SRI GURU JUNIOR COLLEGE
JEE ADVANCE MODEL PAPER-1 Date: 24-04-2025
GRAND TEST - 01
ANSWERS, HINTS & SOLUTIONS
Physics PART – I
Section – A
1. AD
Sol. So, velocity of first particle
= 3 cos 37° î + 3 sin 37° ĵ
12 ˆ 9 ˆ
= i j
5 5
Velocity of second particle
= 4 cos 53o ˆi 4 sin 53o ˆj
12 ˆ 16 ˆ
= i j
5 5
So, relative horizontal velocity is zero. So their relative velocity is in vertical direction
only. Since, both particles are moving under gravity, so their relative acceleration is zero.
16 9 7
Their relative velocity = = 1.4 m/s
5 5 5
2. BC
Sol. Just after BP is cut.
For block A no force has changed.
acceleration of m1 = 0
for m2 downward force is being reduced
m2 will move upwards.
3. AC
Sol. dw f ds
Since, body is hauled slowly, so
f = mg sin + mg cos
W = (mg sin mg cos )ds
mgds sin mgds cos
mgdy mgdx
= mgh + mgL
4. AC
Sol. 5 – F1 = 1 × 2 F1 = 3 N
Taking torque about CM:
5x = 3( + x) 2x = 3 × 20 x = 30 cm
Length of rod = 2 × ( + x) = 100 cm = 1 m
5. AC
Sol. AC = 5 m
kq 9 109 1 10 6
V
AC 5
3
= 1.8 × 10 = 1.8 kV
VB = (VB)due to q + (VB)i
(VB)i = –0.45 kV
So, (A) and (C) are correct.
6. BC
V2
Sol. For a bulb R
W
RB RA
when switch is open IA = IB
2
PA R AIA
2
PB RBIB
PB < PA and VA > VB
VA > 12V and VB < 12V
After closing the switch
VA = VB = 12 V
7. A
Sol.
(I)
Pi Pf 60(1 V) 100 V
3 3
V opposite to velocity of Ram i.e. m/s towards right.
8 8
(II) 80 V = 80 (1 – V)
1
V = m / sec left.
2
(III) 80(1 + V) + 60(–1 + V) + 20V = 0
1
V m/s
8
(IV) After jump of Ram 3/8
3
Now (80 20) 80(1 V) 20 V
8
17
V m /s
40
8. B
3
Sol. (I) Velocity of fish in air = 4 = 3
4
Velocity of fish w.r.t. bird = 3 + 6 = 9
3
(II) Velocity of image of fish after reflection from mirror in air = 4 = 3
4
w.r.t. bird = –3 + 6 = 3
4
(III) Velocity of bird in water = 6 = 8
3
w.r.t. fish = 8 + 4 = 12
(IV) Velocity of bird in water after reflection from mirror = 8
w.r.t. fish = 8 – 4 = 4
9. D
r
2br 3
Sol. I 2rdrbr
0
3
Use ampere law for B.
10. C
dB
Sol. B d A dt
Section – B
11. 7.50
Sol. The centre of the wheel is moving with constant speed on a circular path of radius 6R.
V2
Hence, it has a centripetal acceleration of ac directed towards the centre of
6R
curvature of the convex surface.
V2
With respect to the centre of the wheel, the contact point has acceleration equal to
R
directed towards the centre of the wheel.
Acceleration of the contact point in reference frame of ground is
V 2 V 2 5V 2
aP .
R 6R 6R
12. 2.56
Sol. For a jump of h0 = 1 m on the earth, speed required is given by
1
mV 2 mgh0 V 20 m /s
2
Escape speed on the surface of a planet is
2GM 8 GR2
Vesc
R 3
Vesc planet Rplanet
Vesc earth Rearth
planet
We want Vesc = 20 m /s
planet
And it is given that Vesc = 11.2 km/s
20 (6400 km)
Rplanet = 2.56 km
11200
13. 400.00
Sol. If force exerted on piston of area A2 is F2 then, the force acting on the other piston will be
F
= 2 A1 [Pascal’s law]
A2
A
= 5F2 1 5
A2
To raise the load 5F2 = 20000 F2 = 4000 N
Since lever bar is light, net torque on it (about the hinge) must be zero.
