0% found this document useful (0 votes)
104 views31 pages

Inverter Static

The document discusses the static characteristics of inverters, focusing on nMOS and resistive-load inverters, including their voltage transfer characteristics (VTC), noise margins, and power considerations. It provides calculations for output high (VOH), output low (VOL), input low (VIL), and input high (VIH) voltages, along with examples for inverter design. Additionally, it covers the operation of pseudo-nMOS inverters and their respective calculations for various parameters.

Uploaded by

jalogar249
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
104 views31 pages

Inverter Static

The document discusses the static characteristics of inverters, focusing on nMOS and resistive-load inverters, including their voltage transfer characteristics (VTC), noise margins, and power considerations. It provides calculations for output high (VOH), output low (VOL), input low (VIL), and input high (VIH) voltages, along with examples for inverter design. Additionally, it covers the operation of pseudo-nMOS inverters and their respective calculations for various parameters.

Uploaded by

jalogar249
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 31

Module1-Lecture14-15

Inverter-Static Characteristics

SIT 1 8/23/2020
Bhubaneswar
Introduction (1)
 Logic symbol & truth  Ideal voltage transfer
table characteristic (VTC)

2 SIT Bhubaneswar
nMOS Inverter: Schematic & VTC

 VOH : VOUT,MAX when the output level is logic "1“


 VOL : VOUT,MIN when the output level is logic "0“
 VIL : VIN,MAX which can be interpreted as logic "0“
 VIH : VIN,MIN which can be interpreted as logic "1"
3 SIT Bhubaneswar
Noise Margin

NM L  VIL  VOL
NM H  VOH  VIH

4 SIT Bhubaneswar
nMOS Inverter: Power & Area
 Power Considerations
PDC  VDD  I DC
VDD
PDC    I DC Vin  low  I DC Vin  high  
2

5 SIT Bhubaneswar
Resistive-Load Inverter
 Resistive-load inverter circuit & its VTC

1) Vin<VT0, nMOS off


2) Vin>VT0, nMOS in sat. 3) Vout<VDSAT, nMOS in lin.
kn 1
(Vin  VT 0 )2 IR   2  (Vin  VT 0 ) Vout  Vout 2 
I R  W  vsat  Cox  2  Vout 
(Vin  VT 0 )  EC L  1  
 EC Ln 

6 SIT Bhubaneswar
VOH, VOL Calculation of Resistive-Load Inverter
 VOH calculation
Vin<VT0, nMOS off
Vout  VDD  RL  I R VOH  VDD

 VOL calculation
Vin=VOH, nMOS in lin.
VDD  Vout VDD  VOL kn 1
IR    2  (VDD  VT 0 ) VOL  VOL 2 
RL RL 2  VOL 
 1  
 EC Ln 
VDD  VOL kn  1  2
  2  (VDD  VT 0 ) VOL  VOL 
2
V 2
OL  2  
 DD T 0
V V   VOL  VDD  0
RL 2  kn RL  kn RL

2
1  1  2VDD
VOL  VDD  VT 0    VDD  VT 0   
kn RL  kn RL  kn RL

7 SIT Bhubaneswar
VIL, VIH Calculation of Resistive-Load Inverter (1)
 VIL calculation (nMOS in sat.)
VDD  Vout (Vin  VT 0 )2
 W  vsat  Cox 
RL (Vin  VT 0 )  EC L


VDD  Vout kn
  (Vin  VT 0 )2
RL 2
-1
Diff. 1 dVout
   kn  Vin  VT 0 
RL dVin

1
   1  kn  VIL  VT 0 
RL
1
VIL  VT 0 
kn RL

8 SIT Bhubaneswar
VIL, VIH Calculation of Resistive-Load Inverter (2)
 VIH calculation VDD  Vout kn 1
  2  (Vin  VT 0 ) Vout  Vout 2 
nMOS in lin. RL 2  Vout 
1   small (5.24)
 EC Ln 
VDD  Vout kn
  2  (Vin  VT 0 ) Vout  Vout 2 
RL 2
-1
Diff. 1 dVout kn  dV dV 
     2  Vin  VT 0   out 2Vout  2Vout  out 
RL dVin 2  dVin dVin 
(5.27)
1 1
   1  kn  VIH  VT 0    1  2Vout  VIH  VT 0  2Vout 
RL kn RL

