0% found this document useful (0 votes)
28 views28 pages

Theory of Equation

The document presents a series of mathematical equations and their solutions, focusing on quadratic equations and their properties. It discusses the conditions for real and unequal roots, the nature of coefficients, and the implications of various cases on the values of parameters. Additionally, it explores the relationships between the roots and coefficients of polynomial equations, providing insights into their behavior and constraints.

Uploaded by

sarangamore33
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
28 views28 pages

Theory of Equation

The document presents a series of mathematical equations and their solutions, focusing on quadratic equations and their properties. It discusses the conditions for real and unequal roots, the nature of coefficients, and the implications of various cases on the values of parameters. Additionally, it explores the relationships between the roots and coefficients of polynomial equations, providing insights into their behavior and constraints.

Uploaded by

sarangamore33
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 28

5. Q x1x 2 = 4 ...

(i)

Solutions and



or
x1
+
x2
x1 - 1 x 2 - 1
=2

2 x1x 2 - x1 - x 2 = 2 ( x1x 2 - x1 - x 2 + 1 )
8 - x1 - x 2 = 2 ( 4 - x1 - x 2 + 1 )
x1 + x 2 = 2
[from Eq. (i)]
…(ii)
1. We have, From Eqs. (i) and (ii), required equation is
2 (a - b ) x 2 - 11 (a + b + c ) x - 3 (a - b ) = 0 x 2 - ( x1 + x 2 ) x + x1x 2 = 0
∴ D = { - 11 (a + b + c )} 2 - 4 ⋅ 2 (a - b ) ⋅ ( -3) (a - b ) or x 2 - 2x + 4 = 0
2 2
= 121 (a + b + c ) + 24 (a - b ) > 0 6. Let f ( x ) = x 2 - 2ax + a 2 - 1
Therefore, the roots are real and unequal. Now, four cases arise:
2. Here, a < 0 Case I D ≥ 0
Cut-off Y -axis, x = 0
⇒ y =c < 0 [from graph]
∴ c<0
x -coordinate of vertex > 0
X
b –2 α β 2
⇒ - >0
2a
b ⇒ ( - 2a ) 2 - 4 ⋅ 1 (a 2 - 1 ) ≥ 0
⇒ <0
a ⇒ 4≥0
But a<0 ∴ a ∈R
∴ b>0 Case II f ( - 2 ) > 0
and y-coordinate of vertex < 0 ⇒ 4 + 4a + a 2 - 1 > 0
D D
⇒ - <0 ⇒ >0 ⇒ a 2 + 4a + 3 > 0
4a 4a
∴ D<0 [Q a < 0 ] ⇒ (a + 1 ) (a + 3 ) > 0
i.e. b 2 - 4ac < 0 ∴ a ∈ ( - ∞, - 3 ) ∪ ( - 1, ∞ )
c Case III f (2 ) > 0
∴ >0 [Qc < 0 , a < 0 ]
a ⇒ 4 - 4a + a 2 - 1 > 0

3. Sum of the roots = -


(a + 3 )
=I+ [let] ⇒ a 2 - 4a + 3 > 0
a ⇒ (a - 1 ) (a - 3 ) > 0
 3 
∴ a = - +  …(i) ∴ a ∈ ( - ∞, 1 ) ∪ (3, ∞ )
 I + 1 Case IV - 2 < x-coordinate of vertex < 2
a -3 ⇒ - 2 < 2a < 2
Product of the roots = αβ = =I+ +2 …(ii)
a ∴ a ∈ ( - 1, 1 )
and D = (a + 3 ) 2 - 4a (a + 3 ) Combining all cases, we get a ∈ ( - 1, 1 )
9 Hence, [a ] = - 1, 0
= + {( I + - 2 ) 2 - 12 } [from Eq. (i)]
(I + 1)2  - 4a 
7. We have, -   = -2
D must be perfect square, then I + = 6  2 (- 2)
From Eq. (ii), ⇒ a =2
Product of the roots = I +
+ 2 =6 + 2 =8 ∴ y = - 2x 2 - 8x + λ …(i)
4. Let α be one root of Since, Eq. (i) passes through points ( - 2, 7 )
2
x - 3ax + f (a ) = 0 ∴ 7 = - 2 (- 2)2 - 8 (- 2) + λ
⇒ α + 2 α = 3a ⇒ 3 α = 3a ⇒ 7 = - 8 + 16 + λ
⇒ α =a …(i) ∴ λ = -1
and α ⋅ 2 α = f (a ) 8. Since, the coefficient of n 2 = ( 4p - p 2 - 5) < 0
⇒ f (a ) = 2 α 2= 2a 2 [using Eq. (i)] Therefore, the graph is open downward.
⇒ f (x ) = 2x 2 According to the question, 1 must lie between the roots.
180 Textbook of Algebra

Hence, f (1) > 0 Q g( x ) = ( x + 1 ) 2 - 6 ≥ - 6


2
⇒ 4p - p - 5 - 2p + 1 + 3p > 0 ∴ α 3 ≤ - 7, α 2 ≤ - 8, α 1 ≤ - 9
⇒ - p 2 + 5p - 4 > 0 ∴ a + b + c ≥ 719
⇒ p 2 - 5p + 4 < 0 ∴Minimum value of a + b + c is 719.
Q α1 + α 2 + α 3 = - a
⇒ ( p - 4) ( p - 1) < 0
⇒ - a ≤ - 24
⇒ 1<p<4
⇒ a ≥ 24
∴ p = 2, 3
α 1α 2 + α 2 α 3 + α 3α 1 = b
Hence, number of integral values of p is 2.
2 2 ⇒ b ≥ 191
9. We have, 3 2 x - 2 ⋅ 3 x + x+ 6
+ 3 2 ( x + 6) = 0 and α 1α 2 α 3 = - c
2
⇒ (3 x - 3 x + 6 ) 2 = 0 ⇒ - c ≤ - 504
2 ⇒ c ≥ 504
⇒ 3x - 3x + 6 = 0
2
∴ a + b + c ≥ 719
⇒ 3x = 3x + 6 ⇒ x 2 = x + 6 Hence, minimum value of a + b + c is 719.
⇒ x2 - x - 6 = 0 n
13. Q ∑ ( x + k - 1) (x + k ) = 10n
⇒ (x - 3) (x + 2) = 0 k =1
∴ x = { - 2, 3 } n
2 2
10. Given, b - 4ac = p - 4aq …(i) ⇒ ∑ x 2 + x (2k - 1) + (k - 1)k = 10n
k =1
and f ( x ) = g( x )
⇒ nx 2 + x (1 + 3 + 5 +… + (2n - 1 ))
⇒ ax + bx + c = ax 2 + px + q
2

⇒ (b - p ) x = q - c + ( 0 + 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 +… + (n - 1 )n ) = 10n
q -c n
∴ x= =α [given] …(ii) ⇒ nx 2 + x ⋅ (1 + 2n - 1 )
b-p 2
From Eq. (i), we get  n (n + 1 ) (2n + 1 ) n(n + 1 )
+ -  = 10n
(b + p ) (b - p ) + 4a (q - c ) = 0  6 2 
⇒ (b + p ) (b - p ) + 4aα (b - p ) = 0 [from Eq. (ii)] n (n 2 - 1 )
(b + p ) ⇒ nx 2 + n 2x + = 10n
or α=- [Qb ≠ p] 3
4a
(n 2 - 31 )
 b  p ⇒ x 2 + nx + =0 [dividing by n]
-  + -  3
 a  a 
= D
4 Q (α + 1 ) - α =
Sum of the roots of ( f (x ) = 0)  1
+ Sum of the roots of (g (x ) = 0) 1= D
= 
4 ⇒ D =1
2
= AM of the roots of f ( x ) = 0 (n - 31 )
⇒ n2 - 4 ⋅1 ⋅ =1
and g( x ) = 0 3
11. Let α and β be the roots of ax 2 + bx + c = 0. ⇒ 3n 2 - 4n 2 + 124 = 3
α+β b ⇒ n 2 = 121
∴ x1 = =-
2 2a ∴ n = 11
c 14. Since, 2 is only even prime.
2⋅
2αβ 2c
and x2 = = a =- Therefore, we have
α +β -b b
2 2 + λ ⋅ 2 + 12 = 0
a
∴The required equation is ⇒ λ =8
 b   2c   2bc ∴ x 2 + λx + µ = 0
x 2 -  -  +  -   x + =0

 2a   b  2ab ⇒ x 2 + 8x + µ = 0 …(i)
2 2
i.e. 2abx + (b + 4ac ) x + 2bc = 0 But Eq. (i) has equal roots.
12. Let α 1, α 2 and α 3 be the roots of f ( x ) = 0, such that ∴ D=0
α1 < α 2 < α 3 ⇒ 82 - 4 ⋅ 1 ⋅ µ = 0
and g( x ) can take all values from [ - 6, ∞ ). ⇒ µ = 16
Chap 02 Theory of Equations 181

15. We have, x + x - (1 - x ) = 1 9 ⋅ 3 2 x + 6 ⋅ 3 x + 4 (3 x + 1 ) 2 + 2 ⋅ 3 x + 1 + 4
Let y = =
9 ⋅ 3 2 x - 6 ⋅ 3 x + 4 (3 x + 1 ) 2 - 2 ⋅ 3 x + 1 + 4
⇒ x - 1 - x =1 - x
t 2 + 2t + 4
On squaring both sides, we get = , where t = 3 x + 1
t 2 - 2t + 4
x - 1 - x =1 + x -2 x
⇒ (y - 1 ) t 2 - 2 (y + 1 ) t + 4 (y - 1 ) = 0
⇒ - 1 - x =1-2 x By the given condition, for every t ∈ R,
Again, squaring on both sides, we get 1
<y <3 …(i)
3
1 - x = 1 + 4x - 4 x
But t = 3x + 1 > 0
4 x = 5x
We have, product of the roots = 4 > 0, which is true.
4 2 (y + 1 )
⇒ x = [on squaring both sides] And sum of the roots = >0
5 (y - 1 )
16 y +1
⇒ x= ⇒ >0
25 y -1
Hence, the number of real solutions is 1. ∴ y ∈ ( - ∞, - 1 ) ∪ (1, ∞ ) …(ii)
From Eqs. (i) and (ii), we get
16. Let x = 7 + 7 - 7 + 7 -… ∞
1 <y <3
⇒ x= 7+ 7-x [on squaring both sides] 19. Since α , β and γ are the roots of

⇒ x2 - 7 = 7 - x (x - a ) (x - b ) (x - c ) = d
⇒ (x - a ) (x - b ) (x - c ) - d = (x - α ) (x - β) (x - γ )
⇒ (x 2 - 7)2 = 7 - x [again, squaring on both sides] ⇒ (x - α ) (x - β) (x - γ ) + d = (x - a ) (x - b ) (x - c )
⇒ x 4 - 14 x 2 + x + 42 = 0 ⇒ a, b and c are the roots of
(x - α ) (x - β) (x - γ ) + d = 0
⇒ ( x - 3 ) ( x 3 + 3 x 2 - 5 x - 14 ) = 0
20. Since, all the coefficients of given equation are not real.
⇒ (x - 3) (x + 2) (x 2 + x - 7) = 0 Therefore, other root ≠ 3 + i.
- 1 ± 29 Let other root be α.
⇒ x = 3, - 2,
2 2 (1 + i )
∴ x =3 [Q x > 7] Then, sum of the roots =
i
17. Let y = 2 (k - x ) ( x + ( x 2 + k 2 ) 2 (1 + i )
⇒ α + 3 -i =
i
⇒ y - 2 (k - x ) x = 2 (k - x ) ( x 2 + k 2 ) ⇒ α + 3 - i = 2 - 2i
On squaring both sides, we get ∴ α = -1 -i
⇒ y 2 + 4 (k - x ) 2 x 2 - 4 xy (k - x ) = 4 (k - x ) 2 ( x 2 + k 2 ) 21. We have, |[ x ] - 2 x | = 4
⇒ y 2 - 4 xy (k - x ) = 4 (k - x ) 2k 2 ⇒ |[ x ] - 2 ([ x ] + { x })| = 4
⇒ |[ x ] + 2 { x }| = 4
⇒ 4 (k 2 - y ) x 2 - 4(2k 3 - ky ) x - y 2 + 4k 4 = 0
which is possible only when
Since, x is real.
2 { x } = 0, 1
∴ D≥0
1
⇒ 16 (2k - ky ) - 4 ⋅ 4 (k 2 - y ) ( 4k 4 - y 2 ) ≥ 0
3 2 If { x } = 0, then [ x ] = ± 4 and then x = - 4, 4 and if { x } = ,
2
[using, b 2 - 4ac ≥ 0] then
⇒ 4k 6 + k 2y 2 - 4k 4y - ( - k 2y 2 + 4k 6 + y 3 - 4yk 4 ) ≥ 0 [x ] + 1 = ± 4
⇒ [ x ] = 3, - 5
⇒ 2k 2y 2 - y 3 ≥ 0
1 1
⇒ y 2 (y - 2k 2 ) ≤ 0 ∴ x = 3 + and - 5 +
2 2
∴ y ≤ 2k 2 7 9 9 7
⇒ x = , - ⇒ x = - 4, - , , 4
1 x 2 - 2x + 4 2 2 2 2
18. We have, < < 3, ∀ x ∈ R 2 3 2
3 x 2 + 2x + 4 22. We know that, x + x + 1 is a factor of ax + bx + cx + d .
1 x 2 + 2x + 4 Hence, roots of x 2 + x + 1 = 0 are also roots of
< < 3, ∀ x ∈ R
3 x 2 - 2x + 4 ax 3 + bx 2 + cx + d = 0. Since, ω and ω 2
182 Textbook of Algebra

