Wu-ting Tsai
            
            
            
            
                                   mπx
            
            
            
            
                H(x) = Hm (x) = sin
       •                             a
      • •   
                                 nπy
            
            
            
             Q(y) = Q  (y) = sin
                     n
                                   b
      λ = cν         p2 = ν 2 − k 2
             √              !
                             ! mπ       nπ
      ⇒ λ = c ν = c p + k = c"(
               2     2   2        )2 + ( )2
                                a        b
                           !
                          m2 n2
                           !
                           !
      ⇒ λ = λmn            "
                     = cπ 2 + 2
                          a  b
(6) ⇒ G̈ + λ2mnG = 0
                                        ∗
      ⇒ G(t) = Gmn(t) = Bmn cos λmnt + Bmn sin λmnt
 •
• •   umn (x, y, t) = Fmn (x, y) · Gmn(t)
                                          ∗                      mπx       nπy
                      = ( Bmn cos λmnt + Bmn sin λmn t ) · sin       · sin
                                                                  a         b
                                              31
Applied Mathematics — Partial Differential Equation                                Wu-ting Tsai
          ∞
                      ∞
                                                                      mπx       nπy
                                             ∗
     =                     ( Bmn cos λmnt + Bmn sin λmnt ) · sin           · sin
          m=1 n=1                                                       a         b
(8) and (9) are called double Fourier series of f (x, y) and g(x, y).
                                                           32
Applied Mathematics — Partial Differential Equation                           Wu-ting Tsai
          a           mπx       m πx
       0
               sin         · sin      dx
                        a         a
        1  a#         πx               nπx &
       = 0 cos(m − m )    − cos(m + m )       dx
        2               a             a 
                                  =0
        1a           πx
       = 0 cos(m − m ) dx
        2              a
               
               
                  0   if m = m
       =
                  1
                   2 a if m = m
Similarly,
                                           
          b           nπy       n πy      
                                            0 if n = n
       0
               sin         · sin      dy = 
                                            1 b if
                        b          b         2      n=n
                            
                       a  b  a  b        mπx       nπy
 ⇒ Bmn                        = 0 0 f (x) sin     · sin     dxdy
                       2 2                     a         b
  •                      4  a b              mπx       nπy
 • •   Bmn             =          f (x, y) sin     · sin     dxdy   (m, n = 1, 2, 3 . . .)
                         ab 0 0                 a         b
Similarly, from (9) we have:
                                                 33
Applied Mathematics — Partial Differential Equation                            Wu-ting Tsai
Consider the heat equation along a heat conducting rod extending to ±∞:
      
                2
      
      
      
          ∂u   2∂ u
      
            =c                      (−∞ < x < +∞)
      
      
          ∂t    ∂x2
      
      
      
      
      
      
      
         u(x, 0) = f (x)            (−∞ < x < +∞)
       •                                                             2 p2 t
      • •   u(x, t; p) = F (x) · G(t) = (A cos px + B sin px)e−c
                                              34
Applied Mathematics — Partial Differential Equation                                               Wu-ting Tsai
                                                           $                         %
                                                                ∞
Recall the Fourier integral for f (x)                       −∞
                                                                    |f (x)| dx < ∞
                    ∞
       f (x) =       0
                             [A(w) cos wx + B(w) sin wx]dw
                         
                        1 ∞
       
       
       
       
           A(w) =        π −∞
                              f (x̃) cos wx̃dx̃
       
       
                             
       
       
       
                            1 ∞
           B(w) =            π −∞
                                  f (x̃) sin wx̃dx̃
  •              1∞ ∞
 • •   u(x, t) =     [ ( −∞ f (x̃) cos px̃dx̃ ) cos px
                 π 0
                                              ∞                                   2 p2 t
                                                                              −c
                                      +(   −∞
                                              f (x̃ ) sin px̃dx̃ ) sin px ] e               dp
                       1∞ ∞                                                           −c2 p2 t
                     =     [        f (x̃)(cos px̃ cos  px  +  sin px̃   sin px)dx̃ ] e          dp
                       π 0     −∞
                       1∞ ∞                                     −c2 p2 t
                     =     [        f (x̃) cos p(x̃ −  x)dx̃  ] e          dp
                       π 0     −∞
                       1∞             ∞
                                                              −c2 p2 t
                     =       f (x̃) [      cos p(x̃ −  x) · e          dp ] dx̃
                       π −∞          0                                  
                                                      35
Applied Mathematics — Partial Differential Equation                           Wu-ting Tsai
        s                     ds
Let p ≡ √ ,              dp = √
       c t                   c t
               ∞                         2 p2 t
                0
                    cos p(x̃ − x) · e−c            dp
               ∞       s               2 ds                      (x̃ − x)
     =          0
                    cos √ (x̃ − x) · e−s √                   b≡       √
                       c t               c t                       2c t
             1 $ ∞              −s2
     =       √       cos  2bs· e     ds )
            c t 0
               √          
             1  π −b2 
     =       √      e 
            c t 2
             √          2
              π − (x̃−x)
     =        √ e 4c2t
            2c t
                             