F2a = F(a + b)
Fa 4000 4
F 2 = 400 N
ab 4 36
14. 283.40
Sol. The product nucleus 198Hg is in excited state and possesses extra 1.088 MeV energy. If
198
Hg would had been in ground state, the kinetic energy available to electron and
antineutrino must have
Q = (mAu – mHg) 931 MeV
= (197.968233 – 197.966760) 931 MeV
= 1.3714 MeV
Since 198Hg is in excited state, actual kinetic energy available to electron and
antineutrino is
K = (1.3714 – 1.088) MeV
= 0.2834 MeV
As -ray and antineutrino has continuous spectrum starting from zero value, therefore,
this is also the maximum kinetic energy of the electron emitted.
15. 7.00
Sol. x = (1 – 1)t1 – (2 – 1)t2
= (2 – 1)200 – (1.5 – 1)200
= 200 – 100 = 100 nm
2 2
x 100
600 3
P P1 P2 2 P1P2 cos
= I0 r12 I0 r22 2 I0 r12 I0 r22 cos
3
= 7 W
16. 4.01
Sol. As here volume of gas remains constant,
(Q)v = CVT, Here Cv = 5 cal/mol K
And T = (400 – 300) = 100 K
And so for ideal gas PV = RT,
(10)5 (0.2)
= 8.0224
8.31 300
(Q)v = × 5 × 100 = 4.01 kcal.
17. 3.14
F L mg
Sol. Y Y()
A L A
AY( ) r 2 Y( )
m
g g
(10 3 )2 1011 10 5 10
= =
10
18. 30.00
Sol. f T for strings.
On increasing the tension by 1%
f 1.01 T
1
f 1.01 T 1
(1 0.01) 2 1
f T 200
f
Beat frequency, f f f 1 = 1
f
Number of beats in 30 seconds = 1 × 30 = 30.
Chemistry PART – II
Section – A
19. A
Sol. O O
O
O
O O O O O O
O O
O O
O O O O O
20. BC
Sol. 2C 3H2 C2 H6
s g g
0 0
H 2 H 3 B.E H H B.E. C C 6 B.E C H
f sub
85 2 718 3 436 x 6y
x 6y 2829 …..1
Similarly for C3H8 g
2x 8y 4002 …..2
Solving (1) & (2), x = 345
y = 414
21. AB
E a
Sol. k Ae Ea /RT or nk nA
RT
22. ABC
Sol. The outermost electronic configuration of Yb is 4f 146s2
Yb2+ has full-filled 4f14 configuration radius of Yb3+ <Yb2+
23. AD
H2O
Sol. Be 2C Be OH2 CH4
H2O
Al4 C3 Al OH 3 CH4
24. ABCD
H 40,600
Sol. S 108.84 j / K for one mole
T 373
9 108.84
for mole, S 54.42 j / K
18 2
25. A
Sol. I – can undergo Nu– substitution, elimination
II – can undergo Nu– substitution, esterification, dehydrogenation & oxidation.
III – can undergo Nu– addition, esterification and oxidation
IV – can undergo Nu– substitution
26. A
Sol. Fact based
27. C
Sol. Elements having filled d-orbitals are not true transition elements.
28. B
Sol. SO32 dil.H2SO 4
H2O SO 2 SO24
CO32 dil.H2SO 4
H2O CO 2 SO 42
NH4 NaOH Na H2O NH3
S 2 H2SO 4
H2S SO 42
Section – B
29. 162.00
2
Sol. K f of camphor
R Tfo M2
2 152 450
2
40.5
1000 Hof 1000 1.52 1000
Tf i K f m
0.04 1000
450 430 1 40.5
Msolute 0.5
0.04 1000 40.5
Msolute 162
0.5 20
30. 81.81
Sol. NaOH HCl NaCl H2O
Millimoles 0.1 .001 x 0 0
-0.001 x -0.001x
_________________________
t=t 0.1 - .001 /x x
10–3 M NaOH have pH = 11
New pH after adding acid be 10
Hence, 10–4 M (100 + x) = 0.1 - .001 x
0.1 0.001x
100 + x =
10 4
11x = 1000 – 100 = 900
900
x= 81.81 mL
11
31. 390.55
Sol. 0mCH3COOH
0
m Ca CH3 COO 2 2 m0 HCl m0 CaCl2
2
200.8 2 425.95 271.6
390.55
2
32. 1.50
Sol. Vander waals equation for 1 mole of real gas, when b = 0
a
P 2 V RT
V
1
PV a RT
V
y mx c
Slope = tan(–) = –a
21.6 20.1
So, tan = a = 1.5
32
33. 11.00
Sol. The product contains three phenyl group and two multiple bonds
Total number of pi-bonds = (3 3) + 2 = 11
34. 2920.40
Sol. Meq of MnO 4 = Meq of Fe2+
w
VMn= 1000
E
w
or, 104.3 1000 0.1 5 = 1000
56
1
On solving w = 2920.4 g
35. 8.33
200
Sol. The average O.S of iron in Fe0.96O is
96
Let the % of Fe(II) be x
100 200
x (+3) + (100 - x) (+2) =
96
3x + 200 – 2x = 208.33
x = 8.33
36. 1.41
ZM
Sol. d
Na a3
45 z 27
3
16 6.02 1023 4 10 8
Z = 4 (so fcc)
2a o
r 1.41 A
4
Mathematics PART – III
Section – A
37. AC
Sol.