 1 3i  2 26. Since, 3789108 is an even integer. Therefore, x 4 - y 4 is also an


 where ω = - +  are two complex roots of x + x + 1 = 0.
 2 2 even integer. So, either both x and y are even integers or both
Therefore, ω and ω 2 are two complex roots of of them are odd integers.
ax 3 + bx 2 + cx + d = 0. Now, x 4 - y 4 = (x - y ) (x + y ) (x 2 + y 2 )
We know that, a cubic equation has atleast one real root. Let ⇒ x - y , x + y , x 2 + y 2 must be even integers.
real root be α. Then, Therefore, ( x - y ) ( x + y ) ( x 2 + y 2 ) must be divisible by 8. But
d d
α ⋅ ω ⋅ ω2 = - ⇒α=- 3789108 is not divisible by 8. Hence, the given equation has no
a a solution.
23. We have, (5 x 2 - 8 x + 3 ) - (5 x 2 - 9 x + 4 ) ∴ Number of solutions = 0
27. We have, x 3 + ax + 1 = 0
= (2 x 2 - 2 x ) - (2 x 2 - 3 x + 1 )
or x 4 + ax 2 + x = 0 …(i)
⇒ (5 x - 3 ) ( x - 1 ) - (5 x - 4 ) ( x - 1 ) 4 2
and x + ax + 1 = 0 …(ii)
= 2 x ( x - 1 ) - (2 x - 1 ) ( x - 1 ) From Eqs. (i) and (ii), we get
⇒ x - 1 ( 5x - 3 - 5x - 4 ) = x - 1 ( 2x - 2x - 1 ) x -1 = 0
⇒ x =1
⇒ x -1 = 0 which is a common root.
⇒ x =1 ∴ 1 +a + 1 = 0
24. We have, (a + b ) (a - b ) = a 2 - b = 1 [given] ⇒ a = -2
∴ (a + b ) x 2 - 15
+ (a - b ) = 2ax 2 - 15 28. Q(1 - a 2 ) x 2 + 2ax - 1 = 0
2 1 1 - a2 ≠ 0
⇒ (a + b ) x - 15 + 2
= 2a
(a + b ) x - 15  2a   1 
x2 +  x -   =0
2 1 - a2 1 - a2
Let y = (a + b ) x - 15
1  2a   1 
⇒ y + = 2a ⇒ y 2 - 2ay + 1 = 0 Let f (x ) = x 2 +  2
x -  
y 1 - a   (1 - a 2 )

4a 2 - 4
2a ±
⇒ y = = a ± a2 - 1
2
∴ y = a ± b = (a + b ) ± 1 [Qa 2 - b = 1]
2
- 15 X
⇒ (a + b ) x = (a + b ) ± 1 0 α β1
2
∴ x - 15 = ± 1 The following cases arise:
⇒ x 2 = 15 ± 1 ⇒ x 2 = 16, 14 Case I D ≥ 0
2
⇒ x = ± 4, ± 14  2a   -1 
 2
 - 4 ⋅1 ⋅   ≥0
25. We have, x 2 - xy + y 2 = 4 ( x + y - 4 ) 1 - a  1 - a2
⇒ x 2 - x (y + 4 ) + y 2 - 4y + 16 = 0 4a 2 4
⇒ + ≥0
Q x ∈R (1 - a 2 ) 2 (1 - a 2 )
∴ ( - (y + 4 )) 2 - 4 ⋅ 1 ⋅ (y 2 - 4y + 16 ) ≥ 0 4a 2 + 4 - 4a 2
⇒ ≥0
[using, b 2 - 4ac ≥ 0 ] (1 - a 2 ) 2
2 2
⇒ y + 8y + 16 - 4y + 16y - 64 ≥ 0 4
⇒ ≥0 [always true]
⇒ 3y 2 - 24y + 48 ≤ 0 (1 - a 2 ) 2

⇒ y 2 - 8y + 16 ≤ 0 ⇒ (y - 4 ) 2 ≤ 0 Case II f ( 0 ) > 0
-1 1
∴ (y - 4 ) 2 = 0 ⇒ >0 ⇒ <0
(1 - a 2 ) 1 - a2
∴ y =4
⇒ 1 - a2 < 0
Then, x 2 - 4 x + 16 = 4( x + 4 - 4 )
∴ a ∈ ( - ∞, - 1 ) ∪ (1, ∞ )
x 2 - 8 x + 16 = 0
Case III f (1 ) > 0
(x - 4)2 = 0 2a 1
⇒ 1+ - >0
x=4 (1 - a ) (1 - a 2 )
2

Number of pairs is 1 i.e., ( 4, 4 ).


Chap 02 Theory of Equations 183

1 - a 2 + 2a - 1 a 2 - 2a  - 1 + 5
⇒ > 0 ⇒ <0 ∴ x ∈ 0, 
(1 - a 2 ) 1 - a2  2 

+ + + Case II If x < 0, i.e., -1 ≤ x < 0


–1 – 0 1 – 2 x - (1 + x ) < 0
⇒ x < 1+ x [always true]
a (a - 2 ) x ∈ [ - 1, 0 )
⇒ >0
(a + 1 ) (a - 1 ) Combining both cases, we get
∴ a ∈ ( - ∞, - 1 ) ∪ ( 0, 1 ) ∪ (2, ∞ )  - 1 + 5
x ∈ - 1, 
Case IV 0 < x -coordinate of vertex < 1  2 
2a a
⇒ 0<- <1 ⇒ 0 < 2 <1 30. We have, (a ⋅ 2b - 2c ⋅ a ) (2c ⋅ c - b ⋅ 2b ) = (ba - ca ) 2
2 (1 - a 2 ) a -1
⇒ 2a (b - c ) ⋅ 2 (c 2 - b 2 ) = a 2(b - c ) 2
a a
⇒ 0< and 1 - 2 >0 ⇒ 4a (c - b ) (c + b ) = a 2(b - c ) [Qb ≠ c ]
(a + 1 ) (a - 1 ) a -1
2
a ⇒ 4a (c + b ) = - a
⇒ >0
(a + 1 ) (a - 1 ) ⇒ a + 4b + 4c = 0
 b c
+ + 31. 0 < a < b < c, α + β =  -  and αβ =
 a a
– –1 0 – 1
For non-real complex roots,
b 2 - 4ac < 0
⇒ a ∈ ( - 1, 0 ) ∪ (1, ∞ )
 1 + 5  1 - 5 b 2 4c
a -  a -  ⇒ - <0
 2   2  a2 a
and >0 ⇒ (α + β ) 2 - 4 αβ < 0
(a + 1 ) (a - 1 )
⇒ (α - β ) 2 < 0
+ + +
Q 0 <a <b <c
–1 – 1– √5 1 – 1+√5
2 2 ∴ Roots are conjugate, then | α | = | β |
c
But αβ =
1 - 5  1 + 5  a
and a ∈ ( - ∞, - 1 ) ∪  , 1 ∪  , ∞
 2   2  c  c 
| αβ | = >1 Q a < c, ∴ > 1
a  a 
1 - 5  1 + 5 
∴ a ∈ , 0 ∪  , ∞ ⇒ | α| | β| > 1
 2   2 
⇒ | α | 2 > 1 or | α | > 1
Combining all cases, we get
a >2 32. Given equation is
29. We have, x - 1 - |x| < 0 …(i) Ax 2 - | G | x - H = 0 …(i)
2
which is defined only when ∴ Discriminant = ( - | G | ) - 4 A ( - H )
1 - |x | ≥ 0 = G 2 + 4 AH
⇒ |x | ≤ 1 = G 2 + 4G 2 [QG 2 = AH ]
⇒ x ∈ [ - 1, 1 ] 2
= 5G > 0
Now, from Eq. (i), we get
x < 1 - |x| ∴ Roots of Eq. (i) are real and distinct.
a+b 2ab
Case I If x ≥ 0, i.e., 0 ≤ x ≤ 1 Q A= > 0, G = ab > 0, H = >0
2 a+b
x - (1 - | x | ) < 0
[Qa and b are two unequal positive integers]
⇒ x < (1 - x ) Let α and β be the roots of Eq. (i). Then,
On squaring both sides, we get | G|
α+β= >0
x2 + x - 1 < 0 A
H
-1 - 5 -1 + 5 and αβ = - <0
⇒ <x< A
2 2
D G 5
But x≥0 and α -β = = >0
A A
184 Textbook of Algebra

|G | + G 5 The given equation will have four real roots, i.e. Eq. (i) has two
∴ α= >0 non-negative roots.
2A
b
|G | - G 5 Then, - ≥0
and β= <0 a
2A
af ( 0 ) ≥ 0
Exactly one positive root and atleast one root which is
negative fraction. and b 2 - 4ac ≥ 0 [given]
33. It is clear from graph that the equation y = ax 2 + bx + c = 0 ⇒
b
≤0
has two real and distinct roots. Therefore, a
b 2 - 4ac > 0 …(i) ac ≥ 0
Q Parabola open downwards. ⇒ a > 0, b < 0, c > 0
∴ a<0 or a < 0, b > 0, c < 0
a
andy = ax 2 + bx + c cuts-off Y -axis at, x = 0. 36. Let the roots be , a and ar , where a > 0, r > 1
r
∴ y =c < 0 ∴ Product of the roots = 1
⇒ c<0 a
and x-coordinate of vertex > 0 ⇒ ⋅ a ⋅ ar = 1
r
b b
⇒ - >0 ⇒ <0 ⇒ a3 = 1
2a a
∴ a =1 [one root is 1]
⇒ b>0 [Qa < 0]
1
It is clear that a and b are of opposite signs. Now, roots are , 1 and r . Then,
r
34. Let y = ax 2 + bx + c 1
+ 1 + r = -b
r
1
a>0 ⇒ + r = -b -1 …(i)
r
–2 2
1
Q r + >2
α β r
⇒ -b -1 >2
Consider the following cases: ⇒ b < -3 [from Eq. (i)]
Case I D > 0 or b ∈ ( - ∞, - 3 )
⇒ b 2 - 4ac > 0 1 1
Also, ⋅1 + 1 ⋅r + r ⋅ = c
Case II af ( - 2 ) < 0 r r
⇒ a ( 4a - 2b + c ) < 0 1
⇒ + r + 1 =c = -b [from Eq. (i)]
⇒ 4a - 2b + c < 0 r
Case III af (2 ) > 0 ∴ b +c = 0
⇒ a ( 4a + 2b + c ) > 0 1
⇒ 4a + 2 b + c > 0 Now, first root = < 1 [Q one root is smaller than one]
r
Combining Case II and Case III, we get
Second root = 1
4a + 2| b| + c < 0
Third root = r > 1 [Q one root is greater than one]
Also, at x = 0, y <0 ⇒c<0 2
37. We have, f ( x ) = ax + bx + c
Also, since for - 2 < x < 2,
a, b , c ∈ R [Q a ≠ 0 ]
y <0 1
On putting x = 0, 1, , we get
⇒ ax 2 + bx + c < 0 2
For x = 1, a+b+c<0 …(i) |c | ≤ 1
and for x = - 1, a -b + c < 0 …(ii) |a + b + c | ≤ 1
1 1
Combining Eqs. (i) and (ii), we get and a + b + c ≤1
4 2
a + | b| + c < 0
⇒ -1 ≤ c ≤ 1,
35. Put x 2 = y .
-1 ≤a + b + c ≤1
Then, the given equation can be written as
and - 4 ≤ a + 2b + 4c ≤ 4
f (y ) = ay 2 + by + c = 0 …(i) ⇒ - 4 ≤ 4a + 4b + 4c ≤ 4
and - 4 ≤ - a - 2b - 4c ≤ 4
Chap 02 Theory of Equations 185

On adding, we get b
Option (d) a < 0, c < 0, - <0
- 8 ≤ 3a + 2b ≤ 8 2a
Also, - 8 ≤ a + 2b ≤ 8 or a < 0, c < 0, b < 0
∴ - 16 ≤ 2a ≤ 16 ∴ abc < 0
⇒ | a| ≤ 8 41. Here, D ≤ 0
Q -1 ≤ - c ≤ 1, - 8 ≤ - a ≤ 8 and f ( x ) ≥ 0, ∀ x ∈ R
We get, - 16 ≤ 2b ≤ 16 ∴ f (3 ) ≥ 0
⇒ |b | ≤ 8 ⇒ 9a + 3b + 6 ≥ 0
or 3a + b ≥ - 2
∴ | a| + | b| + | c | ≤ 17
⇒ Minimum value of 3a + b is - 2.
- 5 ± 25 + 1200 -5 ± 35 30 - 40
38. Q x = = = , and f (6 ) ≥ 0
50 50 50 50 ⇒ 36a + 6b + 6 ≥ 0
3 -4 ⇒ 6a + b ≥ - 1
or cos α = ,
5 5 ⇒ Minimum value of 6a + b is -1.
But -1 < x < 0 42. Since, f ( x ) = x 3 + 3 x 2 - 9 x + λ = ( x - α ) 2(x - β)
4 ∴ α is a double root.
∴ cos α = - [ lies in II and III quadrants]
5 ∴ f ′( x ) = 0 has also one root α.
3 i.e. 3 x 2 + 6 x - 9 = 0 has one root α.
∴ sin α = [ lies in II quadrant]
5
∴ x 2 + 2 x - 3 = 0 or ( x + 3 ) ( x - 1 ) = 0
3
∴ sin α = - [lies in III quadrant] has the root α which can either -3 or 1.
5
If α = 1, then f (1 ) = 0 gives λ - 5 = 0 ⇒ λ = 5.
24
∴ sin 2α = 2 ⋅ sin α ⋅ cos α = - If α = - 3, then f ( - 3 ) = 0 gives
25
- 27 + 27 + 27 + λ = 0
[ lies in II quadrant] ⇒ λ = - 27
24 2
43. We have, D = (b - c ) - 4a (a - b - c ) > 0
∴ sin 2α = 2 ⋅ sin α ⋅ cosα = [lies in III quadrant]
25
⇒ b 2 + c 2 - 2bc - 4a 2 + 4ab + 4ac > 0
39. Qa + 2b + 4c = 0
⇒ c 2 + ( 4a - 2b ) c - 4a 2 + 4ab + b 2 > 0, ∀c ∈ R
2
 1  1 Since, c ∈ R, so we have
∴ a   + b  + c = 0
 2  2
( 4a - 2b ) 2 - 4 ( - 4a 2 + 4ab + b 2 ) < 0
1
It is clear that one root is . ⇒ 4a 2 - 4ab + b 2 + 4a 2 - 4ab - b 2 < 0
2
1 b ⇒ a (a - b ) < 0
Let other root be α. Then, α + =- If a > 0, then a - b < 0
2 a
1 b i.e. 0 <a <b
⇒ α=- - or b >a > 0
2 a
which depends upon a and b. If a < 0, then a - b > 0
i.e. 0 >a >b
40. Q Cut-off Y -axis, put x = 0, i.e. f ( 0) = c
or b <a < 0
b 44. We have, x 3 - ax 2 + bx - 1 = 0 …(i)
Option (a) a < 0, c < 0, - <0
2a 2 2 2 2
Then, α + β + γ = (α + β + γ ) - 2 (αβ + βγ + γα )
or a < 0, c < 0, b < 0
∴ abc < 0 = a 2 - 2b
b α 2 β 2 + β 2 γ 2 + γ 2 α 2 = (αβ + βγ + γα ) 2
Option (b) a < 0, c > 0, - >0
2a - 2 αβγ (α + β + γ ) = b 2 - 2a
or a < 0, c > 0, b > 0 and α 2 β2 γ 2 = 1
∴ abc < 0
Therefore, the equation whose roots are α 2, β 2 and γ 2, is
b
Option (c) a > 0, c > 0, - >0 x 3 - (a 2 - 2b ) x 2 + (b 2 - 2a ) x - 1 = 0 …(ii)
2a
or a > 0, c > 0, b < 0 Since, Eqs. (i) and (ii) are indentical, therefore
∴ abc < 0 a 2 - 2b = a and b 2 - 2a = b
186 Textbook of Algebra