VDD  Vout kn   1  
into (5.24)    2   VT 0  2Vout   VT 0  Vout  Vout
2

RL 2   kn RL  

2 VDD
Vout Vin  VIH   
3 kn RL
8 VDD 1
into (5.27) VIH  VT 0   
3 kn RL kn RL

9 SIT Bhubaneswar
VTC, Power & Chip Area
 VTC of the resistive-load  Power & chip area
inverter for different (kn∙RL)
VDD  VOL
ID  IR 
RL
VDD VDD  VOL
P DC  average   
2 RL

10 SIT Bhubaneswar
Example 5.1 - Inverter Design
 Resistive-load inverter circuit
 VDD=1.2V, kn’=98.2μA/V2, ECL=0.45V, VT0=0.53V
 VOL=80mV
 Determine ① (W/L) ratio of the driver Tr. ② RL
VDD  VOL kn'  W
  2  (VDD  VT 0 )  VOL  VOL 2  Assuming VOL = 80 mV
 1
  
RL 2 L   VOL 
1  
 EC Ln 
1.2  0.08 98.2  106 W
RL

2
 
1
L 1  0.08
 
 2  0.67  0.08  0.082 W
 RL  2.63  105 
L
0.45
(W/L)-Ratio Load resistor (RL[kΩ]) DC power consumption (PDC,avg.[μW])
1 263.0 2.56
2 131.5 5.11
3 87.7 7.67
4 65.8 10.2
5 52.6 12.8
6 43.8 15.3

11 SIT Bhubaneswar
Example 5.2 - Inverter Design
 Resistive-load inverter circuit
 VDD=1.2V, kn’=102μA/V2
 VT0=0.48V, RL=20kΩ, W/L=4
 Calculate (VOL, VOH, VIL, VIH)
 Find the noise margins

VOH  VDD  1.2V kn = kn' (W/L) = 408 μA/V2, (kn∙RL) = 8.16 V-1.
2
1  1  2VDD 1 1
VOL  VDD  VT 0    VDD  VT 0    VIL  VT 0   0.48   0.603V
kn RL  kn RL  kn RL kn RL 8.16

 1  2 1.2
2 8 VDD 1 8 1.2 1
 1.2  0.48 
1
 1.2  0.48  VIH  VT 0     0.48     0.984V
  3 kn RL kn RL 3 8.16 8.16
8.16  8.16  8.16

NM L  VIL  VOL  0.603  0.198  0.405V Poor noise immunity


 0.198V

NM H VOH  VIH  1.2  0.984  0.216V < 0.3V = 25% of VDD

12 SIT Bhubaneswar
Inverters with MOSFET Load
 Enhancement-load
nMOS inverter

VDD

 Pseudo-nMOS Inverter
IL

ID Vout = VDS,driver

+
Vin = VGS,driver

13 SIT Bhubaneswar
Pseudo-nMOS Inverter
 Operating mode of the pMOS transistor
 Vout : small → Vout < -VT0,p → |VDS,p | ≥ |VDSAT,p| (Saturation)

   
2 2
VSG , p  VT 0, p VDD  VT 0, p
I D , p  W  vsat  Cox   W  vsat  Cox 
V SG , p 
 VT 0, p  EC Lp V
DD 
 VT 0, p  EC Lp

 Vout : larger → Vout > VDD + VT,load (Linear region)

 
kp 1
I D, p   2  VDD  VT 0, p  VDD  Vout   VDD  Vout 2 
2  VDD  Vout  
1  
 EC Ln 

