Inverter Static
Inverter Static
Inverter-Static Characteristics
SIT 1 8/23/2020
Bhubaneswar
Introduction (1)
Logic symbol & truth Ideal voltage transfer
table characteristic (VTC)
2 SIT Bhubaneswar
nMOS Inverter: Schematic & VTC
NM L VIL VOL
NM H VOH VIH
4 SIT Bhubaneswar
nMOS Inverter: Power & Area
Power Considerations
PDC VDD I DC
VDD
PDC I DC Vin low I DC Vin high
2
5 SIT Bhubaneswar
Resistive-Load Inverter
Resistive-load inverter circuit & its VTC
6 SIT Bhubaneswar
VOH, VOL Calculation of Resistive-Load Inverter
VOH calculation
Vin<VT0, nMOS off
Vout VDD RL I R VOH VDD
VOL calculation
Vin=VOH, nMOS in lin.
VDD Vout VDD VOL kn 1
IR 2 (VDD VT 0 ) VOL VOL 2
RL RL 2 VOL
1
EC Ln
VDD VOL kn 1 2
2 (VDD VT 0 ) VOL VOL
2
V 2
OL 2
DD T 0
V V VOL VDD 0
RL 2 kn RL kn RL
2
1 1 2VDD
VOL VDD VT 0 VDD VT 0
kn RL kn RL kn RL
7 SIT Bhubaneswar
VIL, VIH Calculation of Resistive-Load Inverter (1)
VIL calculation (nMOS in sat.)
VDD Vout (Vin VT 0 )2
W vsat Cox
RL (Vin VT 0 ) EC L
≒
VDD Vout kn
(Vin VT 0 )2
RL 2
-1
Diff. 1 dVout
kn Vin VT 0
RL dVin
1
1 kn VIL VT 0
RL
1
VIL VT 0
kn RL
8 SIT Bhubaneswar
VIL, VIH Calculation of Resistive-Load Inverter (2)
VIH calculation VDD Vout kn 1
2 (Vin VT 0 ) Vout Vout 2
nMOS in lin. RL 2 Vout
1 small (5.24)
EC Ln
VDD Vout kn
2 (Vin VT 0 ) Vout Vout 2
RL 2
-1
Diff. 1 dVout kn dV dV
2 Vin VT 0 out 2Vout 2Vout out
RL dVin 2 dVin dVin
(5.27)
1 1
1 kn VIH VT 0 1 2Vout VIH VT 0 2Vout
RL kn RL
VDD Vout kn 1
into (5.24) 2 VT 0 2Vout VT 0 Vout Vout
2
RL 2 kn RL
2 VDD
Vout Vin VIH
3 kn RL
8 VDD 1
into (5.27) VIH VT 0
3 kn RL kn RL
9 SIT Bhubaneswar
VTC, Power & Chip Area
VTC of the resistive-load Power & chip area
inverter for different (kn∙RL)
VDD VOL
ID IR
RL
VDD VDD VOL
P DC average
2 RL
10 SIT Bhubaneswar
Example 5.1 - Inverter Design
Resistive-load inverter circuit
VDD=1.2V, kn’=98.2μA/V2, ECL=0.45V, VT0=0.53V
VOL=80mV
Determine ① (W/L) ratio of the driver Tr. ② RL
VDD VOL kn' W
2 (VDD VT 0 ) VOL VOL 2 Assuming VOL = 80 mV
1
RL 2 L VOL
1
EC Ln
1.2 0.08 98.2 106 W
RL
2
1
L 1 0.08
2 0.67 0.08 0.082 W
RL 2.63 105
L
0.45
(W/L)-Ratio Load resistor (RL[kΩ]) DC power consumption (PDC,avg.[μW])
1 263.0 2.56
2 131.5 5.11
3 87.7 7.67
4 65.8 10.2
5 52.6 12.8
6 43.8 15.3
11 SIT Bhubaneswar
Example 5.2 - Inverter Design
Resistive-load inverter circuit
VDD=1.2V, kn’=102μA/V2
VT0=0.48V, RL=20kΩ, W/L=4
Calculate (VOL, VOH, VIL, VIH)
Find the noise margins
VOH VDD 1.2V kn = kn' (W/L) = 408 μA/V2, (kn∙RL) = 8.16 V-1.