Eliminating b, we have ⇒ (7y - 1 ) (y - 7 ) ≤ 0


(a 2 - a ) 2 a2 - a ∴
1
≤y ≤7
- 2a =
4 2 7
1
⇒ a {a (a - 1 ) 2 - 8 - 2 (a - 1 )} = 0 ∴ G = 7 and L =
3 2
7
⇒ a (a - 2a - a - 6 ) = 0 ∴ GL = 1
⇒ a (a - 3 ) (a 2 + a + 2 ) = 0 G100 + L100 G100 + L100
Now, ≥ (GL )100 ⇒ ≥1
⇒ a = 0 or a = 3 or a 2 + a + 2 = 0 2 2
⇒ b = 0 or b = 3 ⇒ G100 + L100 ≥ 2
or b2 + b + 2 = 0 46. Least value of G100 + L100 is 2.
∴ a =b = 0 47. The quadratic equation having roots G and L, is
or a =b =3 x 2 - (G + L ) x + GL = 0
or a and b are roots of x 2 + x + 2 = 0. 50
⇒ x2 - x + 1 = 0
45. Here, D > 0 7
2
⇒ 7 x - 50 x + 7 = 0
a > 0
48. We have, L2 < λ < G 2
–2 2
X 2
α β  1 2
⇒   < λ <7
 7
1
⇒ < λ < 49
b 2 - 4ac > 0 49
or b 2 > 4ac …(i) ⇒ λ = 1, 2, 3,… , 48 as λ ∈ N
and f (0) < 0 48 × 49
∴ Sum of all values of λ = 1 + 2 + 3 +… + 48 = = 1176
⇒ c<0 …(ii) 2
f (1 ) < 0 Solutions (Q. Nos. 49 to 51)
⇒ a+b+c<0 …(iii) Let roots be α , β, γ, δ > 0.
f (- 1) < 0 ∴ α + β + γ + δ = 12
⇒ a -b + c < 0 …(iv) (α + β ) ( γ + δ ) + αβ + γδ = c
f (2 ) < 0 αβ ( γ + δ ) + γδ (α + β ) = - d
⇒ 4a + 2b + c < 0 …(v) α β γδ = 81
f (- 2) < 0 α+β+γ+δ
Q AM = =3
⇒ 4a - 2b + c < 0 …(vi) 4
From Eqs. (i) and (ii), we get and GM = (α β γ δ )1 /4 = (81 )1 /4 = 3
c < 0, b2 - 4ac > 0 ∴ AM = GM
From Eqs. (iii) and (iv), we get ⇒ α =β = γ =δ =3
a - |b | + c < 0 49. c = (α + β) ( γ + δ ) + αβ + γδ
and from Eqs. (v) and (vi), we get = (3 + 3 ) (3 + 3 ) + 3 ⋅ 3 + 3 ⋅ 3 = 36 + 18 = 54
4a - 2 | b | + c < 0 50. Qαβ ( γ + δ ) + γδ (α + β) = - d
Solutions (Q. Nos. 46 to 48) ∴ d = - {3 ⋅ 3 ⋅ (3 + 3 ) + 3 ⋅ 3 ⋅ (3 + 3)} = - 108
2x 2 - 3x + 2 d ( - 108 )
Let y = 2 51. Required root = - = - =1
2x + 3x + 2 2c 2 × 54
⇒ 2 x 2y + 3 xy + 2y = 2 x 2 - 3 x + 2 Solutions (Q. Nos. 52 to 54)
⇒ 2 (y - 1 ) x 2 + 3 (y + 1 ) x + 2 (y - 1 ) = 0 Given that, AC = 4 2 units
As x ∈ R AC
∴ AB = BC = = 4 units
∴ D≥0 2
⇒ 9 (y + 1 ) 2 - 4 ⋅ 2 (y - 1 ) ⋅ 2 (y - 1 ) ≥ 0 and OB = ( BC ) 2 - (OC ) 2
2 2
⇒ 9 (y + 1 ) - 16 (y - 1 ) ≥ 0  AC 
= ( 4 ) 2 - (2 2 ) 2 Q OC =
⇒ (3y + 3 ) 2 - ( 4y - 4 ) 2 ≥ 0  2 
⇒ (7y - 1 ) (7 - y ) ≥ 0 = 2 2 units
Chap 02 Theory of Equations 187

∴ Vertices are A ≡ ( - 2 2, 0 ), Solutions (Q. Nos. 58 to 60)


B ≡ ( 0, -2 2 ) Let f ( x ) = ax 2 - bx + c has two distinct roots α and β. Then,
f ( x ) = a ( x - α ) ( x - β ). Since, f ( 0 ) and f (1 ) are of same sign.
and C ≡ (2 2, 0)
Therefore, c (a - b + c ) > 0
52. Since, y = f ( x ) = ax 2 + bx + c passes through A, B and C, then ⇒ c (a - b + c ) ≥ 1
0 = 8a - 2 2b + c - 2 2 = c ∴ a 2 αβ (1 - α ) (1 - β ) ≥ 1
and 0 = 8a + 2 2b + c 1 1 1
2

1 But α (1 - α ) = -  - α ≤
We get, b = 0, a = and c = - 2 2 4 2  4
2 2
a2
x2 ∴ a 2 αβ (1 - α ) (1 - β ) <
∴ y = f (x ) = -2 2 16
2 2 a2
2 ⇒ >1 ⇒ a > 4 [Q α ≠ β]
x 16
53. Minimum value of y = - 2 2 is at x = 0.
2 2 ⇒ a ≥ 5 as a ∈ I
∴ (y ) min = -2 2 Also, b 2 - 4ac ≥ 0
54. f ( x ) = 0 ⇒ b 2 ≥ 4ac ≥ 20
x2 ⇒ b ≥5
⇒ -2 2 = 0 ⇒ x = ± 2 2
2 2 Next, a ≥ 5, b ≥ 5, we get c ≥ 1
λ ∴ abc ≥ 25
Given, -2 2 < <2 2
2 ∴ log 5 abc ≥ log 5 25 = 2
or -4 2<λ<4 2 58. Least value of a is 5.
∴Initial values of λ are 59. Least value of b is 5.
-5, - 4, - 3, - 2, - 1, 0, 1, 2, 3, 4, 5. 60. Least value of logb abc is 2.
∴Number of integral values is 11.
Solutions. (Q. Nos. 61 to 63)
Solutions. (Q. Nos. 55 to 57) Let α , β and γ be the roots of 2 x 3 + ax 2 + bx + 4 = 0.
We have, (α - β ) = (α + k ) - ( β + k ) a
∴ α+β+γ=-
b 2 - 4c b 2 - 4c1 2
⇒ = 1
1 1 b
αβ + βγ + γα = and αβγ = - 2
⇒ b 2 - 4c = b12 - 4c1 …(i) 2
2
1 (b - 4c ) 1 61. Q AM ≥ GM
Given, least value of f ( x ) = - - =- (- α ) + (- β) + (- γ )
4 4 ×1 4 ∴ ≥ {( - α ) ( - β ) ( - γ )}1 /3
3
⇒ b 2 - 4c = 1
a
∴ b - 4c = 1 = b12 - 4c1
2
[from Eq. (i)] …(ii) 2 ≥ (2 )1/ 3

7 3
Also, given least value of g( x ) occurs at x = .
2 ∴ a ≥ 6 (2 )1/ 3 …(i)
b1 7 3
∴ - = or a ≥ 432
2 ×1 2
Hence, minimum value of a 3 is 432.
∴ b1 = - 7
62. Q AM ≥ GM
55. b 1 = - 7
(- α ) (- β) + (-β) (- γ ) + (- γ ) (- α )
b12 - 4c1 1 ∴
56. Least value of g ( x ) = - =- [from Eq. (ii)] 3
4 ×1 4
≥ {( - α ) ( - β ) ( - β ) ( - γ ) ( - γ ) ( - α )}1 / 3
57. Q g( x ) = 0 b/ 2
⇒ ≥ ( 4 )1/ 3
∴ x 2 + b1x + c1 = 0 3
- b1 ± b12 - 4c1 ⇒ b ≥ 6 ( 4 )1/ 3 …(ii)
⇒ x=
2 or b 3 ≥ 864
7±1 Hence, minimum value of b 3 is 864.
= = 3, 4
2 63. From Eqs. (i) and (ii), we get
∴ Roots of g( x ) = 0 are 3, 4. ab ≥ 6 (2 )1 / 3 ⋅ 6( 4 )1 / 3
188 Textbook of Algebra

⇒ ab ≥ 36 × 2 68. We have,
Q
a+b
≥ ab ≥ 6 2 ⇒
a+b
≥6 2 (5 + 2 ) x 2 - ( 4 + 5 ) x + 8 + 2 5 = 0
2 2
4+ 5
∴ a + b ≥ 12 2 ∴Sum of the roots =
5+ 2
or (a + b ) 3 ≥ 3456 2
8+2 5
Hence, minimum value of (a + b ) 3 is 3456 2. and product of the roots =
5+ 2
Solutions (Q. Nos. 64 to 66) ∴The harmonic mean of the roots
∴ α +β+γ+δ=-A …(i)
2 × Product of the roots 2 × (8 + 2 5 )
(α + β ) ( γ + δ ) + αβ + γδ = B …(ii) = = =4
Sum of the roots (4 + 5 )
αβ ( γ + δ ) + γδ (α + β ) = - C …(iii)
and αβγδ = D …(iv) 69. Let x 2 - ax + 30 = y
C αβ ( γ + δ ) + γδ (α + β ) ∴ y = 2 y + 15 …(i)
64. Q =
A α+β+γ+δ
k ( γ + δ ) + k (α + β ) ⇒ y 2 - 4y - 60 = 0
= [Qαβ = γδ =k]
α+β+γ+δ ⇒ (y - 10 ) (y + 6 ) = 0
=k …(v) ∴ y = 10, - 6
65. From Eq. (ii), we get ⇒ y = 10, y ≠ - 6 [Qy > 0]
(α + β ) ( γ + δ ) = B - (αβ + γδ ) = B - 2k [Qαβ = γδ = k] Now, x 2 - ax + 30 = 10
66. From Eq. (iv), we get
⇒ x 2 - ax + 20 = 0
αβγδ = D
⇒ k ⋅k = D [Qαβ = γδ = k] Given, αβ = λ = 20
2 α+β
C ∴ ≥ αβ = 20
⇒   =D [from Eq. (v)] 2
 A
⇒ α + β ≥ 2 20
∴ C 2 = A 2D
67. The given equation is | x - 2 | 2 + | x - 2 | - 2 = 0. or µ= 4 5

There are two cases: ∴ Minimum value of µ is 4 5.


Case I If x ≥ 2, then ( x - 2 ) 2 + x - 2 - 2 = 0 i.e., µ = 4 5 = 8.9 ⇒ (µ) = 9
6
⇒ x 2 - 3x = 0  1
70. Q N r =  x +  -  x 6 +
 1
 -2
⇒ x (x - 3) = 0
 x  x6
6 2 3
⇒ x = 0, 3  1  1   1  1 
=  x +  -  x 3 + 3  =   x +  +  x 3 + 3  
Here, 0 is not possible.  x  x   x  x 
∴ x =3 3
 1 1 
Case II If x < 2, then   x +  -  x 3 + 3 
 x   x 
(x - 2)2 - x + 2 - 2 = 0 
⇒ x 2 - 5x + 4 = 0   1
= Dr ⋅ 3  x +  
⇒ (x - 1) (x - 4) = 0   x
⇒ x = 1, 4 Nr  1
∴ = 3 x +  ≥ 6
Here, 4 is not possible. Dr  x
∴ x =1 Nr
Hence, minimum value of is 6.
∴The sum of roots = 1 + 3 = 4 Dr
71. a + b = 2c …(i)
Aliter ab = - 5d …(ii)
Let | x - 2 | = y . c + d = 2a …(iii)
Then, we get y2 + y -2 = 0 cd = - 5b …(iv)
⇒ (y - 1 ) (y + 2 ) = 0 ⇒ y = 1, - 2 From Eqs. (i) and (iii), we get
But - 2 is not possible. a + b + c + d = 2 (a + c )
Hence, | x - 2| = 1 ⇒ x = 1, 3 ∴ a + c =b +d …(v)
∴ Sum of the roots = 1 + 3 = 4
Chap 02 Theory of Equations 189