 ID,n=ID,p, VGS,n=Vin, and VDS,n = Vout

14 SIT Bhubaneswar
VOH, VOL Calculation of Pseudo-nMOS Inverter
VDD

 VOH calculation : VOH = VDD


IL

+
Vout VDS,driver

 VOL calculation
=
ID

+
Vin = VGS,driver

 
2
VDD  VT 0, p
 2  VOH  VT 0,n  VOL  VOL 2   W  vsat  Cox 
kn 1
2 
1 
VOL 


small

 
VDD  VT 0, p  EC , p Lp
 EC ,n Ln 

 
2
k  VDD  VT 0, p
V  VT 0,n    p
2
VOL  VOH  VT 0,n    EC , p  Lp 
OH
 kn   
VDD  VT 0, p  EC , p Lp

 nMOS size > pMOS size → VOL : lower → good noise margin
( NM L  VIL  VOL )

15 SIT Bhubaneswar
VIL, VIH Calculation of Pseudo-nMOS Inverter
V  VT 0,n 
2

Wn  vsat  Cox 
in

 VIL calculation
EC ,n Ln

 
kp
   2 VDD  VT 0, p  VDD  Vout   VDD  Vout  
2

2  
V  VT 0,n  Diff.
2

Wn  vsat  Cox  -1
in

Vin  VT 0,n   EC ,n Ln kn  Vin  VT 0,n 


  dV   dVout  

kp

2  VDD  Vout
1

 
  2 VDD  VT 0, p  VDD  Vout   VDD  Vout  

2

 
 k p   VDD  VT 0, p   1   out   VDD  Vout    
  dVin   dVin  
1  
 EC , p Lp 
VDD

 
kp
VIL  VT 0,n   Vout  VT 0, p
kn

 VIH calculation IL

ID Vout = VDS,driver

 
2
VDD  VT 0, p +
 2  Vin  VT 0,n  Vout  Vout 2   W  vsat  Cox 
kn 1
 
 
Vin = VGS,driver
2  Vout  VDD  VT 0, p  EC , p Lp
1  
 EC ,n Ln  -1
Diff.   dV   dV
kn  Vin  VT 0,n    out   Vout  Vout   out

 
k
 2  Vin  VT 0,n  Vout  Vout 2   p  VDD  VT 0, p   0
kn 2

2  2   dVin   dVin 

VIH  VT 0,n  2Vout

16 SIT Bhubaneswar
Design of Pseudo nMOS Inverters
& Power/Area Considerations
 Design of pseudo nMOS inverters
W 
kn'  
  
2
kn VDD  VT 0, p k L n
kR   kR  n 
k p 2  VOH  VT 0,n  VOL  VOL 2 kp W 
k p'   
L p
 Power and area considerations
V 
VDD
2
DD  VT 0, p
I DC (Vin  VDD )  W  vsat  Cox 
V 
pMOS

 VT 0, p  EC , p Lp
transistor
n-well
DD

 2  VOH  VT 0,n  VOL  VOL 2 


kn 1
  
2  VOL  Output

1  
 EC ,n Ln 
nMOS
transistor

V 
2
VDD DD  VT 0, p
PDC  W  vsat  Cox  Input

2  
VDD  VT 0, p  EC , p Lp GND

17 SIT Bhubaneswar
Example 5.3 Pseudo-nMOS Inverter Circuit (1)

 Calculate VOL, VOH, VIL, VIH.


