Theory of Equation
Theory of Equation
(i)
Solutions and
⇒
⇒
or
x1
+
x2
x1 - 1 x 2 - 1
=2
2 x1x 2 - x1 - x 2 = 2 ( x1x 2 - x1 - x 2 + 1 )
8 - x1 - x 2 = 2 ( 4 - x1 - x 2 + 1 )
x1 + x 2 = 2
[from Eq. (i)]
…(ii)
1. We have, From Eqs. (i) and (ii), required equation is
2 (a - b ) x 2 - 11 (a + b + c ) x - 3 (a - b ) = 0 x 2 - ( x1 + x 2 ) x + x1x 2 = 0
∴ D = { - 11 (a + b + c )} 2 - 4 ⋅ 2 (a - b ) ⋅ ( -3) (a - b ) or x 2 - 2x + 4 = 0
2 2
= 121 (a + b + c ) + 24 (a - b ) > 0 6. Let f ( x ) = x 2 - 2ax + a 2 - 1
Therefore, the roots are real and unequal. Now, four cases arise:
2. Here, a < 0 Case I D ≥ 0
Cut-off Y -axis, x = 0
⇒ y =c < 0 [from graph]
∴ c<0
x -coordinate of vertex > 0
X
b –2 α β 2
⇒ - >0
2a
b ⇒ ( - 2a ) 2 - 4 ⋅ 1 (a 2 - 1 ) ≥ 0
⇒ <0
a ⇒ 4≥0
But a<0 ∴ a ∈R
∴ b>0 Case II f ( - 2 ) > 0
and y-coordinate of vertex < 0 ⇒ 4 + 4a + a 2 - 1 > 0
D D
⇒ - <0 ⇒ >0 ⇒ a 2 + 4a + 3 > 0
4a 4a
∴ D<0 [Q a < 0 ] ⇒ (a + 1 ) (a + 3 ) > 0
i.e. b 2 - 4ac < 0 ∴ a ∈ ( - ∞, - 3 ) ∪ ( - 1, ∞ )
c Case III f (2 ) > 0
∴ >0 [Qc < 0 , a < 0 ]
a ⇒ 4 - 4a + a 2 - 1 > 0
⇒ (b - p ) x = q - c + ( 0 + 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 +… + (n - 1 )n ) = 10n
q -c n
∴ x= =α [given] …(ii) ⇒ nx 2 + x ⋅ (1 + 2n - 1 )
b-p 2
From Eq. (i), we get n (n + 1 ) (2n + 1 ) n(n + 1 )
+ - = 10n
(b + p ) (b - p ) + 4a (q - c ) = 0 6 2
⇒ (b + p ) (b - p ) + 4aα (b - p ) = 0 [from Eq. (ii)] n (n 2 - 1 )
(b + p ) ⇒ nx 2 + n 2x + = 10n
or α=- [Qb ≠ p] 3
4a
(n 2 - 31 )
b p ⇒ x 2 + nx + =0 [dividing by n]
- + - 3
a a
= D
4 Q (α + 1 ) - α =
Sum of the roots of ( f (x ) = 0) 1
+ Sum of the roots of (g (x ) = 0) 1= D
=
4 ⇒ D =1
2
= AM of the roots of f ( x ) = 0 (n - 31 )
⇒ n2 - 4 ⋅1 ⋅ =1
and g( x ) = 0 3
11. Let α and β be the roots of ax 2 + bx + c = 0. ⇒ 3n 2 - 4n 2 + 124 = 3
α+β b ⇒ n 2 = 121
∴ x1 = =-
2 2a ∴ n = 11
c 14. Since, 2 is only even prime.
2⋅
2αβ 2c
and x2 = = a =- Therefore, we have
α +β -b b
2 2 + λ ⋅ 2 + 12 = 0
a
∴The required equation is ⇒ λ =8
b 2c 2bc ∴ x 2 + λx + µ = 0
x 2 - - + - x + =0
2a b 2ab ⇒ x 2 + 8x + µ = 0 …(i)
2 2
i.e. 2abx + (b + 4ac ) x + 2bc = 0 But Eq. (i) has equal roots.
12. Let α 1, α 2 and α 3 be the roots of f ( x ) = 0, such that ∴ D=0
α1 < α 2 < α 3 ⇒ 82 - 4 ⋅ 1 ⋅ µ = 0
and g( x ) can take all values from [ - 6, ∞ ). ⇒ µ = 16
Chap 02 Theory of Equations 181
15. We have, x + x - (1 - x ) = 1 9 ⋅ 3 2 x + 6 ⋅ 3 x + 4 (3 x + 1 ) 2 + 2 ⋅ 3 x + 1 + 4
Let y = =
9 ⋅ 3 2 x - 6 ⋅ 3 x + 4 (3 x + 1 ) 2 - 2 ⋅ 3 x + 1 + 4
⇒ x - 1 - x =1 - x
t 2 + 2t + 4
On squaring both sides, we get = , where t = 3 x + 1
t 2 - 2t + 4
x - 1 - x =1 + x -2 x
⇒ (y - 1 ) t 2 - 2 (y + 1 ) t + 4 (y - 1 ) = 0
⇒ - 1 - x =1-2 x By the given condition, for every t ∈ R,
Again, squaring on both sides, we get 1
<y <3 …(i)
3
1 - x = 1 + 4x - 4 x
But t = 3x + 1 > 0
4 x = 5x
We have, product of the roots = 4 > 0, which is true.