From Eqs. (i) and (iii), we get 74. Q (1 + i ) x 2 + (1 - i ) x - 2i = 0


b - d = 3 (c - a ) …(vi) (1 - i ) 2i
2 ⇒ x2 + x- =0
Also, a is a root of x - 2cx - 5d = 0 (1 + i ) (1 + i )
∴ a 2 - 2ac - 5d = 0 …(vii) ⇒ x 2 - ix - (1 + i ) = 0
And c is a root of ∴ α + β = i , and αβ = - (1 + i )
c 2 - 2ac - 5b = 0 …(viii) ∴ α - β = (α + β ) 2 - 4 αβ = i 2 + 4 (1 + i ) = (3 + 4i )
From Eqs. (vii) and (viii), we get
| α - β| = 9 + 16 = 5
a 2 - c 2 - 5 (d - b ) = 0
∴ | α - β| 2 = 5
⇒ (a + c ) (a - c ) + 5 (b - d ) = 0
⇒ (a + c ) (a - c ) + 15 (c - a ) = 0 [from Eq. (vi)] 75. Q 4x 2 - 16 x + c = 0
⇒ (a - c ) (a + c - 15 ) = 0 c
⇒ x 2 - 4x + =0
∴ a + c = 15, a - c ≠ 0 4
c
From Eq. (v), we get b + d = 15 Let f (x ) = x 2 - 4x +
4
∴ a + b + c + d = a + c + b + d = 15 + 15 = 30
Then, the following cases arises:
⇒ Sum of digits of a + b + c + d = 3 + 0 = 3
x 2 - 3x + c
72. Q y =
x 2 + 3x + c
⇒ x 2(y - 1 ) + 3 x (y + 1 ) + c (y - 1 ) = 0 2
1 α β 3
Q x ∈R
∴ 9 (y + 1 ) 2 - 4c (y - 1 ) 2 ≥ 0 Case I D>0
⇒ 16 - c > 0
( 2 cy - 2 c ) 2 - (3y + 3 ) 2 ≤ 0
∴ c < 16
⇒ {( 2 c + 3 ) y - (2 c - 3 )} {(2 c - 3 )y - (2 c + 3 )} ≤ 0 Case II f (1 ) > 0
2 c -3 2 c +3 c
or ≤y ≤ ⇒ 1-4+ >0
2 c +3 2 c -3 4
c
2 c +3 ⇒ >3
But given, =7 4
2 c -3 ∴ c > 12
⇒ 2 c + 3 = 14 c - 21 Case III f (2 ) < 0
c
or 12 c = 24 or c =2 ⇒ 4 -8 + < 0
4
∴ c=4 c
⇒ <4
73. We have, x - (x - 1) + (x - 2)2 = 5
2 2 4
∴ c < 16
⇒ | x | - | x - 1| + | x - 2| = 5
Case IV f (3 ) > 0
Case I If x < 0, then c
⇒ 9 - 12 + > 0
- x + (x - 1) - (x - 2) = 5 4
x =1 - 5 c
⇒ >3
4
Case II If 0 ≤ x < 1, then
⇒ c > 12
x + (x - 1) - (x - 2) = 5
⇒ x = 5 - 1, which is not possible. Combining all cases, we get
Case III If 1 ≤ x < 2, then 12 < c < 16
x - (x - 1) - (x - 2) = 5 Thus, integral values of c are 13, 14 and 15.
⇒ x = 3 - 5, which is not possible. Hence, number of integral values of c is 3.
76. We have, r +s +t=0 …(i)
Case IV If x > 2, then
x - (x - 1) + (x - 2) = 5 1001
rs + st + tr = …(ii)
8
⇒ x =1 + 5 2008
and rst = - = - 251 …(iii)
Hence, number of solutions is 2. 8
190 Textbook of Algebra

Now, (r + s ) 3 + (s + t ) 3 + (t + r ) 3 = ( - t ) 3 + ( - r ) 3 + ( - s ) 3 Q a (b - c ) + b (c - a ) + c (a - b ) = 0
[Qr + s + t = 0] ∴ x = 1 is a root of
= - (t 3 + r 3 + s 3 ) = - 3 rst [Qr + s + t = 0] a (b - c ) x 2 + b (c - a ) x + c (a - b ) = 0 …(ii)
= - 3 ( - 251 ) = 753 Given, roots [Eq. (ii)] are equal.
c (a - b )
Now, 99 λ = (r + s ) 3 + (s + t ) 3 + (t + r ) 3 = 753 ∴ 1 ×1 =
a (b - c )
753
∴ λ= = 7.6 ⇒ a (b - c ) = c (a - b )
99
2ac
∴ [λ ] = 7 or b=
a+c
77. A Æ (r,s); B Æ (p, q, r,s, t); C Æ (p, q, t)
∴ a, b and c are in HP. …(iii)
x 2 - 2x + 4
(A) We have, y = From Eqs. (i) and (ii), we get
x 2 + 2x + 4
a =b =c
⇒ x 2 (y - 1 ) + 2 (y + 1 ) x + 4 (y - 1 ) = 0 ∴ a,b and c are in AP, GP and HP.
As x ∈ R , we get (B)Q x 3 - 3x 2 + 3x - 1 = 0
D≥0 ⇒ (x - 1)3 = 0
⇒ 4 (y + 1 ) - 16 (y - 1 ) 2 ≥ 0
2
∴ x = 1, 1, 1
⇒ 3y 2 - 10y + 3 ≤ 0 ⇒ Common root, x = 1
⇒ (y - 3 ) (3y - 1 ) ≤ 0 ∴ a (1 ) 2 + b (1 ) + c = 0
1 ⇒ a+b+c=0
⇒ ≤y ≤3
3
(C) Given, bx + ( (a + c ) 2 + 4b 2 ) x + (a + c ) ≥ 0
2
2x 2 + 4x + 1
(B) We have, y = 2 ∴ D≤0
x + 4x + 2
⇒ (a + c ) 2 + 4b 2 - 4b (a + c ) ≤ 0
⇒ x 2(y - 2 ) + 4(y - 1 ) x + 2y - 1 = 0
⇒ (a + c - 2b ) 2 ≤ 0
As x ∈ R , we get
D≥0 or (a + c - 2b ) 2 = 0
⇒ 16 (y - 1 ) 2 - 4 (y - 2 ) (2y - 1 ) ≥ 0 ∴ a + c = 2b
Hence a, b and c are in AP.
⇒ 4 (y - 1 ) 2 - (y - 2 ) (2y - 1 ) ≥ 0
79. A Æ (q,r,s,t); B Æ (q,r); C Æ (p,q)
⇒ 2y 2 - 3y + 2 ≥ 0
ax 2 + 3 x - 4
3 (A) We have, y =
⇒ y2 - y + 1 ≥ 0 3x - 4x 2 + a
2
3 7
2 ⇒ x 2 (a + 4y ) + 3 (1 - y ) x - (ay + 4 ) = 0

⇒ y -  + ≥0
 4 16 As x ∈R , we get
∴ y ∈R D≥0
2
2
x - 3x + 4 ⇒ 9 (1 - y ) + 4 (a + 4y ) (ay + 4 ) ≥ 0
(C) We have, y =
x -3 ⇒ ( 9 + 16a ) y 2 + ( 4a 2 + 46 )y + (9 + 16a ) ≥ 0, ∀ y ∈ R
⇒ x 2 - (3 + y ) x + 3y + 4 = 0 ⇒ If 9 + 16a > 0, then D ≤ 0
As x ∈ R , we get Now, D≤0
D ≥ 0 ⇒ (3 + y ) 2 - 4 (3y + 4 ) ≥ 0 ⇒ ( 4a + 46 ) - 4 ( 9 + 16a ) 2 ≤ 0
2 2

⇒ y 2 - 6y - 7 ≥ 0 ⇒ (y + 1 ) (y - 7 ) ≥ 0 ⇒ 4 [( 2a 2 + 23 ) 2 - ( 9 + 16a ) 2 ] ≤ 0

⇒ y ∈ ( - ∞, - 1 ] ∪ [7, ∞ ) ⇒ [(2 a + 23 ) + ( 9 + 16a )] [( 2a 2 + 23 ) - ( 9 + 16a )] ≤ 0


2

78. A Æ (q,r,s); B Æ (p); C Æ (q) ⇒ ( 2a 2 + 16a + 32 ) ( 2a 2 - 16a + 14 ) ≤ 0


(A)Q(d + a - b ) 2 + (d + b - c ) 2 = 0 ⇒ 4 (a + 4 ) 2 (a 2 - 8a + 7 ) ≤ 0
which is possible only when ⇒ a 2 - 8a + 7 ≤ 0
d + a - b = 0, d + b - c = 0 ⇒ (a - 1 ) (a - 7 ) ≤ 0
⇒ b -a =c -b ⇒ 1 ≤a ≤7
⇒ 2b = a + c ∴ 9 + 16a > 0 and 1 ≤ a ≤ 7
∴ a, b and c are in AP. …(i) ⇒ 1 ≤a ≤7
Chap 02 Theory of Equations 191

ax 2 + x - 2 f (1 ) > 0
(B) We have, y =
a + x - 2x 2 ⇒ 1 -6 + 9 + λ > 0
⇒ x 2 (a + 2y ) + x (1 - y ) - (2 + ay ) = 0 ⇒ λ>-4 …(ii)
and f (3 ) < 0
As x ∈R , we get
⇒ 27 - 54 + 27 + λ < 0
D≥0
2
⇒ λ<0 …(iii)
⇒ ( 1 - y ) + 4 ( 2 + ay ) (a + 2y ) ≥ 0
From Eqs. (i), (ii) and (iii), we get
⇒ ( 1 + 8a ) y 2 + ( 4a 2 + 14 ) y + (1 + 8a ) ≥ 0 -4<λ<0
⇒ If 1 + 8a > 0, then D ≤ 0 ⇒ -3 < λ + 1 < 1
⇒ ( 4a 2 + 14 ) 2 - 4 (1 + 8a ) 2 ≤ 0 ∴ [ λ + 1 ] = - 3, - 2, - 1, 0
⇒ 4 [(2a 2 + 7 ) 2 - (1 + 8a ) 2 ] ≤ 0 ∴ |[ λ + 1 ]| = 3, 2, 1, 0
(B)Q x 2 + x + 1 > 0, ∀ x ∈ R
⇒ [(2a 2 + 7 ) + (1 + 8a )] [(2a 2 + 7 ) - (1 + 8a )] ≤ 0
x 2 - λx - 2
⇒ (2a 2 + 8a + 8 ) (2a 2 - 8a + 6 ) ≤ 0 Given, -3 < <2
x2 + x + 1
⇒ 4 (a + 2 ) 2 (a 2 - 4a + 3 ) ≤ 0
⇒ - 3 x 2 - 3 x - 3 < x 2 - λx - 2 < 2 x 2 + 2 x + 2
⇒ a 2 - 4a + 3 ≤ 0
⇒ 4x 2 - (λ - 3) x + 1 > 0
⇒ (a - 1 ) (a - 3 ) ≤ 0
⇒ 1 ≤a ≤3 and x 2 + (λ + 2)x + 4 > 0
Thus, 1 + 8a > 0 and 1 ≤ a ≤ 3 ∴ (λ - 3)2 - 4 ⋅ 4 ⋅ 1 < 0
⇒ 1 ≤a ≤3 and (λ + 2)2 - 4 ⋅ 1 ⋅ 4 < 0
x 2 + 2x + a
(C) We have, y = 2 ⇒ (λ - 3)2 - 42 < 0
x + 4 x + 3a
and (λ + 2)2 - 42 < 0
⇒ x 2(y - 1 ) + 2 (2y - 1 ) x + a (3y - 1 ) = 0
⇒ - 4 < λ -3 < 4
As x ∈ R , we get and -4<λ+2<4
D≥0 or - 1 < λ <7
⇒ 4 (2y - 1 ) 2 - 4 (y - 1 ) a (3y - 1 ) ≥ 0 and -6 < λ <2
⇒ ( 4 - 3a ) y 2 - ( 4 - 4a )y + (1 - a ) ≥ 0 We get, -1 < λ <2
⇒ If 4 - 3a > 0, then D ≤ 0 ∴ [ λ ] = - 1, 0, 1
⇒ ( 4 - 4a ) 2 - 4 ( 4 - 3a ) (1 - a ) ≤ 0 ⇒ |[ λ ]| = 0, 1

⇒ 4 (2 - 2a ) 2 - 4 ( 4 - 3a ) (1 - a ) ≤ 0 (C)Q (b - c ) + (c - a ) + (a - b ) = 0
∴ x = 1 is a root of
⇒ 4 + 4a 2 - 8a - ( 4 - 7a + 3a 2 ) ≤ 0
(b - c ) x 2 + (c - a ) x + (a - b ) = 0
⇒ a2 - a ≤ 0
Also, x = 1 satisfies
⇒ a (a - 1 ) ≤ 0 x2 + λ x + 1 = 0
⇒ 0 ≤a ≤1
⇒ 1+λ+1=0
80. A Æ (p,q,r,s);B Æ (p,q); C Æ (s) ∴ λ = -2
(A) Let y = f ( x ) = x 3 - 6 x 2 + 9 x + λ Now, λ -1 = -3
[ λ - 1] = - 3
f ′ ( x ) = 3 x 2 - 12 x + 9 = 0
⇒ |[ λ - 1 ]| = 3
∴ x = 1, 3 81. If quadratic equation ax 2 + bx + c = 0 is satisfied by more than
f ′′ ( x ) = 6 x - 12 two values of x, then it must be an identity.
f ′′(1 ) < 0 and f ′′ (3 ) > 0 Therefore, a = b = c = 0
∴ Statement-2 is true.
But in Statement-1,
4 p - 3 = 4q - 3 = r = 0
3
0 3 Then, p =q = ,r = 0
1 4
λ
which is false.
Since, at one value of p or q or r, all coefficients at a time ≠ 0.
Also, f (0) < 0 ⇒ λ < 0 …(i) ∴ Statement-1 is false.
192 Textbook of Algebra

82. We have, x 2 + (2m + 1 ) x + (2n + 1 ) = 0 …(i)  4 4 


and z ∈ 2- ,2 +
 3 3 
m, n ∈ I
∴ D = b 2 - 4ac Since, Eqs. (i) and (ii) remains same, if x, y , z interchange their
positions.
= ( 2m + 1 ) 2 - 4 ( 2n + 1 )
Hence, both statements are true and Statement-2 is a correct
is never be a perfect square. explanation of Statement-1.
Therefore, the roots of Eq. (i) can never be integers. Hence, the 86. Let y = ax 3 + bx + c
roots of Eq. (i) cannot have any rational root as a = 1, b, c ∈ I .
dy
Hence, both statements are true and Statements –2 is a correct ∴ = 3ax 2 + b
explanation of Statement-1. dx
dy
83. Let α be one root of equation ax 2 + 3 x + 5 = 0. Therefore, For maximum or minimum = 0, we get
dx
1 5
α⋅ = b
α a x=± -
3a
5
⇒ 1= dy
a Case I If a > 0, b > 0, then >0
dx
⇒ a =5
In this case, function is increasing, so it has exactly one root
Hence, both the statements are true and Statement-2 is the
dy
correct explanation of Statement-1. Case II If a < 0, b < 0, then <0
dx
84. Let roots of Ax 3 + Bx 2 + Cx + D = 0 …(i)
In this case, function is decreasing, so it has exactly one root.
are α - β, α , α + β (in AP).
Case III a > 0, b < 0 or a < 0, b > 0, then y = ax 3 + bx + c is
B
Then, (α - β) + α + (α + β) = - maximum at one point and minimum at other point.
A
B Hence, all roots can never be non-negative.
⇒ , which is a root of Eq. (i).
α=- ∴Statement-1 is false. But
3A
Then, Aα 3 + Bα 2 + Cα + D = 0 Coefficient of x 2
Sum of roots = - =0
3 2 Coefficient of x 3
 B  B  B i.e., Statement-2 is true.
⇒ A -  + B -  + C -  +D=0
 3A   3A   3A 
87. Statement-2 is obviously true.
B3 B3 BC But y = ax 2 + bx + c
⇒ - 2
+ 2
- +D=0
27 A 9A 3 A
 b c
⇒ 2 B 3 - 9 ABC + 27 A 2D = 0 y = a x2 + x + 
 a a
Now, comparing with 2 B 3 + k1ABC + k2 A 2D = 0, we get  b
2
D 
= a  x +  - 2  [where, D = b 2 - 4ac]
k1 = - 9, k2 = 27  2a  4a 

