End Term Project Report
2-Link Planar Robotic Arm
 Tracing ‘L’ using Forward Kinematics in 2R-Planar SCM with encoder
                               feedback
                                Team 08
a) Robot Description
The robot is a 2-link planar robotic arm with 2 Degrees of Freedom (DoFs). It consists
of two revolute joints:
   • Joint 1: Revolute joint at the base (DC Motor with Encoder)
   • Joint 2: Revolute joint at the elbow (Servo Motor)
   • Link 1 Length: L1 = 19.9 cm
   • Link 2 Length: L2 = 15 cm
                                          1
                              Joint θ (variable)     d a      α
                                1        θ1          0 L1     0
                                2        θ2          0 L2     0
                      Table 1: Denavit-Hartenberg Parameters
b) DH Parameters
c) Homogeneous Transformation Matrices
From Frame 0 to 1: 0 T1
                                                                
                                   cos θ1 − sin θ1   0 L1 cos θ1
                           0
                                   sin θ1 cos θ1    0 L1 sin θ1 
                             T1 = 
                                   0
                                                                 
                                             0       1     0     
                                      0      0       0     1
From Frame 1 to 2: 1 T2
                                                                
                                   cos θ2 − sin θ2   0 L2 cos θ2
                           1
                                   sin θ2 cos θ2    0 L2 sin θ2 
                             T2 = 
                                   0
                                                                 
                                             0       1     0     
                                      0      0       0     1
From Frame 0 to 2: 0 T2 = 0 T1 · 1 T2
                                                                       
                              cos(θ1 + θ2 ) − sin(θ1 + θ2 )       0   x
                     0
                             sin(θ1 + θ2 ) cos(θ1 + θ2 )         0   y
                       T2 =                                            
                                  0              0               1   0
                                   0              0               0   1
  Where,
                              x = L1 cos θ1 + L2 cos(θ1 + θ2 )
                               y = L1 sin θ1 + L2 sin(θ1 + θ2 )
d) Jacobian Matrix J(θ)
                                                                                            −L1 sin θ1 − L2 sin(θ1 + θ2 ) −L2 sin(θ1 + θ2 )
               J(θ) =
                        L1 cos θ1 + L2 cos(θ1 + θ2 ) L2 cos(θ1 + θ2 )
e) Forward Kinematics
                                                            
                             x    L1 cos θ1 + L2 cos(θ1 + θ2 )
                               =
                             y    L1 sin θ1 + L2 sin(θ1 + θ2 )
  Velocity relationship:
                                        Ẋ = J(θ) · θ̇
                                              2
f ) Inverse Kinematics
Step 1: Compute θ2
                                  x2 + y 2 − L21 − L22
                       cos θ2 =                        ⇒ θ2 = cos−1 (·)
                                        2L1 L2
Step 2: Compute θ1
                                        y                                   
                                   −1                −1          L2 sin θ2
                        θ1 = tan              − tan
                                         x                    L1 + L2 cos θ2
g) Singularity Condition
                                    det(J) = L1 L2 sin(θ2 )
   Singularities occur when:
                                  sin(θ2 ) = 0 ⇒ θ2 = 0◦ , 180◦
h) Isotropic Points
A manipulator is isotropic when the Jacobian has equal singular values, i.e., well-conditioned.
One such condition is:
                                   L1 = L2      and θ2 = 90◦
   This results in uniform manipulability in all directions.