2
1 1 2VDD 1 1
VOL VDD VT 0 VDD VT 0 VIL VT 0 0.48 0.603V
kn RL kn RL kn RL kn RL 8.16
1 2 1.2
2 8 VDD 1 8 1.2 1
1.2 0.48
1
1.2 0.48 VIH VT 0 0.48 0.984V
3 kn RL kn RL 3 8.16 8.16
8.16 8.16 8.16
12 SIT Bhubaneswar
Inverters with MOSFET Load
Enhancement-load
nMOS inverter
VDD
Pseudo-nMOS Inverter
IL
ID Vout = VDS,driver
+
Vin = VGS,driver
13 SIT Bhubaneswar
Pseudo-nMOS Inverter
Operating mode of the pMOS transistor
Vout : small → Vout < -VT0,p → |VDS,p | ≥ |VDSAT,p| (Saturation)
2 2
VSG , p VT 0, p VDD VT 0, p
I D , p W vsat Cox W vsat Cox
V SG , p
VT 0, p EC Lp V
DD
VT 0, p EC Lp
kp 1
I D, p 2 VDD VT 0, p VDD Vout VDD Vout 2
2 VDD Vout
1
EC Ln
14 SIT Bhubaneswar
VOH, VOL Calculation of Pseudo-nMOS Inverter
VDD
+
Vout VDS,driver
VOL calculation
=
ID
+
Vin = VGS,driver
2
VDD VT 0, p
2 VOH VT 0,n VOL VOL 2 W vsat Cox
kn 1
2
1
VOL
small
VDD VT 0, p EC , p Lp
EC ,n Ln
2
k VDD VT 0, p
V VT 0,n p
2
VOL VOH VT 0,n EC , p Lp
OH
kn
VDD VT 0, p EC , p Lp
nMOS size > pMOS size → VOL : lower → good noise margin
( NM L VIL VOL )
15 SIT Bhubaneswar
VIL, VIH Calculation of Pseudo-nMOS Inverter
V VT 0,n
2
Wn vsat Cox
in
VIL calculation
EC ,n Ln
kp
2 VDD VT 0, p VDD Vout VDD Vout
2
2
V VT 0,n Diff.
2
Wn vsat Cox -1
in
kp
VIL VT 0,n Vout VT 0, p
kn
VIH calculation IL
ID Vout = VDS,driver
2
VDD VT 0, p +
2 Vin VT 0,n Vout Vout 2 W vsat Cox
kn 1
Vin = VGS,driver
2 Vout VDD VT 0, p EC , p Lp
1
EC ,n Ln -1
Diff. dV dV
kn Vin VT 0,n out Vout Vout out
k
2 Vin VT 0,n Vout Vout 2 p VDD VT 0, p 0
kn 2
2 2 dVin dVin
16 SIT Bhubaneswar
Design of Pseudo nMOS Inverters
& Power/Area Considerations
Design of pseudo nMOS inverters
W
kn'
2
kn VDD VT 0, p k L n
kR kR n
k p 2 VOH VT 0,n VOL VOL 2 kp W
k p'
L p
Power and area considerations
V
VDD
2
DD VT 0, p
I DC (Vin VDD ) W vsat Cox
V
pMOS
VT 0, p EC , p Lp
transistor
n-well
DD
1
EC ,n Ln
nMOS
transistor
V
2
VDD DD VT 0, p
PDC W vsat Cox Input
2
VDD VT 0, p EC , p Lp GND
17 SIT Bhubaneswar
Example 5.3 Pseudo-nMOS Inverter Circuit (1)
V
2
k DD VT 0, p
VOH=VDD=1.2 V V VT 0,n p
2
VOL VOH VT 0,n EC , p Lp
OH
kn
VDD VT 0, p EC , p Lp
kp
VIL VT 0,n Vout VT 0, p
kn
0.518 0.111Vout Vout 9VIL 4.66
18 SIT Bhubaneswar
Example 5.3 Pseudo-nMOS Inverter Circuit (2)
V VT 0,n
2
kp
Wn vsat Cox 2 VDD VT 0, p VDD Vout VDD Vout
in 2
EC ,n Ln 2
3.28 103 Vin 0.58 6 105 2 1.2 0.56 1.2 9VIL 4.66 1.2 9VIL 4.66
0.517V
VIL
2 2
0.644V
VIH VT 0,n 2Vout Vout 0.5 VIH 0.5VT 0,n 0.5VIH 0.29
2
VDD VT 0, p
2 Vin VT 0,n Vout Vout 2 W vsat Cox
kn 1
2
1
Vout
small
VDD VT 0, p EC , p Lp
EC ,n Ln
k
2 Vin VT 0,n Vout Vout 2 p VDD VT 0, p
kn 2
2 2
0.334V
5.4 10 2 VIH 0.58 0.5VIH 0.29 0.5VIH 0.29 6 105 1.2 0.56
4
2
2
VIH
0.826V
NM H VOH VIH 1.2 0.826 0.374 V
NM L VIL VOL 0.644 0.029 0.615V
19 SIT Bhubaneswar
CMOS Inverter
Circuit operation
VGS ,n Vin VSG , p VDD Vin
VDS ,n Vout VSD , p VDD Vout
Vout VOL 0
20 SIT Bhubaneswar
VIL Calculation of CMOS Inverter
V GS , n VT 0, n
2
2 VSG , p VT 0, p VSD , p VSD , p
kp 1 2
2 VSD , p
1
V VT 0,n
2
E L
Wn vsat Cox
in C , p p
V
in VT 0,n EC ,n Ln
kp 1