∴ k2 - k1 = 27 - ( - 9 ) = 36 = 6 2 2
 b 1  D
Hence, both statements are true and Statement-2 is a correct ⇒  x +  = y + 
 2a  a  4a 
explanation of Statement-1.
b D
85. Q x, y , z ∈ R Let x+ = X and y + = Y.
2a 4a
x + y + z =6 …(i) 1
and xy + yz + zx = 8 …(ii) ∴ X2 = Y
a
⇒ xy + ( x + y ) {6 - ( x + y )} = 8 [from Eq. (i)] b
⇒ xy + 6 x + 6y - ( x 2 + 2 xy + y 2 ) = 8 Equation of axis, X = 0 i.e. x + =0
2a
or y 2 + (x - 6) y + x 2 - 6x + 8 = 0 or 2ax + b = 0
∴ ( x - 6 ) 2 - 4 ⋅ 1 ⋅ ( x 2 - 6 x + 8 ) ≥ 0, ∀ y ∈ R Hence, y = ax 2 + bx + c is symmetric about the line
2ax + b = 0.
⇒ - 3 x 2 + 12 x + 4 ≥ 0 or 3 x 2 - 12 x - 4 ≤ 0
∴ Both statements are true and Statement-2 is a correct
4 4
or 2- ≤ x ≤2 + explanation of Statement-1.
3 3
88. Q(1 + m ) x 2 - 2 (1 + 3m ) x + (1 + 8m ) = 0
 4 4 
or x∈ 2-

,2 + ∴ D = 4 (1 + 3m ) 2 - 4 (1 + m ) (1 + 8m ) = 4m (m - 3 )
3 3 
(i) Both roots are imaginary.
 4 4 
Similarly, y ∈ 2- ,2 + ∴ D<0
 3 3 
⇒ 4m (m - 3 ) < 0
Chap 02 Theory of Equations 193

⇒ 0 <m <3 Combining all cases, we get


or m ∈( 0, 3 )  1
m ∈  - 1, - 
(ii) Both roots are equal.  8
∴ D=0 (vii) Roots are equal in magnitude but opposite in sign, then
⇒ 4m (m - 3 ) = 0 Consider the following cases:
⇒ m = 0, 3 Case I Sum of the roots = 0
(iii) Both roots are real and distinct. 2 (1 + 3m )
⇒ =0
∴ D>0 (1 + m )
⇒ 4m (m - 3 ) > 0 1
⇒ m = - ,m ≠1
⇒ m < 0 or m > 3 3
∴ m ∈ ( - ∞, 0 ) ∪ (3, ∞ ) Case II D > 0 ⇒ 4m(m - 3 ) > 0
(iv) Both roots are positive. ⇒ m ∈ ( - ∞, 0 ) ∪ ( 3, ∞ )
Case I Sum of the roots > 0 Combining all cases, we get
2 (1 + 3m ) 1
⇒ >0 m=-
(1 + m ) 3
 1  (viii) Atleast one root is positive, then either one root is positive
⇒ m ∈ ( - ∞, - 1 ) ∪  - , ∞ or both roots are positive.
 3 
i.e. (d ) ∪ ( f )
Case II Product of the roots > 0
 1
(1 + 8m ) or m ∈ ( - ∞, - 1 ) ∪  - 1, -  ∪ [3, ∞ )
⇒ >0  8
(1 + m )
(ix) Atleast one root is negative, then either one root is
 1 
m ∈ ( - ∞, - 1 ) ∪  - , ∞ negative or both roots are negative.
 8 
 1
Case III D≥0 i.e. (e ) ∪ ( f ) or m ∈  - 1, - 
 8
⇒ 4m (m - 3 ) ≥ 0
(x) Let roots are 2α are 3α. Then,
m ∈ ( - ∞, 0 ] ∪ [ 3, ∞ )
Consider the following cases:
Combining all Cases, we get 2 (1 + 3m )
m ∈ ( - ∞, - 1 ) ∪ [ 3, ∞ ) Case I Sum of the roots = 2 α + 3 α =
(1 + m )
(v) Both roots are negative.
2 (1 + 3m )
Consider the following cases: ⇒ α=
5 (1 + m )
2 (1 + 3m )
Case I Sum of the roots < 0 ⇒ <0 (1 + 8m )
(1 + m ) Case II Product of the roots = 2 α ⋅ 3 α =
(1 + m )
 1
⇒ m ∈  - 1, -  (1 + 8m )
 3 ⇒ 6α 2 =
(1 + m )
(1 + 8m )
Case II Product of the roots > 0 ⇒ >0 From Eqs. (i) and (ii), we get
(1 + m ) 2
 1  2 (1 + 3m )  (1 + 8m )
⇒ m ∈ ( - ∞, 1 ) ∪  - , ∞ 6  =
 8   5 (1 + m )  (1 + m )
Case III D ≥ 0 ⇒ 24 (1 + 3m ) 2 = 25 (1 + 8m ) (1 + m )
4m (m - 3 ) ≥ 0 ⇒ m ∈ ( - ∞, 0 ] ∪ [3, ∞ ) ⇒ 24 ( 9m 2 + 6m + 1 ) = 25 ( 8m 2 + 9m + 1 )
Combining all cases, we get
16m 2 - 81m - 1 = 0
m ∈φ
(vi) Roots are opposite in sign, then 81 ± ( - 81 ) 2 + 64
or m=
Case I Consider the following cases: 32
Product of the roots < 0 81 ± 6625
⇒ m=
(1 + 8m ) 32
⇒ <0
(1 + m ) 89. Q2x 2 - 2 (2m + 1) x + m (m + 1 ) = 0 [Q m ∈ R ]
 1 ∴ 2
D = [ - 2 (2m + 1 )] - 8m (m + 1 ) [ D = b 2 - 4ac ]
m ∈  - 1, - 
 8
= 4 {(2m + 1 ) 2 - 2m (m + 1 )}
Case II D > 0 ⇒ 4m (m - 3 ) > 0
⇒ m ∈ ( - ∞, 0 ) ∪ (3, ∞ ) = 4 (2m 2 + 2m + 1 )
194 Textbook of Algebra

 2 Combining all cases, we get


 1 1 1
= 8  m 2 + m +  = 8  m +  +  > 0
 2  2 4  7 + 33 
 m ∈ , ∞
 2 
or D > 0, ∀ m ∈ R …(i)
(iii) Both roots lie in the interval (2, 3).
b 2 (2m + 1 )  1
x -coordinate of vertex = - = = m +  …(ii) Consider the following cases:
2a 4  2
and let
1
f ( x ) = x 2 - (2m + 1 ) x + m (m + 1 ) …(iii)
2 f(2) f(3)
(i) Both roots are smaller than 2.
X
2 α β 3

Case I D ≥ 0
∴ m ∈R [from Eq. (i)]
X Case II f (2 ) > 0
α β 2  7 - 33   7 + 33 
∴ m ∈  - ∞,  ∪ , ∞ [from part (a)]
Consider the following cases:  2   2 
Case I D ≥ 0 Case III f (3 ) > 0
∴ m ∈R [from Eq. (i)] 1
Case II x -coordinate of vertex < 2. ⇒ 9 - 3 (2m + 1 ) + m (m + 1 ) > 0
2
1
⇒ m + <2 [from Eq. (ii)] or m 2 - 11m + 12 > 0
2
3  11 - 73   11 + 73 
or m< ∴ m ∈  - ∞,  ∪ , ∞
2  2   2 
Case III f (2 ) > 0 Case IV 2 < x -coordinate of vertex < 3
1 1
⇒ 4 - (2m + 1 ) 2 + m (m + 1 ) > 0 ⇒ 2 <m + <3
2 2
⇒ m 2 - 7m + 4 > 0 or
3 5  3 5
< m < or m ∈  , 
2 2  2 2
 7 - 33   7 + 33 
∴ m ∈  - ∞,  ∪ , ∞ Combining all cases, we get
 2   2 
m ∈φ
Combining all cases, we get (iv) Exactly one root lie in the interval (2,3) .
 7 - 33  Consider the following cases:
m ∈  - ∞, 
 2  Case I D > 0
∴ m ∈R [from Eq. (i)]
(ii) Both roots are greater than 2.
Consider the following cases:

3
f(2) X
2 α β
X
2 α β
Case II f (2 ) f (3 ) < 0
Case I D ≥ 0  1 
 4 - 2 ( 2m + 1 ) + m ( m + 1 )
∴ m ∈R [from Eq. (i)]  2 
Case II x -coordinate of vertex > 2  1 
1 9 - 3 ( 2m + 1 ) + m ( m + 1 ) < 0
⇒ m + >2 [from Eq. (ii)]  2 
2
⇒ ( m 2 - 7m + 4 ) ( m 2 - 11m + 12 ) < 0
3
∴ m>  7 - 33   7 + 33 
2 ⇒ m -  m - 
Case III f (2 ) > 0  2   2 
 7 - 33   33   11 - 73   11 + 73 
m ∈  - ∞,  ∪ 7 + , ∞ [from part (a)] m -  m -  <0
 2   2   2   2 
Chap 02 Theory of Equations 195

7 + √33  11 - 73 11 + 73 
∴ m ∈ , 
+ + 2 +  2 2 
7 – √33 – 7 – √73 – 11 + √73
Combining all cases, we get
2 2 2
 7 - 33 7 + 33 
m ∈ , 
 7 - 33 11 - 73   7 + 33 11 + 73   2 2 
∴ m ∈ ,  ∪ , 
 2 2   2 2  (vii) Atleast one root lies in the interval (2, 3).
Combining all cases, we get i.e. (d ) ∪ (c )
 7 - 33 11 - 73   7 + 33 11 + 73   7 - 33 11 - 73   7 + 33 11 + 73 
m ∈ ,  ∪ ,  ∴ m ∈ ,  ∪ , 
 2 2   2 2   2 2   2 2 
(v) One root is smaller than 1 and the other root is greater (viii) Atleast one root is greater than 2.
than 1.
i.e. (Exactly one root is greater than 2) ∪ (Both roots are
Consider the following cases: greater than 2)

1 X 2
α β X
α β
Case I D > 0
∴ m ∈R [from Eq. (i)] or(Exactly one root is greater than 2) ∪ (b ) …(I)
Case II f (1 ) < 0 Consider the following cases:
1 Case I D > 0
⇒ 1 - (2m + 1 ) + m (m + 1 ) < 0 [from Eq. (iii)]
2 ∴ m ∈R [from Eq. (i)]
⇒ m 2 - 3m < 0 Case II f (2 ) < 0
⇒ m (m - 3 ) < 0 ⇒ m 2 - 7m + 4 < 0
∴ m ∈( 0, 3 )
 7 - 33 7 + 33 
Combining both cases, we get ∴ m ∈ , 
m ∈( 0, 3 )  2 2 
(vi) One root is greater than 3 and the other root is smaller Combining both cases, we get
than 2.  7 - 33 7 + 33 
Consider the following cases: m ∈ ,  …(II)
 2 2 
Finally from Eqs. (I) and (II), we get
 7 - 33 7 + 33   7 + 33 
m ∈ ,  ∪ , ∞
 2 2   2 
2 3 X
α β (ix) Atleast one root is smaller than 2.
i.e. (Exactly one root is smaller than 2) ∪(Both roots are
smaller than 2)
Case I D > 0
or (h) (II) ∪ (a)
∴ m ∈R [from Eq. (i)]
 7 - 33   7 - 33 7 + 33 
Case II f (2 ) < 0 We get, m ∈  - ∞,  ∪ , 
⇒ m 2 - 7m + 4 < 0  2   2 2 

7 - 33 7 + 33 (x) Both 2 and 3 lie between α and β.