4 2 (y + 1 )
⇒ x = [on squaring both sides] And sum of the roots = >0
5 (y - 1 )
16 y +1
⇒ x= ⇒ >0
25 y -1
Hence, the number of real solutions is 1. ∴ y ∈ ( - ∞, - 1 ) ∪ (1, ∞ ) …(ii)
From Eqs. (i) and (ii), we get
16. Let x = 7 + 7 - 7 + 7 -… ∞
1 <y <3
⇒ x= 7+ 7-x [on squaring both sides] 19. Since α , β and γ are the roots of
⇒ x2 - 7 = 7 - x (x - a ) (x - b ) (x - c ) = d
⇒ (x - a ) (x - b ) (x - c ) - d = (x - α ) (x - β) (x - γ )
⇒ (x 2 - 7)2 = 7 - x [again, squaring on both sides] ⇒ (x - α ) (x - β) (x - γ ) + d = (x - a ) (x - b ) (x - c )
⇒ x 4 - 14 x 2 + x + 42 = 0 ⇒ a, b and c are the roots of
(x - α ) (x - β) (x - γ ) + d = 0
⇒ ( x - 3 ) ( x 3 + 3 x 2 - 5 x - 14 ) = 0
20. Since, all the coefficients of given equation are not real.
⇒ (x - 3) (x + 2) (x 2 + x - 7) = 0 Therefore, other root ≠ 3 + i.
- 1 ± 29 Let other root be α.
⇒ x = 3, - 2,
2 2 (1 + i )
∴ x =3 [Q x > 7] Then, sum of the roots =
i
17. Let y = 2 (k - x ) ( x + ( x 2 + k 2 ) 2 (1 + i )
⇒ α + 3 -i =
i
⇒ y - 2 (k - x ) x = 2 (k - x ) ( x 2 + k 2 ) ⇒ α + 3 - i = 2 - 2i
On squaring both sides, we get ∴ α = -1 -i
⇒ y 2 + 4 (k - x ) 2 x 2 - 4 xy (k - x ) = 4 (k - x ) 2 ( x 2 + k 2 ) 21. We have, |[ x ] - 2 x | = 4
⇒ y 2 - 4 xy (k - x ) = 4 (k - x ) 2k 2 ⇒ |[ x ] - 2 ([ x ] + { x })| = 4
⇒ |[ x ] + 2 { x }| = 4
⇒ 4 (k 2 - y ) x 2 - 4(2k 3 - ky ) x - y 2 + 4k 4 = 0
which is possible only when
Since, x is real.
2 { x } = 0, 1
∴ D≥0
1
⇒ 16 (2k - ky ) - 4 ⋅ 4 (k 2 - y ) ( 4k 4 - y 2 ) ≥ 0
3 2 If { x } = 0, then [ x ] = ± 4 and then x = - 4, 4 and if { x } = ,
2
[using, b 2 - 4ac ≥ 0] then
⇒ 4k 6 + k 2y 2 - 4k 4y - ( - k 2y 2 + 4k 6 + y 3 - 4yk 4 ) ≥ 0 [x ] + 1 = ± 4
⇒ [ x ] = 3, - 5
⇒ 2k 2y 2 - y 3 ≥ 0
1 1
⇒ y 2 (y - 2k 2 ) ≤ 0 ∴ x = 3 + and - 5 +
2 2
∴ y ≤ 2k 2 7 9 9 7
⇒ x = , - ⇒ x = - 4, - , , 4
1 x 2 - 2x + 4 2 2 2 2
18. We have, < < 3, ∀ x ∈ R 2 3 2
3 x 2 + 2x + 4 22. We know that, x + x + 1 is a factor of ax + bx + cx + d .