2 VDD Vin VT 0, p VDD Vout VDD Vout
2
2 VDD Vout
1
EC , p Lp
-1
Diff. dV
kn Vin VT 0,n k p Vin VDD VT 0, p out
Vin VT 0,n Vout VDD
kn 2
2 dVin
k
p 2 VDD Vin VT 0, p VDD Vout VDD Vout
2
dV
2 Vout VDD out
dVin
21 SIT Bhubaneswar
VIH Calculation of CMOS Inverter
VIH calculation
2 VGS ,n VT 0,n VDS ,n VDS ,n 2 2 Vin VT 0,n Vout Vout 2
kn 1 kn 1
2 Vout 2 Vout
1 1
EC ,n Ln EC ,n Ln
2 2
VSG , p VT 0, p VDD Vin VT 0, p
W vsat Cox W vsat Cox
V
SG , p
VT 0, p EC , p Lp V
DD
Vin VT 0, p EC , p Lp
-1
Diff. dV dV
kn Vin VT 0,n out Vout Vout out
k
2 Vin VT 0,n Vout Vout 2 p VDD Vin VT 0, p
kn 2
2 2 dVin dVin
k p VDD Vin VT 0, p
22 SIT Bhubaneswar
Vth Calculation of CMOS Inverter: Method 1
Wn Cox VGS ,n VT 0,n VDS ,sat ,n vsat ,n Wp Cox VSG , p VT 0, p VSD,sat , p vsat , p
Wn Cox Vin VT 0,n VDS ,sat ,n vsat ,n Wp Cox VDD Vin VT 0, p VSD,sat , p vsat , p
Vin 1 VT 0,n VDS , sat ,n VDD VT 0, p VSD,sat , p where
vsat , p
vsat ,n
k p EC , p
kn EC ,n
1 EC , p
kR EC ,n
W
, p
Wn
1 EC , p
1
V th VT 0,n EC ,n Ln
k R EC ,n
VSD , sat , p
V DD
Vth VT 0, p EC , p Lp
V DD Vth VT 0, p E C, p Lp
23 SIT Bhubaneswar
Vth Calculation of CMOS Inverter: Method 2
Wn vsat ,n Cox
in
Wn Wp
in
V
in VT 0,n EC ,n Ln EC ,n Ln EC , p Lp
V
2
DD Vin VT 0, p
Wp vsat , p Cox
V DD
Vin VT 0, p EC , p Lp
Vin 1 VT 0,n VDD VT 0, p
Wp EC ,n Ln Wp EC ,n
where
Wn EC , p Lp Wn EC , p
VT 0,n
1
kR
VDD VT 0, p
Vth
1
1
kR
24 SIT Bhubaneswar
Design of CMOS Inverters (1)
Designing CMOS inverter : Setting Vth to a desired voltage value
Vth VT 0,n VDS , sat ,n
Vth VT 0,n VDS , sat ,n VDD VT 0, p VSD,sat , p Vth
VDD VT 0, p VSD , sat , p Vth
1 EC , p
kR EC ,n
1
Vth,ideal VDD
kn VDD VT 0, p VSD , sat , p Vth EC , p 2 kn 0.5VDD VT 0, p VSD , sat , p EC , p
k p Vth VT 0,n VDS , sat ,n EC ,n EC ,n
p ideal 0.5VDD VT 0,n VDS ,sat ,n
k
W W
nCox n
kn E kn L n L n EC , p
C, p , kp
W
W
EC ,n
kp inverter
symmetric EC ,n
p Cox p
L p L p
W
L n p EC , p W n EC ,n W
W n EC ,n L p p EC , p L n
L p
25 SIT Bhubaneswar
Design of CMOS Inverters (2)
If symmetric CMOS inverter with VT0,n = |VT0,p| and kR = 1,
NM L NM H VIL
26 SIT Bhubaneswar
Example 5.4 - CMOS Inverter (1)
9.82×10-4 6.53×10-4 é 2ù
( ) ( )( ) ( )
2
× 0.799Vout -0.375- 0.48 @ × ê2 1.2 - 0.799Vout + 0.375- 0.46 × 1.2 - Vout - 1.2 - Vout ú
2 2 ë û
-0.322V
2
0.362Vout 0.306Vout 0.137 0 Vout
1.171V
27 SIT Bhubaneswar
Example 5.4 - CMOS Inverter (2)
VIL 0.799 1.171 0.375 0.560V
VDD VT 0, p k R 2Vout VT 0, n
VIH
1 kR
1.2 0.46 1.503 2Vout 0.48
1.201Vout 0.584
1 1.503
1.5 2 1.201Vout 0.584 0.48 Vout Vout 2 1.2 1.201Vout 0.584 0.46
2
1.068V
0.665Vout 2 0.687Vout 0.024 0 Vout
0.034V
28 SIT Bhubaneswar
Sizing Trends of CMOS Inverter w/ Small
Geometry Devices (2)
0.62
0.61
0.60
Vth (V)
0.59
= 2.58
0.58
0.57
0.56
60
Rise & fall time (ps)
55
50
tfall
45
40 = 2.02
35
30
trise
25
0.55
0.54
Noise Margin (V)
0.53
0.52 NMH
0.51 = 2.48
0.50
0.49
0.48 NML
0.47
0.46
0.45
1.0 1.5 2.0 2.5 3.0 3.5 4.0
ratio
30 SIT Bhubaneswar
Power and Area Considerations
DC power dissipation : leakage
Dynamic power dissipation : Ch. 6 & 11
31 SIT Bhubaneswar