∴ <m < Consider the following cases:
2 2
 7 - 33 7 + 33  Case I D > 0
∴ m ∈ ,  ∴ m ∈R [from Eq. (i)]
 2 2 
Case III f (3 ) < 0
⇒ m 2 - 11m + 12 < 0
11 - 73 11 + 73 2 3 X
∴ <m < α β
2 2
196 Textbook of Algebra

1
Case II f (2 ) < 0
cn + 1
⇒ m 2 - 7m + 4 < 0 ⇒ α= 
a
 7 - 33 7 + 33  ∴ From Eq. (i), we get
∴ m ∈ , 
 2 2  1 n
cn + 1 cn + 1 b
Case III f (3 ) < 0   +  =-
a a a
⇒ m 2 - 11m + 12 < 0
1 1 1 n
- +1 - +1
 11 - 73 11 + 73  ⇒ (c )n + 1 ⋅ a n+1
+ (c n )n + 1 ⋅ a n+1
+b=0
∴ m ∈ , 
 2 2  1 n 1 1
n+1 n+1 n n+1 n +1
Combining all cases, we get ⇒ c ⋅a + (c ) ⋅a +b=0
 11 - 73 7 + 33  1 1
m ∈ , 
 2 2  ⇒ (anc )n + 1 + (c na )n + 1 + b = 0
α b
90. Q =r 93. We have, α+β=-
β a
c m n
α+β r +1 αβ = ⇒ γ+δ=- and γδ =
⇒ = a l l
α -β r -1
Now, sum of the roots
[using componendo and dividendo method]
= (αγ + βδ ) + (αδ + βγ ) = (α + β ) γ + (α + β ) δ
- b /a r + 1
⇒ = ⇒ b (1 - r ) = (1 + r ) D = (α + β ) ( γ + δ )
D r -1
 b   m  mb
a = -  -  =
 a  l  al
On squaring both sides, we get
and product of the roots
⇒ b 2(1 - r ) 2 = (1 + r ) 2 (b 2 - 4ac ) = (αγ + βδ ) (αδ + βγ )
(1 + r ) 2 b 2 = (α 2 + β 2 ) γδ + αβ ( γ 2 + δ 2 )
or (1 + r ) 2 ⋅ 4ac = b 2( 4r ) or =
r ac = {(α + β ) 2 - 2αβ} γδ + αβ {( γ + δ ) 2 - 2 γδ }
1 1 1
91. We have, + =  b  2 2c  n c  m  2 2n 
x+p x+q r =  -  -  +  -  - 
  a  l a  l 
(x + q ) + (x + p ) 1  a l 
⇒ =
x 2 + ( p + q ) x + pq r b 2 - 2ac  n c m 2 - 2nl  (b 2 - 2ac ) ln + ( m 2 - 2nl ) ac
= 2  +  2 =
⇒ x 2 + ( p + q - 2r ) x + pq - ( p + q ) r = 0  a l a  l  a 2l 2
Now, since the roots are equal in magnitudes, but opposite in ∴ Required equation is
sign. Therefore,  mb  (b 2 - 2ac ) ln + (m 2 - 2nl ) ac
Sum of the roots = 0 x2 -   x + =0
 al  a 2l 2
⇒ p + q - 2r = 0
⇒ a 2l 2x 2 - mbalx + (b 2 - 2ac ) ln + (m 2 - 2nl ) ac = 0
⇒ p + q = 2r …(i)
and product of the roots = pq - ( p + q ) r 94. Since, the roots are equal.
∴ D=0
 p + q
= pq - ( p + q )   [from Eq. (i)] ⇒ 4 (b 2 - ac ) 2 - 4 (a 2 - bc ) (c 2 - ab ) = 0
 2 
⇒ (b 2 - ac ) 2 - (a 2 - bc ) (c 2 - ab ) = 0
2 pq - p 2 - q 2 - 2 pq
= ⇒ b (a 3 + b 3 + c 3 - 3abc ) = 0
2
p2 + q2 ⇒ b = 0 or a 3 + b 3 + c 3 - 3abc = 0
=-
2 95. Let α and β be the roots of x 2 - px + q = 0. Then,
92. Let α be one root of the equation ax 2 + bx + c = 0. α+β=p …(i)
Then, other root be α n . αβ = q …(ii)
b 1
∴ α + αn = - …(i) And α and be the roots of x 2 - ax + b = 0. Then,
a β
c 1
and α ⋅ αn = α + =a …(iii)
a β
c α
⇒ αn + 1 = =b ... (iv)
a β
Chap 02 Theory of Equations 197

Now, LHS = (q - b ) 2 ∴ λ = 10,


1
2 10
 α 2
= αβ -  [from Eqs. (ii) and (iv)] ⇒ (2 + 3 ) x - 2x
= 10, 10 - 1
 β
2 2 ⇒ x 2 - 2 x = log 2 + 3
10, - log 2 + 3
10
21   1 
= α β -  = α 2 (α + β ) - α +   2
 β   β  ⇒ ( x - 1 ) = 1 + log 2 + 3
10, 1 - log 2 + 3
10
2 2
= α ( p - a ) [from Eqs. (i) and (iii)] ∴ ( x - 1 ) 2 = 1 + log 2 + 3
10
α
= αβ ⋅ ( p - a ) 2 2
[Q ( x - 1 ) ≠ 1 - log 2 + 3
10 ]
β
= bq ( p - a ) 2 [from Eqs. (ii) and (iv)] ⇒ x = 1 ± (1 + log 2 + 3
10 )
= RHS ⇒ x 1 = 1 + (1 + log 2 + 3
10 )
2
96. Since, roots of x - 2px + q = 0 are equal.
x 2 = 1 - (1 + log 2 + 3
10 )
∴ D=0
2
i.e., ( -2 p ) - 4q = 0 or p 2 = q
2
…(i)  x 
99. We have, x2+   =8
Now, (1 + y ) x 2 - 2 ( p + y ) x + (q + y ) = 0  x - 1
2
∴ Discriminant = 4 ( p + y ) 2 - 4 (1 + y ) (q + y )  x  x
⇒ x +  - 2⋅ x ⋅ =8
= 4 ( p 2 + 2 py + y 2 - q - y - qy - y 2 )  x - 1 (x - 1)
2
= 4 [(2 p - q - 1 ) y + p 2 - q ]  x2   x2 
⇒   -2   -8 = 0 …(i)
= 4 [(2 p - p 2 - 1 ) y + 0 ] [from Eq. (i)]  x - 1  x - 1
= - 4 ( p - 1 ) 2y x2
Let y = . Then, Eq. (i) reduces to
>0 [Qy < 0 and p ≠ 1] x -1
Hence, roots of (1 + y ) x 2 - 2 ( p + y ) x + (q + y ) = 0 are real y 2 - 2y - 8 = 0
and distinct. ⇒ (y - 4 ) (y + 2 ) = 0
2
97. x log x ( x + 3) = 16 …(i) ∴ y = 4, - 2
Equation is defined, when x2
If y = 4, then 4=
x > 0, x ≠ 1, x ≠ - 3, x -1
Then, (x + 3)2 = 42 [by property] or x 2 - 4x + 4 = 0
⇒ x+3=±4
or (x - 2)2 = 0
∴ x = 1 and x = - 7
But x ≠ 1, x ≠ - 7 or x =2
i.e. no solution. ∴ x1 = 2
∴ x ∈φ x2
and if y = - 2, then -2 =
2
- 2x + 1 2
- 2x - 1 101 x -1
98. Q(2 + 3 ) x + (2 - 3 ) x =
10 (2 - 3 ) or x 2 + 2x - 2 = 0
2
- 2x
⇒ (2 + 3 )x ⋅ (2 + 3 ) (2 - 3 ) - 2 ± (4 + 8)
101 ∴ x=
x2 - 2x - 1 2
+ (2 - 3 ) ⋅ (2 - 3 ) =
10 ⇒ x = -1 ± 3
x2 - 2x x2 - 2x 101
⇒ (2 + 3 ) + (2 - 3 ) = ∴ x 2 = - 1 + 3, x 3 = - 1 - 3
10
x2 - 2x 1 101 100. We have, x + 8 + 2 ( x + 7 ) + ( x + 1 ) - ( x + 7 ) = 4 …(i)
or (2 + 3 ) + 2
= …(i)
(2 + 3 ) x - 2 x 10
Let (x + 7) = λ …(ii)
 1  2
Q 2 - 3 = 2 + 3  or x = λ -7
  Then, Eq. (i) reduces to
2
- 2x
Let (2 + 3 ) x = λ, then Eq. (i) reduces to
( λ2 - 7 + 8 + 2 λ ) + ( λ2 - 7 + 1 - λ ) = 4
1 101
λ+ = ⇒ ( λ + 1 ) + ( λ2 - λ - 6 ) = 4
λ 10
⇒ 10 λ2 - 101 λ + 10 = 0 or ( λ2 - λ - 6 ) = 3 - λ
or ( λ - 10 ) (10 λ - 1 ) = 0
198 Textbook of Algebra

On squaring both sides, we get Case I If 0 < x 2 + 2 x - 3 < 1


λ2 - λ - 6 = 9 + λ2 - 6 λ ⇒ 4 < x 2 + 2x + 1 < 5
⇒ 5 λ = 15 ⇒ 4 < (x + 1)2 < 5
∴ λ =3
⇒ - 5 < ( x + 1 ) < - 2 or 2 < x + 1 < 5
⇒ (x + 7) = 3 [from Eq. (ii)]
⇒ - 5 - 1 < x < - 3 or 1 < x < 5 - 1
or x + 7 =9
∴ x =2 ∴ x ∈ ( - 5 - 1, - 3 ) ∪ (1, 5 - 1 ) …(ii)
and x = 2 satisfies Eq. (i). | x + 4| - | x |
Then, <1
Hence, x 1 = 2 (x - 1)
2 2
101. We have, 4 x + 2 (2a + 1 ) 2 x + 4a 2 - 3 > 0 …(i) - (x + 4) + x
Now, x < - 4, then <1
(x - 1)
x2
Putting t = 2 in the Eq. (i), we get
4
⇒ 1+ >0
t 2 + 2 (2a + 1 ) t + 4a 2 - 3 > 0 x -1
2
Let f (t ) = t 2 + 2 (2a + 1 ) t + 4a 2 - 3 [Q t > 0,∴2 x > 0] (x + 3)
⇒ >0
Q f (t ) > 0 (x - 1)
∴ x ∈ ( - ∞, - 3 ) ∪ (1, ∞ )
⇒ x ∈ ( - ∞, - 4 ) [Q x < - 4] …(iii)
x+4+x
- 4 ≤ x < 0, then -1 < 0
(x - 1)
(x + 5)
⇒ <0
T-axis (x - 1)
Consider the following cases: ∴ x ∈ ( - 5, 1 )
Case I Sum of the roots > 0 ⇒ x ∈ [ - 4, 0 ) [Q - 4 ≤ x < 0] …(iv)
( 2a + 1 ) (x + 4) - x
-2 >0 and x ≥ 0, then <1
1 (x - 1)
 1 4
∴ a ∈  - ∞, -  ⇒ 1- >0
 2 x -1
Case II Product of the roots > 0 (x - 5)
⇒ >0
4a 2 - 3 (x - 1)
⇒ >0
1 ∴ x ∈ ( - ∞, 1 ) ∪ ( 5, ∞ )
3 ⇒ x ∈ [ 0, 1 ) ∪ ( 5, ∞ ) [Q x ≥ 0] …(v)
or a2 >
4 From Eqs. (iii), (iv) and (v), we get
 3  3  x ∈ ( - ∞, 1 ) ∪ ( 5, ∞ ) …(vi)
or a ∈  - ∞, -  ∪  , ∞
 2   2  Now, common values in Eqs. (ii) and (iv) is
x ∈ ( - 5 - 1, - 3 ) …(vii)
Case III D<0
2
⇒ 4 ( 2a + 1 ) - 4 ⋅ 1 ⋅ ( 4a 2 - 3 ) < 0
2 Case II If x + 2x - 3 > 1
⇒ 4a + 4 < 0 ⇒ x 2 + 2x + 1 > 5 ⇒ (x + 1)2 > 5
∴ a < -1 ⇒ x+1<- 5
or a ∈ ( - ∞, - 1 ) or x+1> 5
Combining all cases, we get
∴ x ∈ ( - ∞, - 1 - 5 ) ∪ ( 5 - 1, ∞ ) …(viii)
 3 
a ∈ ( - ∞, - 1 ) ∪  , ∞ | x + 4| - | x |
 2  Then, >1
(x - 1)
 | x + 4| - | x | -4
102. We have, log x 2 + 2 x - 3   >0 Now, x < - 4, then >1
 x -1  x -1
The given inequation is valid for 4
| x + 4| - | x | ⇒ 1+ <0
>0 x -1
(x - 1) x+3
⇒ <0
and x 2 + 2 x - 3 > 0, ≠ 1 …(i) x -1
Now, consider the following cases: ∴ x ∈ ( - 3, 1 )
Chap 02 Theory of Equations 199

which is false. [Qx < - 4] ⇒ x2 - x - 1 = 0


2x + 4 ∴ x =1
- 4 ≤ x < 0, then -1 > 0
(x - 1) 1± 5
∴ x=
(x + 5) 2
⇒ >0
(x - 1) 1± 5
∴ x= fail
∴ x ∈ ( - ∞, - 5 ) ∪ (1, ∞ ) 2
which is false. [Q- 4 ≤ x < 0 ] 1- 5
⇒ x= [Q x < 0]
4 2
and x ≥ 0, then >1
x -1 1- 5 1- 5
⇒ x= , 1, then y = ,0
4 2 2
⇒ 1- <0 1 - 5 1 - 5
x -1 ∴ Solutions are  ,  and (1, 0).
x -5  2 2 
⇒ <0
x -1 1 - 5 1 - 5
Hence, all pairs ( 0, 1 ), (1, 0 ) and  ,  are solutions
∴ x ∈(1, 5 ) …(ix)  2 2 
which is false. [Qx ≥ 0] of the original system of equations.
Now, common values in Eq. (viii) and (ix) is 104. Given, α , β and γ are the roots of the cubic equation
∴ x ∈ ( 5 - 1, 5 ) …(x) x 3 - px 2 + qx - r = 0 …(i)
Combining Eqs. (viii) and (x), we get ∴ α + β + γ = p, αβ + βγ + γα = q , αβγ = r
x ∈ ( - 5 - 1, - 3 ) ∪ ( 5 - 1, 5 ) 1
(i) Let y = βγ +
103. Let y ≥ 0, then | y | = y α
αβγ + 1 r + 1
and then given system reduces to ⇒ y = =
α α
| x 2 - 2x | + y = 1 …(i) r +1
2 ∴ α=
and x + y =1 …(ii) y
From Eqs. (i) and (ii), we get From Eq. (i), we get
x 2 = | x 2 - 2x | α 3 - pα 2 + qα - r = 0
⇒ x 2 = | x | | x - 2| (r + 1 ) 3 p (r + 1 ) 2 q (r + 1 )
⇒ - + -r = 0
y3 y2 y
Now, x < 0, 0 ≤ x < 2, x ≥ 2
x 2 = x ( x - 2 ), x 2 = - x ( x - 2 ) or ry 3 - q(r + 1 )y 2 + p (r + 1 ) 2y - (r + 1 ) 3 = 0

x 2 = x (x - 2) (ii) Let y = β + γ - α = (α + β + γ ) - 2α = p - 2 α
p -y
∴ x=0 ∴ α=
2
⇒ x (x + x - 2) = 0
From Eq. (i), we get
∴ x=0 α 3 - pα 2 + qα - r = 0
fail ∴ x = 0, 1 fail
(p - y ) 3 p (p - y )2 q (p - y )
⇒ x = 0, 1, then y = 1, 0 ⇒ - + -r = 0
∴Solutions are (0, 1) and (1, 0). 8 4 2
If y < 0 then | y | = - y and then given system reduces to or y 3 - py 2 + ( 4q - p 2 )y + ( 8r - 4 pq + p 3 ) = 0
| x 2 - 2x | + y = 1 …(iii) Also product of roots = - (8r - 4 pq + p 3 )
and x2 - y = 1 …(iv) 105. Assume α + iβ is a complex root of the given equation, then
From Eqs. (iii) and (iv), we get conjugate of this root, i.e. α - iβ is also root of this equation.
| x 2 - 2x | + x 2 = 2 On putting x = α + iβ and x = α - iβ in the given equation, we
get
⇒ | x | | x - 2| + x 2 = 2
2
A12 A22 A3 An2
Now, x < 0, 0 ≤ x < 2, x ≥ 2 + + +… +
α + iβ - a1 α + iβ - a 2 α + iβ - a 3 α + iβ - an
x (x - 2) + x 2 = 2
- x (x - 2) + x 2 = 2 = ab 2 + c 2(α + iβ ) + ac …(i)
2
x (x -2 ) + x = 2 A12 A22 A32 An2
and + + +… +
2 α - iβ - a1 α - iβ - a 2 α - iβ - a 3 α - iβ - an
⇒ 2x - 2x - 2 = 0 ⇒ 2x = 2
⇒ x2 - x - 1 = 0 = ab 2 + c 2(α - iβ ) + ac …(ii)
200 Textbook of Algebra