                                    √      
                                                  2
                                                    
                     1 ∞              π     (x̃−x)
      •
     • •   u(x, t) =      f (x̃) 
                                    √ e− 4c2t  dx̃
                     π −∞          2c t
                       1 ∞                 (x̃−x)2
                                           − 2
                   =   √         f (x̃) · e 4c t dx̃
                     2c πt  −∞
                                                        36
Applied Mathematics — Partial Differential Equation   Wu-ting Tsai
Ex :
If f (x) =
                                 2
                  u0  1 − (x̃−x)
       u(x, t) = √    −1
                         e 4c2 t dx̃
                2c πt
                                              37
Applied Mathematics — Partial Differential Equation      Wu-ting Tsai
Recall that:
                        1 ∞
     û(w) = F{u(x)} = √   −∞
                              u(x)e−iwx dx
                        2π
Also,
             
       ∂u 
            1  ∞ ∂u −iwx       1 ∂ # ∞    −iwx
                                                     &   ∂
     F =  √          e   dx = √         ue      dx   =    F{u}
       ∂t     2π −∞ ∂t           2π ∂t −∞                ∂t
                                              38
Applied Mathematics — Partial Differential Equation                  Wu-ting Tsai
        ∂
 ⇒         F{u} = −c2w2F(u)
        ∂t
        ∂ û(w, t)
 i.e.              = −c2w2û(w, t) ——— (3)
            ∂t
 •
• • we have transformed the partial differential equation (1) into an ordinary
differential equation (3) !!
                              2 w2t
(3)     ⇒ û(w, t) = Ce−c
       •                          2 2
      • •   û(w, t) = fˆ(w) · e−c w t
                                              39
Applied Mathematics — Partial Differential Equation                    Wu-ting Tsai
                           2 2
     û(w, t) = fˆ(w) · e−c w t
              1 ∞ ˆ          −c2 w 2 t     iwx
 ⇒ u(x, t) = √      f (w) · e           · e     dw
              2π −∞
          1 ∞ ∞         −iw(x̃−x)           −c2 w 2 t
     =        [   f (x̃)e           dx̃ ] · e           dw
         2π −∞ −∞
        1 ∞           ∞
                            −iw(x̃−x)     −c2 w 2 t
     =       f (x̃) [     e           · e           dw ] dx̃
       2π −∞           −∞
       1∞            ∞
                                             −c2 w 2 t
     =      f (x̃) [     cos w(x̃ −  x)  · e           dw ] dx̃
       π −∞          0
                               √                       
                                  π −(x̃−x)
                            =     √    e 4c2t
                              2c t
                                                40
Applied Mathematics — Partial Differential Equation           Wu-ting Tsai
                                                   41
Applied Mathematics — Partial Differential Equation                                            Wu-ting Tsai
Ex :
        ∂u     ∂u
           = c2 2                 0 ≤ x < ∞ ——— (1)
        ∂t     ∂x
       u(x, 0) = f (x)            0 ≤ x < ∞ ——— (2)
= −c2w2ûs(w, t)
              ∂ ûs
       i.e.         = −c2w2ûs
               ∂t
                                   2w2t
       ⇒ ûs (w, t) = C(w)e−c
Take Fourier sine transform of the initial condition (2): u(x, 0) = f (x)
                                                    42
Applied Mathematics — Partial Differential Equation              Wu-ting Tsai
                                               43
Applied Mathematics — Partial Differential Equation                 Wu-ting Tsai
                      1 ∞              −iwx
      F{f (x − a)} = √       f (x − a)e      dx          x − a ≡ p, dx = dp
                       2π −∞
         1 ∞
      = √
             −∞
                f (p)e−iw(p+a)dp
          2π
        1 −iwa  ∞        −iwp
      =√ e      −∞
                   f (p)e      dp
        2π
 •
• •   F −1 {F{f (x − a)}} = F −1 {e−iwaF{f (x)}} = f (x − a)
                1ˆ    #                &
                         icwt    −icwt
Since û(w, t) = f (w) e      +e
                2
       •             1
      • •   u(x, t) = [f (x − ct) + f (x + ct)]      ✷
                     2
44