 Find the noise margins.
 VDD=1.2V, VT0,n=0.58V, VT0,p=–0.56V, vsat,n=124340m/s
 (W/L)n = 12, (W/L)p = 3, Ln=Lp=40nm, Cox,n=2.20X10-2F/m2
 kn’= 94.3μA/V2, kp’=41μA/V2, EC,pLp=1.8V, EC,nLn=0.4V

V 
2
k  DD  VT 0, p
VOH=VDD=1.2 V V  VT 0,n    p
2
VOL  VOH  VT 0,n    EC , p  Lp 
OH
 kn   
VDD  VT 0, p  EC , p Lp

0.12 (1.2  0.56)2


 1.2  0.58  (1.2  0.58)  2
 1.8   0.028V
1.08 (1.2  0.56)  1.8

 
kp
VIL  VT 0,n   Vout  VT 0, p
kn
 0.518  0.111Vout Vout  9VIL  4.66

18 SIT Bhubaneswar
Example 5.3 Pseudo-nMOS Inverter Circuit (2)
V  VT 0,n 
2

 
kp
Wn  vsat  Cox     2 VDD  VT 0, p  VDD  Vout   VDD  Vout  
in 2

EC ,n Ln 2  

3.28 103  Vin  0.58   6 105   2 1.2  0.56   1.2  9VIL  4.66   1.2  9VIL  4.66  
0.517V
VIL  
2 2
 
0.644V

VIH  VT 0,n  2Vout Vout  0.5 VIH  0.5VT 0,n  0.5VIH  0.29

 
2
VDD  VT 0, p
 2  Vin  VT 0,n  Vout  Vout 2   W  vsat  Cox 
kn 1
2 
 1 
Vout 


small


VDD  VT 0, p  EC , p Lp 
 EC ,n Ln 
 
k
 2  Vin  VT 0,n  Vout  Vout 2   p  VDD  VT 0, p
kn 2

2   2

0.334V
5.4 10   2  VIH  0.58    0.5VIH  0.29    0.5VIH  0.29    6 105  1.2  0.56 
4

2

2
VIH  
0.826V
NM H  VOH  VIH  1.2  0.826  0.374 V
NM L  VIL  VOL  0.644  0.029  0.615V

19 SIT Bhubaneswar
CMOS Inverter

 Circuit operation
VGS ,n  Vin VSG , p  VDD  Vin
VDS ,n  Vout VSD , p  VDD  Vout

I D,n  I D, p  0 Vout  VOH  VDD

Vout  VOL  0

Saturation p/nMOS for Vin & Vout

VDS ,n  VDSAT ,n  Vout  VDSAT ,n

VSD, p  VDSAT , p  VDD  Vout  VDSAT , p

20 SIT Bhubaneswar
VIL Calculation of CMOS Inverter
V GS , n  VT 0, n 
2

 VIL calculation Wn  vsat  Cox 


V  VT 0,n   EC ,n Ln
GS , n

 
  2 VSG , p  VT 0, p  VSD , p  VSD , p  
kp 1 2
 
2  VSD , p   
1  
V  VT 0,n 
2

 E L 
Wn  vsat  Cox 
in C , p p

V
in  VT 0,n   EC ,n Ln

 
kp 1
    2 VDD  Vin  VT 0, p  VDD  Vout   VDD  Vout  
2

2  VDD  Vout   
1  
 EC , p Lp 
-1
Diff.   dV
kn  Vin  VT 0,n   k p  Vin  VDD  VT 0, p    out

 Vin  VT 0,n    Vout  VDD 
kn 2

2   dVin 
 
k
 p   2 VDD  Vin  VT 0, p  VDD  Vout   VDD  Vout  
2
 dV  
2    Vout  VDD    out  
 dVin  

2Vout  VT 0, p  VDD  k RVT 0,n


kn  VIL  VT 0,n   k p   2Vout  VIL  VT 0, p  VDD  VIL 
1  kR

21 SIT Bhubaneswar
VIH Calculation of CMOS Inverter

 VIH calculation
  2  VGS ,n  VT 0,n   VDS ,n  VDS ,n 2    2  Vin  VT 0,n   Vout  Vout 2 
kn 1 kn 1
 