V a. b c a12 a22 a32 b12 b 22 b32 c12 c 22 c 23 …….(i)
1/3
a1 a 2 a3 b1 b2 b3 c1 c 2 c 3 (Using A.M. G.M.)
L3 a1 a2 a3 b1 b 2 b3 c1 c 2 c 3
2
now a1 a 2 a3 a12 a 22 a32 2 a1a2 a2a3 a3a1
2
a1 a2 a3 a12 a22 a32
a1 a2 a3 a12 a22 a32
similarly b1 b2 b3 b1 b2 b3
2 2 2
c1 c 2 c 3 c12 c 22 c 32
1/2
L3 a12 a 22 a32 b12 b22 b23 c12 c 22 c 23
L3 V
38. BC
3 3 2
Sol. We supposed to find m and n such that lim 3 8x mx nx 1 or
x
3
lim 8x 3 mx nx 1.
x
We compute
3 3
8x mx nx 2 8 n x
3 3
mx 2
.
2
3
8x 3
mx nx
2 3 3
8x mx n x 2 2 2
8 n3 must be equal to 0
n2
m
Now f x .
2
m m
8 x 23 8 x 4
3
m
We see that lim f x . For this to be equal to 1, m must be equal to 12. Hence the
x 12
answer to the problem is (m, n) = (12, 2).
39. ABCD
x4 1 x 4 x2 1 x2 1 1 x '
3
Sol. x 6 1 dx x 6 1 dx x 6 1 dx x 2 1 dx 3 x3 2 1 dx
1
arc tan x arc tan x 3 .
3
To write the answer in the required form we should have
P x
3 arctan x arc tan x 3 arc tan
Q x
Applying the tangent function to both sides, we deduce
3x x 3
2
x3 P x
1 3x tan arctan .
3x x 3 3 Q x
1 .x
1 3x 2
P x 3x 3x 5
From here arctan arc tan , and hence
Q x 1 3x 2 3x 4 x 6
P x 3x 3x 5 ,Q x 1 3x 2 3x 4 x 6 . The final answer is
1 3x 3x 5
arctan C.
3 1 3x 2 3x 4 x 6
40. AC
ab
Sol. Denote the value of the integral by I. With the substitution t we have
x
b t t b
t a a t
b e e ab be e
I . 2 dt dt I .
a ab t a t
t
Hence, I = 0.
41. AB
Sol. 3 tan3x
3 3 tan x tan3 x 3 tan 3
x 9 tan x
2
1 3 tan x 3 tan2 x 1
8 tan x
.
3 tan2 x 1
Hence
1 tan x 1
2
3 tan 3x tan x for all x k , k .
cot x 3 tan x 1 3 tan x 8 2
It follows that the left – hand side telescopes as
1
8
3 tan 27o tan9o 9 tan81o 3 tan 27o 27 tan243o 9 tan81o 81 tan729o 27 tan 243o
1
8
81tan9o tan9o 10 tan9 o .
42. BC
Sol.
A
O
(4, 8)
B
P
(–2, 0)
2 5 1
sin
10 5
8 4
Slopes of PA and PB are tan where tan
6 3
4 1 4 1
3 2 , 3 2
4 1 4 1
1 . 1 .
3 2 3 2
11 5
,
2 10
11 2
A,B 4 2 5 ,8 2 5 ,
5 5 5 5
1 2 2 44
4 2 5 , 8 2 5 5 , 5
5 5
6, 4
43. B
y
Sol. (I) A, B, C are the 3 critical points of y f x . A
f " x 0 for x 2 and fails to exists at x = 0.
c
B
x
0 1 2
1
(II) x and 2. Make a quadratic in log2 x and
4 3x + 4y = c
interpret the result.
x1, y1
dy 3 1
(III) 1 2x13 x1
dx 4 2
1 1 15 3
y1 or y1 c
32 2 32 8
3
(IV) f ' x 2x 3x 1 this is always positive in (1, 2).