On subtracting Eq. (i) from Eq. (ii), we get ∴ (a + (a 2 + 1 ) ) 2 - 4 > 0


 A12 A22 A32
2iβ  2 2
+ 2 2
+ ⇒ (a + (a 2 + 1 ) + 2 ) (a + (a 2 + 1 ) - 2 ) > 0
( α - a1 ) + β (α - a2 ) + β (α - a 3 )2 + β2
Q a + (a 2 + 1 ) + 2 > 0
An2 
+… + + c2 = 0
2
(α - an ) + β 2
 ∴ a + (a 2 + 1 ) - 2 > 0
The expression in bracket ≠ 0 ⇒ (a 2 + 1 ) > 2 - a
∴ 2iβ = 0 ⇒ β = 0
a ≥ 2
Hence, all roots of the given equation are real.  2 2
106. Given equation is or a + 1 > (2 - a ) , if a < 2
x 4 + 2ax 3 + x 2 + 2ax + 1 = 0 …(i) a ≥ 2

2
⇒ or a > 3 , if a < 2
On dividing by x , we get 
2a 1 4
x 2 + 2ax + 1 + + 2 =0
x x a ≥ 2

 2 1  1 ⇒ or 3 < a < 2
⇒  x + 2  + 2a  x +  + 1 = 0  4
 x   x
 1
2
 1 3 3 
⇒  x +  - 2 + 2a  x +  + 1 = 0 Hence, < a < ∞ or a ∈  , ∞
   4 4 
x x
1
2
1 107. We have, [2 x ] - [ x + 1 ] = 2 x
 
or  x +  + 2a  x +  - 1 = 0
 x   x Since, LHS = Integer
1 ∴ RHS = 2x = Integer
or y 2 + 2ay - 1 = 0, where y = x + ⇒ [2 x ] = 2 x
x
Now, - [ x + 1] = 0
- 2a ± ( 4a 2 + 4 )
∴ y = = - a ± (a 2 + 1 ) ⇒ [ x + 1] = 0
2
or 0 ≤ x + 1 <1
Taking ‘+’ sign, we get
or -1 ≤ x < 0
y = - a + (a 2 + 1 ) or - 2 ≤ 2x < 0
1 ∴ 2 x = - 2, - 1
⇒ x+ = - a + (a 2 + 1 )
x 1
or x = - 1, -
or x 2 + (a - (a 2 + 1 ) ) x + 1 = 0 …(ii) 2
1
Taking ‘-’ sign, we get y = - a - (a 2 + 1 ) or x 1 = - 1, x 2 = -
2
1 108. We have, (a 2 + 3 ) x 2 + (a + 2 ) x - 6 < 0
⇒ x+ = - a - (a 2 + 1 )
x
or x 2 + (a + (a 2 + 1 ) ) x + 1 = 0 …(iii)
Let α , β be the roots of Eq. (ii) and γ, δ be the roots of Eq. (iii).
Then, α + β = (a 2 + 1 ) - a
X
and αβ = 1
and γ + δ = - (a 2 + 1 ) - a Let f ( x ) = (a 2 + 3 ) x 2 + (a + 2 ) x - 6
and γδ =1 Q (a 2 + 3 ) > 0 and f ( x ) < 0
Clearly, α + β > 0 and αβ > 0 ∴ D>0
∴Either α , β will be imaginary or both real and positive ⇒(a + 2 ) 2 + 24 (a 2 + 3 ) > 0 is true for all a ∈ R .
according to the Eq. (i) has atleast two distinct negative roots.
Therefore, both γ and δ must be negative. Therefore, 109. We have, 6 x 2 - 77[ x ] + 147 = 0
(i) γδ > 0, which is true as γ δ = 1. 6 x 2 + 147
⇒ = [x ]
(ii) γ+δ<0 77
⇒ - (a + (a 2 + 1 ) ) < 0 ⇒ (0.078) x 2 = [x ] - 1.9
⇒ a + (a 2 + 1 ) > 0, which is true for all a. Q (0.078 ) x 2 > 0 ⇒ x 2 > 0

∴ a ∈R ∴ [ x ] - 1.9 > 0
(iii) D>0 or [ x ] > 1.9
Chap 02 Theory of Equations 201

∴ [ x ] = 2, 3, 4, 5,…
If [ x ] = 2, i. e. 2 ≤ x < 3
2 - 1 .9
Then, x2 = = 1. 28
0.078 α β
X
γ δ
∴ x = 1.13 [fail]
If [ x ] = 3, i. e. 3 ≤ x < 4
Let f ( x ) = x 2 - 2(a + 1 ) x + a (a - 1 ), thus the following
3 - 1.9
Then, x2 = = 14.1 conditions hold good:
0.078
Consider the following cases:
∴ x = 3.75 [true]
Case I D>0
If [ x ] = 4, i.e. 4 ≤ x < 5 2
4 - 1.9 ⇒ 4 (a + 1 ) - 4a (a - 1 ) > 0
Then, x2 = = 26.9
0.078 ⇒ 3a + 1 > 0
∴ x = 5.18 [fail] 1
∴ a>-
If [ x ] = 5, i.e. 5 ≤ x < 6 3
5 - 1.9 Case II f (α ) < 0
Then, x2 = = 39.7
0.078 ⇒ f (1 + a ) < 0
∴ x = 6.3 [fail] ⇒ (1 + a ) 2 - 2 (1 + a ) (1 + a ) + a (a - 1 ) < 0
If [ x ] = 6, i. e. 6 ≤ x < 7 ⇒ - (1 + a ) 2 + a (a - 1 ) < 0
6 - 1.9 4.1
Then, x2 = = = 52.56 ⇒ - 3a - 1 < 0
0.078 0.078 1
∴ x = 7.25 [fail] ⇒ a>-
3
If [ x ] = 7, i. e. 7 ≤ x < 8 Case III f (s ) = 0
7 - 1.9 5.1
Then, x2 = = = 65.38 ⇒ f (1 - a ) < 0
0.078 0.078
⇒ (1 - a ) 2 - 2 (a + 1 ) (1 - a ) + a (a - 1 ) < 0
∴ x = 8.08 [fail]
⇒ ( 4a + 1 ) (a - 1 ) < 0
If [ x ] = 8, i. e. 8 ≤ x < 9
1
8 - 1.9 6.1 ∴ - <a <1
Then, x2 = = = 78.2 4
0.078 0.078
Combining all cases we get
 1 
∴ x = 8.8 [true] a ∈  - , 1
 4 
If [ x ] = 9, i. e. 9 ≤ x < 10
9 - 1.9 7.1 111. pr = ( - p ) (- r )
Then, x2 = = = 91.03
0.078 0.078 = ( α + β + γ + δ ) ( αβγ + αβδ + γδα + γδβ )
∴ x = 9.5 [true] = α 2 βγ + α 2 βδ + α 2 γδ + αβγδ + β 2 γα
If [ x ] = 10, i. e.10 ≤ x < 11
+ β 2 αδ + αβγδ + β 2 γδ + γ 2 αβ + αβγδ
10 - 1.9 8.1
Then, x2 = = = 103.8
0.078 0.078 + γ 2 δα + γ 2δβ + αβγδ + αβδ 2 + γαδ 2 + γβδ 2
∴ x = 10.2 [true] Q AM ≥ GM
If [ x ] = 11, i.e. 11 ≤ x < 12 pr
⇒ ≥ (α 16 β16 γ16 δ16 )1/6 = α β γδ = 5
11 - 1.9 16
Then, x2 =
0.078 pr
⇒ ≥5
9.1 16
= = 116.7
0.078 or pr ≥ 80
∴ x = 10.8 [fail] ∴ Minimum value of pr is 80.
Other values are fail. 112. (α 2 + β 2 ) 2 = (α + β ) (α 3 + β 3 )
Hence, number of solutions is four.
⇒ {(α + β ) 2 - 2 αβ } 2 = (α + β ) {(α + β) 3 - 3 αβ (α + β)}
110. Since, the given equation is 2
 b 2 2c   b  - b
3
3bc 
x 2 - 2x - a 2 + 1 = 0 ⇒  2 -  = -   3 + 2 
a a  a  a a 
⇒ (x - 1)2 = a 2
2
∴ x - 1 ≠ a or x = 1 ± a  b 2 - 2ac  3
 - b   - b + 3abc 
⇒  2
 =   
⇒ α = 1 + a and β = 1 - a  a   a   a3 
202 Textbook of Algebra

⇒ 4a 2c 2 = acb 2 Combining all cases, we get


⇒ 2
ac (b - 4ac ) = 0 k ∈ ( -∞,4 )
117. We have, a + b = 10c, ab = - 11d
As a≠0
⇒ c∆ = 0 and c + d = 10a, cd = - 11b
113. Let P ( x ) = bx 2 + ax + c ∴ a + b + c + d = 10 (a + c )
and abcd = 121 bd
As P (0) = 0
⇒ b + d = 9 (a + c )
⇒ c=0
and ac = 121
As P (1 ) = 1
Next, a 2 - 10 ac - 11d = 0
⇒ a + b =1
P ( x ) = ax + (1 - a ) x 2 and c 2 - 10ac - 11b = 0
Now, P ′ ( x ) = a + 2 (1 - a ) x ⇒ a 2 + c 2 - 20 ac - 11 (b + d ) = 0
As P ′ ( x ) > 0 for x ∈( 0, 1 ) ⇒ (a + c ) 2 - 22 × 121 - 99 (a + c ) = 0
Only option (d) satisfies above condition. ⇒ a + c = 121 or - 22
114. Let the roots are α and α + 1, where α ∈ I . If a + c = - 22 ⇒a = c , rejecting these values, we have
Then, sum of the roots = 2 α + 1 = b a + c = 121
Product of the roots = α (α + 1 ) = c ∴ a + b + c + d = 10 (a + c ) = 1210
118. D≥0
Now, b 2 - 4c = ( 2α + 1 ) 2 - 4α (α + 1 ) 4 (a + b + c ) 2 - 12 λ (ab + bc + ca ) ≥ 0
2 2
= 4α + 1 + 4α - 4α - 4α = 1 (a 2 + b 2 + c 2 ) - (3 λ - 2 ) (ab + bc + ca ) ≥ 0
2
∴ b - 4c = 1 (a 2 + b 2 + c 2 )
n n- 1 ∴ (3 λ - 2 ) ≤
115. Let f ( x ) = an x + an - 1 x +… + a1 x, (ab + bc + ca )
f ( 0 ) = 0;f (α ) = 0 Since, |a - b | < c
⇒ f ′( x ) = 0 has atleast one root between ( 0, α ). ⇒ a + b - 2ab < c 2
2 2
(i)
i.e. Equation |b - c | < a
nan xn - 1 + (n - 1 ) an - 1xn - 2 +… + a1 = 0 ⇒ b + c 2 - 2bc < a 2
2
…(ii)
has a positive root smaller than α. | c - a| < b
116. Let f ( x ) = x 2 - 2kx + k 2 + k - 5 ⇒ c + a - 2ca < b 2
2 2
…(iii)
Consider the following cases: From Eqs. (i), (ii) and (iii), we get
a2 + b2 + c2
<2 …(iv)
ab + bc + ca
f(5) From Eqs. (i) and (iv), we get
4
α X 3λ - 2 < 2 ⇒ λ <
P S 3
119. Q x 2 - 2mx + m 2 - 1 = 0
Case I D≥0 ⇒ (x - m )2 = 1
2 2
⇒ 4k - 4 .1(k + k - 5 ) ≥ 0 ∴ x - m = ± 1 or x = m - 1, m + 1
⇒ -4(k - 5 ) ≥ 0 According to the question,
⇒ k -5 ≤ 0 m - 1 > - 2, m + 1 > - 2
⇒ k ≤ 5 or k ∈ ( -∞, 5 ] ⇒ m > - 1, m > - 3
Case II x-Coordinate of vertex x < 5 Then, m > -1 …(i)
2k and m - 1 < 4, m + 1 < 4
⇒ <5
2 ⇒ m < 5, m < 3 and m < 3 …(ii)
⇒ k < 5 or k ∈ ( -∞, 5 ) From Eqs. (i) and (ii), we get - 1 < m < 3
Case III f (5 ) > 0 120. x 2 + px + q = 0
⇒ 25 - 10k + k 2 + k - 5 > 0 Sum of the roots = tan 30 °+ tan 15 °= - p
2 Product of the roots = tan 30 °⋅ tan 15 °= q
⇒ k - 9k + 20 > 0
tan 30 °+ tan 15 °
⇒ (k - 4 )(k - 5 ) > 0 or k ∈ ( -∞,4 ) ∪ (5, ∞ ) tan 45 °= tan (30 °+ 15 °) =
1 - tan 30 °⋅ tan 15 °
Chap 02 Theory of Equations 203