2  Vout  2  Vout 
1   1  
 EC ,n Ln   EC ,n Ln 
   
2 2
VSG , p  VT 0, p VDD  Vin  VT 0, p
 W  vsat  Cox   W  vsat  Cox 
V
SG , p 
 VT 0, p  EC , p Lp V
DD 
 Vin  VT 0, p  EC , p Lp

-1
Diff.   dV   dV  
kn  Vin  VT 0,n    out   Vout  Vout   out  
 
k
  2  Vin  VT 0,n  Vout  Vout 2   p  VDD  Vin  VT 0, p
kn 2

2 2   dVin   dVin  

 k p  VDD  Vin  VT 0, p 

VDD  VT 0, p  k R   2Vout  VT 0,n 


kn   VIH  VT 0,n  2Vout   k p  VIH  VDD  VT 0, p  VIH 
1  kR

22 SIT Bhubaneswar
Vth Calculation of CMOS Inverter: Method 1

 Vth calculation Definition : Vth = Vin = Vout

 
Wn  Cox  VGS ,n  VT 0,n  VDS ,sat ,n   vsat ,n  Wp  Cox  VSG , p  VT 0, p  VSD,sat , p  vsat , p

 
Wn  Cox  Vin  VT 0,n  VDS ,sat ,n   vsat ,n  Wp  Cox  VDD  Vin  VT 0, p  VSD,sat , p  vsat , p


Vin  1     VT 0,n  VDS , sat ,n    VDD  VT 0, p  VSD,sat , p  where    
vsat , p
vsat ,n

k p  EC , p
kn  EC ,n

1 EC , p

kR EC ,n
W
,  p
Wn

VT 0,n  VDS , sat ,n 


1 EC , p

k R EC ,n

 VDD  VT 0, p  VSD , sat , p  V  VT 0,n   EC ,n  Ln
Vth  where VDS ,sat ,n  th

 1 EC , p
1  


V th  VT 0,n   EC ,n  Ln
 k R EC ,n 

VSD , sat , p 
V DD 
 Vth  VT 0, p  EC , p  Lp

V DD  Vth  VT 0, p  E C, p  Lp

23 SIT Bhubaneswar
Vth Calculation of CMOS Inverter: Method 2

 Vth calculation for easier hand analysis


V  VT 0,n  V  VT 0,n   
2 2
VDD  Vin  VT 0, p
2

Wn  vsat ,n  Cox 
in
Wn   Wp 
in

V
in  VT 0,n   EC ,n Ln EC ,n Ln EC , p Lp

V 
2
DD  Vin  VT 0, p
 Wp  vsat , p  Cox 
V DD 
 Vin  VT 0, p  EC , p Lp

 
Vin  1    VT 0,n    VDD  VT 0, p  
Wp EC ,n  Ln Wp  EC ,n
where   
Wn EC , p  Lp Wn  EC , p

VT 0,n 
1
kR

 VDD  VT 0, p 
Vth 
 1 
 1  
 kR 

24 SIT Bhubaneswar
Design of CMOS Inverters (1)
 Designing CMOS inverter : Setting Vth to a desired voltage value
Vth  VT 0,n  VDS , sat ,n

Vth  VT 0,n  VDS , sat ,n    VDD  VT 0, p  VSD,sat , p  Vth  
VDD  VT 0, p  VSD , sat , p  Vth

1 EC , p

kR EC ,n
1
Vth,ideal  VDD
kn  VDD  VT 0, p  VSD , sat , p  Vth   EC , p  2  kn   0.5VDD  VT 0, p  VSD , sat , p   EC , p 
        
k p  Vth  VT 0,n  VDS , sat ,n   EC ,n    EC ,n
   p ideal  0.5VDD  VT 0,n  VDS ,sat ,n
k
 