Increasing in [1, 2]
f 2 will be the greatest value.
44. D
1
tan
n2 n o
Sol. Let L lim
n n 1
1 n2 2ln ln n 1
In L lim tan ln lim
n n n 1 n 1
cot
n
2
Put n t lim
4ln t ln t 2 1
2 t2 2
t 1 1 1
cot lim t t 2 1 cos ec 2 2
t t t t
2
1
2 t 2 sin t
2
lim 1 0
t t t 2 1
t
L 1 Q
3
(III) sin 2x
2
2x 0, 4
Hence, 8 solutions.
(IV) Since g x is differentiable x R
f x must have the factor x x 1 x 2 atleast once.
minimum 3 roots of f x 0 R
45. A
Sol. x bbb x c x c x c x
4! 5
Number of ways C4 20
3!
(II) 2b, 1b; 2c, 1c or 2b,1b; 1c,1c,1c or 2b, 1b; 3c
(same way starting with c)
cbbcbc, cbcbbc
bbcccb, bcccbb
Number of ways 12 6C4 180
7
(III) bcbcbc C4
bccbcb or bcbccb 2 6C3
bbccbc or bccbbc or bbcbcc or bcbbcc 4 5C2
bcccbb or bbcccb 2 4C1
bbbccc 4C4
Total ways 2 35 40 40 8 1 248
(IV) bcbcbc, cbcbcb
bccbcb, cbbcbc
bcbccb, cbcbbc
bcbccb, cbcbbc
7
number of ways C1 2 4 18
46. D
1 11C5 1
Sol. (I) P 12
C6 2
2
C1 10C5 6
(II) P 12
C6 11
10
C4 5
(III) P
12
C5 22
10
(IV) P
11
Section – B
47. 252.00
2018 2018
Sol. x 3 1 and y 3 1
2018 2018
x x y 3 1 3 1
1009 1009
x 1 21009 2 3
2 3
21009 2 1009 C0 21009 1009C2 2100731 ..... 1009C1006 23 3503 1009C1008 2 3504
x 1 21011 1009 C0 21008 ..... 1009C1006 22 3503 1009C 1008 3504
odd
[ {x} + y (0, 2) {x} + y = 1]
N is divisible by 21011, hence divisible by (16)252
48. 13.00
n n 1
7
Sol. Coefficient of x 2 7 1 6 2 5 3 4 1 2 4 13
49. 18.00
2
Sol. We have 2 2 2 2
4 6 2
1 .
Also, 3 3 3 3
2 2 2
50. –1.59
Sol. The critical point of f are solutions to the system of equations
f 9
x, y 4x3 12xy2 0,
x 4
f 7
x, y 12x 2 y 4y 3 0
y 4
divide the two equations by 4 and then add, respectively, subtract them, we obtain
1
x 3 3x 2 y 3xy 2 y 3 1 0 and x 3 3x 2 3xy 3 y 3
. We write these as
8
3 3 1 1
x y 1 and x y , from which we obtain x y 1 and x y . We
8 2
3 1
find a unique critical point x , y . The minimum of f is attained at this point, and
4 4
3 1 51
it is equal to f , .
4 4 32
51. 126.00
5 2
Sol. We have, lim gn 3 lim n f 3 f 3
n n
n n
f 3 h f 3 f 3 f 3 h
5 lim 2 lim
h 0 h h 0 h
5f ' 3 2f ' 3 5 18 2 18 90 36 126 .
52. 1.01
Sol. y x2 y 2 x2 y2
2 2
Required area
x2 2 x2
2 x
2
2 dx
1 2
20
4 2 1.01
3
53. 18.00
Sol. The points x1, x2 and y1, y2 lie on the circle of radius 2 2 c centered at the
origin. We can write x1, x2 c cos ,c sin and y1, y2 a cos ,c sin .
Then
s 2 c cos sin cos sin c 2 cos cos sin sin
2 c 2 sin sin 0 c 2 cos to 1 by choosing
4 4
5 2
4
2
. The maximum of S is 2 2c 2 c c 2 .
54. 11.00
1 1
Sol. x 2 1 or x 2 1
1 1
x 1,2 x 1, 2
2 2
3 5 1 3
x , ….(1) x , ……..(2)
2 2 2 2
1 2
1 3 3 5
x , ,
2 2 2 2
1 9 9 25
x12 x 22 x 32 x 24 11
4 4 4 4