-p 125. Let f ( x ) = x 7 + 14x 5 + 16x 3 + 30x - 560


⇒ 1= ⇒ - p =1 -q
1 -q
∴ f ′( x ) = 7 x 6 + 70 x 4 + 48 x 2 + 30 > 0, ∀ x ∈ R
⇒ q- p =1
∴ 2 + q - p =3 ⇒ f ( x ) is an increasing function, for all x ∈ R
121. The equation x 2 - px + r = 0 has roots (α , β) and the equation Hence, number of real solutions is 1.
α  126. Let f ( x ) = x 3 - px + q
x 2 - qx + r has roots  , 2β .
2 
∴ f ′( x ) = 3 x 2 - p
α
⇒ r = αβ and α + β = p and + 2β = q ⇒ f ′′( x ) = 6 x
2
2q - p 2 (2 p - q )
⇒ β= and α = p
3 3 √3
2
⇒ αβ = r = (2q - p ) (2 p - q ) –
p
9 √3
122. α + β = -a
| α - β | < 5 ⇒ (α - β ) 2 < 5 For maxima or minima, f ′( x ) = 0
⇒ a 2 - 4 < 5 ⇒ a ∈ ( - 3, 3 ) ∴ x=±
p
3
123. Suppose roots are imaginary, then β = α
 p  p
1 ⇒ f ′′   =6   > 0
and =α  3   3
β
1  p p
⇒ β=- [not possible] and f ′′  -  = -6 <0
β  3 3
⇒ Roots are real ⇒( p 2 - q ) (b 2 - ac ) ≥ 0 p
Hence, given cubic minima at x = and maxima at
⇒ Statement -1 is true. 3
2b 1 p
- =α + x=- .
a β 3
α c 127. Let f ( x ) = x 2 - 8kx + 16 (k 2 - k + 1)
and = , α + β = - 2 p, αβ = q
β a
If β = 1, then α = q
⇒ c = qa [not possible]
- 2b
Also, α+1=
a
X
- 2b 4
⇒ - 2p =
a ∴ D>0
⇒ b = ap [not possible] 2 2
⇒ 64k - 4 ⋅ 16 (k - k + 1 ) > 0
⇒ Statement -2 is true but it is not the correct explanation of ⇒ k >1 …(i)
Statement-1. -b 8k
124. Let α,4β be roots of x 2 - 6x + a = 0 and α , 3 β be the roots of ⇒ >4 ⇒ >4
2a 2
x 2 - cx + 6 = 0. ⇒ k >1 …(ii)
Then, α + 4 β = 6 and 4αβ = a …(i) and f (4) ≥ 0
α + 3 β = c and 3α β = 6 …(ii) ⇒ 16 - 32k + 16 (k 2 - k + 1 ) ≥ 0
From Eqs. (i) and (ii), we get ⇒ k 2 - 3k + 2 ≥ 0
a = 8, αβ = 2
⇒ (k - 1 ) (k - 2 ) ≥ 0
Now, first equation becomes ⇒ k ≤ 1 or k ≥ 2 …(iii)
x 2 - 6x + 8 = 0 From Eqs. (i), (ii) and (iii), we get
⇒ x = 2, 4 k ≥2
If α = 2, 4 β = 4, then 3 β = 3 kmin = 2
3 128. Since, roots of bx 2 + cx + a = 0 are imaginary.
If α = 4, 4 β = 2, then 3 β = [non-integer]
2 ∴ c 2- 4ab < 0
∴Common root is x = 2. ⇒ - c 2 > - 4ab …(i)
204 Textbook of Algebra

Let f ( x ) = 3b 2x 2 + 6bcx + 2c 2 132. Let α be the common root.


Then, α 2 + bα - 1 = 0 and α 2 + α + b = 0
Since, 3b 2 > 0
2
1 b b -1 -1 1
and D = (6bc ) 2 - 4 (3b 2 ) (2c 2 ) = 12b 2c 2 ⇒ × =
1 1 1 b b 1
D 12b 2c 2
∴ Minimum value of f (x ) = - =- = -c 2 > -4ab ⇒ (1 - b ) (b + 1 ) = ( - 1 - b ) 2
2
4a 4 (3b 2 )
⇒ b 3 + 3b = 0
α β α 2 + β 2 (α + β ) 2 - 2 αβ
129. + = = …(i) ∴ b = 0, i 3, - i 3 , where i = - 1.
β α αβ αβ
and given, 3 3
α + β = q, α + β = - p 133. Let f ( x ) = x 4 - 4 x 3 + 12 x 2 + x - 1
⇒ (α + β ) 3 - 3 αβ (α + β ) = q ∴ f ′( x ) = 4 x 3 - 12 x 2 + 24 x + 1
⇒ - p 3 + 3 pαβ = q ⇒ f ′′( x ) = 12 x 2 - 24 x + 24
q + p3 = 12 ( x 2 - 2 x + 2 )
or αβ =
3p = 12 [( x - 1 ) 2 + 1 ] > 0
∴ From Eq. (i), we get
2 (q + p 3 ) i.e. f ′′( x ) has no real roots.
p2 - Hence, f ( x ) has maximum two distinct real roots, where
α β 3p p 3 - 2q
+ = 3
= f ( 0 ) = - 1.
β α (q + p ) (q + p 3 )
134. Given, p ( x ) = f ( x ) - g ( x )
3p
⇒ p( x ) = (a - a1 ) x 2 + (b - b1 ) x + (c - c1 )
α β
and product of the roots = ⋅ = 1 It is clear that p( x ) = 0 has both equal roots - 1, then
β α
(b - b1 )
 p 3 - 2q  -1 -1 = -
∴ Required equation is x 2 -   x+1=0 (a - a1 )
 q + p3 
c - c1
and - 1 × -1 =
or (q + p 3 ) x 2 - ( p 3 - 2q ) x + (q + p 3 ) = 0 a - a1
130. Since, f ′ ( x ) = 12 x 2 + 6 x + 2 ⇒ b - b1 = 2 (a - a1 ) and c - c1 = (a - a1 ) …(i)
Here, D = 6 2 - 4 ⋅ 12 ⋅ 2 = 36 - 96 = - 60 < 0 Also given, p( -2 ) = 2
∴ f ′( x ) > 0, ∀ x ∈ R ⇒ 4 (a - a1 ) - 2 (b - b1 ) + (c - c1 ) = 2 …(ii)
⇒ Only one real root for f ( x ) = 0 From Eqs. (i) and (ii), we get
Also, f ( 0 ) = 1, f ( - 1 ) = - 2 4 (a - a1 ) - 4 (a - a1 ) + (a - a1 ) = 2
⇒ Root must lie in ( - 1, 0 ). ∴ (a - a1 ) = 2 …(iii)
 1 1 ⇒ b - b1 = 4 and c - c1 = 2 [from Eq. (i)] …(iv)
Taking average of 0 and ( - 1 ), f  -  = Now, p(2 ) = 4 (a - a1 ) + 2 (b - b1 ) + (c - c1 )
 2 4
= 8 + 8 + 2 = 18 [from Eqs. (iii) and (iv)]
 1
⇒ Root must lie in  - 1, -  . 135. Let the quadratic equation be
 2
ax 2 + bx + c = 0
 3 1
Similarly, f  -  =- Sachin made a mistake in writing down constant term.
 4  2
∴ Sum of the roots is correct.
 3 1
⇒ Root must lie in  - , -  . i.e. α + β =7
 4 2
Rahul made a mistake in writing down coefficient of x .
131. Qα 2 - 6 α - 2 = 0 ⇒ α 2 - 2 = 6 α …(i)
∴ Product of the roots is correct.
2 2
and β - 6β - 2 = 0 ⇒ β - 2 = 6β …(ii) i.e. αβ = 6
10 10 8 8
a10 - 2a 8 ( α - β ) - 2 (α - β ) ⇒ Correct quadratic equation is
∴ =
2a 9 2 (α 9 - β9 ) x 2 - (α + β ) x + αβ = 0
α 8( α 2 - 2 ) - β 8 ( β 2 - 2 ) ⇒ x 2 - 7x + 6 = 0
=
2 (α 9 - β9 ) ⇒ ( x - 6 )( x - 1 ) = 0 ⇒ x = 6,1
α 8 ⋅ 6α - β8 ⋅ 6β Hence, correct roots are 1 and 6.
= [from Eqs. (i) and (ii)]
2 (α 9 - β9 )
6 (α 9 - β9 )
136. Let a + 1 = h 6
= =3
2 (α 9 - β9 ) ∴ (h 2 - 1 ) x 2 + (h 3 - 1 ) x + (h - 1 ) = 0
Chap 02 Theory of Equations 205

 h 2 - 1 2  h 3 - 1 q
⇒  x +   x+1=0 -
 h -1  h -1 p
⇒ =4
r
As a Æ 0, then h Æ 1
p
 h 2 - 1 2  h 3 - 1
lim   x + lim   x+1=0 ⇒ q = - 4r ... (i)
h Æ 1 h - 1  h Æ 1 h - 1 
Also, given p, q, r are in AP.
⇒ 2x 2 + 3x + 1 = 0 ∴ 2q = p + r
2
⇒ 2x + 2x + x + 1 = 0 ⇒ p = - 9r [from Eq. (i)] …(ii)
⇒ (2 x + 1 ) ( x + 1 ) = 0 D Q for ax 2 + bx + c = 0, α - β = D 
1 Now, | α - β | =
∴ x = - 1 and x = - | a|  a 
2
137. Let e sin x = t …(i) (q 2 - 4 pr )
=
Then, the given equation can be written as | p|
1 (16r 2 + 36r 2
t - - 4 = 0 ⇒ t 2 - 4t - 1 = 0 = =
52 | r |
[from Eqs. (i) and (ii)]
t 9 |r | 9 |r |
4 ± (16 + 4 )
∴ t= 2 13
2 =
9
⇒ e sin x = (2 + 5 ) [Qe sin x > 0,∴taking + ve sign]
141. f ( x ) = x 5 - 5x and g( x ) = - a
⇒ sin x = loge ( 2 + 5 ) …(ii)
∴ f ′( x ) = 5 x 4 - 5
Q (2 + 5 ) > e [Qe = 2.71828… ]
⇒ loge ( 2 + 5 ) > 1 …(iii) 4
From Eqs. (ii) and (iii), we get
sin x > 1 [which is impossible]
Hence, no real root exists. –1 1
138. Given equations are
–4
ax 2 + bx + c = 0 …(i)
and x 2 + 2x + 3 = 0 …(ii) = 5 (x 2 + 1) (x - 1) (x + 1)
Clearly, roots of Eq. (ii) are imaginary, since Eqs. (i) and (ii) Clearly, f ( x ) = g( x ) has one real root, if a > 4 and three real
have a common root, therefore common root must be roots, if | a| < 4.
imaginary and hence both roots will be common. Therefore,
Eqs. (i) and (ii) are identical. 142. Since, b = 0 for p ( x ) = ax 2 + bx + c, as roots are pure
a b c imaginary.
∴ = = or a : b : c = 1 : 2 : 3
1 2 3 (- c ± i c )
⇒x = ± , which are clearly neither pure real nor
139. Q x - [ x ] = { x } [fractional part of x ] a
pure imaginary, as c ≠ 0.
For no integral solution, { x } ≠ 0
∴ a≠ 0 …(i) 143. Qαx 2 - x + α = 0 has distinct real roots.
The given equation can be written as ∴ D>0
3 { x } 2 - 2{ x } - a 2 = 0 2  1 1
⇒ 1 - 4α > 0 ⇒ α ∈  - ,  ...(i)
 2 2
2 2
2 ± ( 4 + 12a ) 1 + (1 + 3a )
⇒ {x } = = [Q 0 < { x } < 1 ] Also, | x1 - x 2 | < 1 ⇒ | x1 - x 2 | 2 < 1
6 3
D 1 - 4α 2 1
1 + (1 + 3a 2 ) ⇒ <1 ⇒ < 1 ⇒α 2 >
⇒ 0< < 1 ⇒ (1 + 3a 2 ) < 2 a 2
α2 5
3
⇒ a2 < 1 ⇒ - 1 < a < 1 …(ii)  1   1 
⇒ α ∈  -∞,-  ∪  , ∞ ...(ii)
 5  5 
From Eqs. (i) and (ii), we get
a ∈ ( - 1, 0 ) ∪ ( 0, 1 ) From Eqs. (i) and (ii), we get
1 1 α+β  1 1   1 1
140. Q + = 4 ⇒ =4 S =  - ,-  ∪  , 
α β αβ  2 5   5 2
206 Textbook of Algebra

2
144. ( x 2 - 5x + 5) x + 4 x - 60
=1 Q α 1, β1 are roots of x 2 - 2 x sec θ + 1 = 0 and α 1 > β1
Case I ∴ α 1 = sec θ - tan θ and β1 = sec θ + tan θ
x 2 - 5 x + 5 = 1 and x 2 + 4 x - 60 can be any real number ⇒ α 2, β 2 are roots of x 2 + 2 x tan θ - 1 = 0
⇒ x = 1, 4 and α 2 > β2
Case II
∴ α 2 = - tan θ + sec θ
x 2 - 5 x + 5 = - 1 and x 2 + 4 x - 60 has to be an even number
and β 2 = - tan θ - sec θ
⇒ x = 2, 3
For x = 3, x 2 + 4 x - 60 is odd, ∴ x ≠ 3 Hence, α 1 + β 2 = - 2 tan θ

Hence, x =2 146. Q x ( x + 1) + ( x + 1) ( x + 2) + .... + ( x + n - 1) ( x + n ) = 10n


Case III x 2 - 5 x + 5 can be any real number and
⇒ nx 2 + x (1 + 3 + 5 + K + (2n - 1 )) + (1 . 2 + 2 . 3
x 2 + 4 x - 60 = 0
+ ...+ (n - 1 ) . n ) = 10n
⇒ x = - 10, 6 1
⇒ Sum of all values of x = 1 + 4 + 2 - 10 + 6 = 3 or nx 2 + n 2x + (n - 1 ) n (n + 1 ) = 10n
3
145. Q x 2 - 2x sec θ a + 1 = 0 ⇒ x = sec θ ± tan θ
or 3 x 2 + 3nx + (n 2 - 1 ) = 30 (Q n ≠ 0)
π π
and - <θ < - or 3 x 2 + 3nx + (n 2 - 31 ) = 0
6 12
 π  π Q |α -β| =1
⇒ sec  -  > sec θ > sec  - 
 6  12
or (α - β ) 2 = 1
 π  π
or sec   > sec θ > sec   D
 6  12 or =1
a2
 π  π
and tan  -  < tan θ < tan  -  or D = a2
 6  12
 π  π or 9n 2 - 12 . (n 2 - 31 ) = 9
⇒ - tan   < tan θ < - tan  
 6  12
or n 2 = 121
 π  π
or tan   > - tan θ > tan   ∴ n = 11
 6  12

You might also like