W  W 
nCox    n   
 kn  E kn L n L n EC , p
   C, p , kp

W 

W 

EC ,n
 kp inverter
symmetric EC ,n
 p Cox    p  
L p L p

W 
 
 L n  p  EC , p W  n  EC ,n  W 
     
W  n  EC ,n  L  p  p  EC , p  L n
 
 L p

25 SIT Bhubaneswar
Design of CMOS Inverters (2)
 If symmetric CMOS inverter with VT0,n = |VT0,p| and kR = 1,

VIL    3VDD  2VT 0,n 


1
8

VIH    5VDD  2VT 0,n 


1
8

VIL  VIH  VDD


in a symmetric inverter

NM L  VIL  VOL  VIL


NM H  VOH  VIH  VDD  VIH

NM L  NM H  VIL

26 SIT Bhubaneswar
Example 5.4 - CMOS Inverter (1)

 Calculate the noise margins


 VDD=1.2V, VT0,n=0.48V, VT0,p=–0.46V
 kn=982µA/V2, kp=653µA/V2, vsat,n=124340m/s
 EC,nLn=0.4V, EC,pLp=1.8V

kR = 1.503, VT0,n ≠ |VT0,p| → not a symmetric inverter


2Vout  VT 0, p  VDD  k R VT 0,n
VIL 
1 kR
VOL=0 & VOH=1.2 V
2Vout  0.46  1.2  1.503  0.48
  0.799Vout  0.375
1  1.503

9.82×10-4 6.53×10-4 é 2ù
( ) ( )( ) ( )
2
× 0.799Vout -0.375- 0.48 @ × ê2 1.2 - 0.799Vout + 0.375- 0.46 × 1.2 - Vout - 1.2 - Vout ú
2 2 ë û

-0.322V
2
0.362Vout  0.306Vout  0.137  0 Vout  

1.171V

27 SIT Bhubaneswar
Example 5.4 - CMOS Inverter (2)
VIL  0.799 1.171  0.375  0.560V

VDD  VT 0, p  k R   2Vout  VT 0, n 
VIH 
1 kR
1.2  0.46  1.503  2Vout  0.48 
 1.201Vout  0.584
1  1.503

1.5  2  1.201Vout  0.584  0.48  Vout  Vout 2   1.2 1.201Vout  0.584  0.46 
2

1.068V

0.665Vout 2  0.687Vout  0.024  0 Vout  

0.034V

VIH  1.201 0.034  0.584  0.625V

NM L  VIL  VOL  0.560V


NM H  VOH  VIH  0.575V

28 SIT Bhubaneswar
Sizing Trends of CMOS Inverter w/ Small
Geometry Devices (2)
0.62
0.61
0.60

Vth (V)
0.59
 = 2.58
0.58
0.57
0.56

Propagation delay (ps)


28
26
tPHL
24
tP
22
 = 2.19
20
 = 1.4
18 tPLH
16
14

60
Rise & fall time (ps)

55
50
tfall
45
40  = 2.02
35
30
trise
25

0.55
0.54
Noise Margin (V)

0.53
0.52 NMH
0.51  = 2.48
0.50
0.49
0.48 NML
0.47
0.46
0.45
1.0 1.5 2.0 2.5 3.0 3.5 4.0
 ratio

29 CMOS Digital Integrated Circuits – 4th Edition


SIT Bhubaneswar
Supply Voltage Scaling in CMOS Inverters
 Effects of VDD scaling upon the static VTC of CMOS inverters
kT
VDD ,min  4
q

Hysteresis behavior for very low VDD

30 SIT Bhubaneswar
Power and Area Considerations
 DC power dissipation : leakage
 Dynamic power dissipation : Ch. 6 & 11

 Layouts of CMOS inverters

 Comparison with other general inverters


 Advantages : Don't occupy significantly more area.
 Drawbacks : Added Complexity of the fabrication process
(n-well diffusion, separate p-type and n-type source, drain diffusions, etc.)

 Comparison of CMOS random logic with nMOS random logic


 Advantages : low power dissipation & low heat generation
 Drawbacks : more transistors

31 SIT Bhubaneswar

You might also like