1 x 2 + 2x + 4 Hence, roots of x 2 + x + 1 = 0 are also roots of
< < 3, ∀ x ∈ R
3 x 2 - 2x + 4 ax 3 + bx 2 + cx + d = 0. Since, ω and ω 2
182 Textbook of Algebra
4a 2 - 4
2a ±
⇒ y = = a ± a2 - 1
2
∴ y = a ± b = (a + b ) ± 1 [Qa 2 - b = 1]
2
- 15 X
⇒ (a + b ) x = (a + b ) ± 1 0 α β1
2
∴ x - 15 = ± 1 The following cases arise:
⇒ x 2 = 15 ± 1 ⇒ x 2 = 16, 14 Case I D ≥ 0
2
⇒ x = ± 4, ± 14 2a -1
2
- 4 ⋅1 ⋅ ≥0
25. We have, x 2 - xy + y 2 = 4 ( x + y - 4 ) 1 - a 1 - a2
⇒ x 2 - x (y + 4 ) + y 2 - 4y + 16 = 0 4a 2 4
⇒ + ≥0
Q x ∈R (1 - a 2 ) 2 (1 - a 2 )
∴ ( - (y + 4 )) 2 - 4 ⋅ 1 ⋅ (y 2 - 4y + 16 ) ≥ 0 4a 2 + 4 - 4a 2
⇒ ≥0
[using, b 2 - 4ac ≥ 0 ] (1 - a 2 ) 2
2 2
⇒ y + 8y + 16 - 4y + 16y - 64 ≥ 0 4
⇒ ≥0 [always true]
⇒ 3y 2 - 24y + 48 ≤ 0 (1 - a 2 ) 2
⇒ y 2 - 8y + 16 ≤ 0 ⇒ (y - 4 ) 2 ≤ 0 Case II f ( 0 ) > 0
-1 1
∴ (y - 4 ) 2 = 0 ⇒ >0 ⇒ <0
(1 - a 2 ) 1 - a2
∴ y =4
⇒ 1 - a2 < 0
Then, x 2 - 4 x + 16 = 4( x + 4 - 4 )
∴ a ∈ ( - ∞, - 1 ) ∪ (1, ∞ )
x 2 - 8 x + 16 = 0
Case III f (1 ) > 0
(x - 4)2 = 0 2a 1
⇒ 1+ - >0
x=4 (1 - a ) (1 - a 2 )
2
1 - a 2 + 2a - 1 a 2 - 2a - 1 + 5
⇒ > 0 ⇒ <0 ∴ x ∈ 0,
(1 - a 2 ) 1 - a2 2
|G | + G 5 The given equation will have four real roots, i.e. Eq. (i) has two
∴ α= >0 non-negative roots.
2A
b
|G | - G 5 Then, - ≥0
and β= <0 a
2A
af ( 0 ) ≥ 0
Exactly one positive root and atleast one root which is
negative fraction. and b 2 - 4ac ≥ 0 [given]
33. It is clear from graph that the equation y = ax 2 + bx + c = 0 ⇒
b
≤0
has two real and distinct roots. Therefore, a
b 2 - 4ac > 0 …(i) ac ≥ 0
Q Parabola open downwards. ⇒ a > 0, b < 0, c > 0
∴ a<0 or a < 0, b > 0, c < 0
a
andy = ax 2 + bx + c cuts-off Y -axis at, x = 0. 36. Let the roots be , a and ar , where a > 0, r > 1
r
∴ y =c < 0 ∴ Product of the roots = 1
⇒ c<0 a
and x-coordinate of vertex > 0 ⇒ ⋅ a ⋅ ar = 1
r
b b
⇒ - >0 ⇒ <0 ⇒ a3 = 1
2a a
∴ a =1 [one root is 1]
⇒ b>0 [Qa < 0]
1
It is clear that a and b are of opposite signs. Now, roots are , 1 and r . Then,
r
34. Let y = ax 2 + bx + c 1
+ 1 + r = -b
r
1
a>0 ⇒ + r = -b -1 …(i)
r
–2 2
1
Q r + >2
α β r
⇒ -b -1 >2
Consider the following cases: ⇒ b < -3 [from Eq. (i)]
Case I D > 0 or b ∈ ( - ∞, - 3 )
⇒ b 2 - 4ac > 0 1 1
Also, ⋅1 + 1 ⋅r + r ⋅ = c
Case II af ( - 2 ) < 0 r r
⇒ a ( 4a - 2b + c ) < 0 1
⇒ + r + 1 =c = -b [from Eq. (i)]
⇒ 4a - 2b + c < 0 r
Case III af (2 ) > 0 ∴ b +c = 0
⇒ a ( 4a + 2b + c ) > 0 1
⇒ 4a + 2 b + c > 0 Now, first root = < 1 [Q one root is smaller than one]
r
Combining Case II and Case III, we get
Second root = 1
4a + 2| b| + c < 0
Third root = r > 1 [Q one root is greater than one]
Also, at x = 0, y <0 ⇒c<0 2
37. We have, f ( x ) = ax + bx + c
Also, since for - 2 < x < 2,
a, b , c ∈ R [Q a ≠ 0 ]
y <0 1
On putting x = 0, 1, , we get
⇒ ax 2 + bx + c < 0 2
For x = 1, a+b+c<0 …(i) |c | ≤ 1
and for x = - 1, a -b + c < 0 …(ii) |a + b + c | ≤ 1
1 1
Combining Eqs. (i) and (ii), we get and a + b + c ≤1
4 2
a + | b| + c < 0
⇒ -1 ≤ c ≤ 1,
35. Put x 2 = y .
-1 ≤a + b + c ≤1
Then, the given equation can be written as
and - 4 ≤ a + 2b + 4c ≤ 4
f (y ) = ay 2 + by + c = 0 …(i) ⇒ - 4 ≤ 4a + 4b + 4c ≤ 4
and - 4 ≤ - a - 2b - 4c ≤ 4
Chap 02 Theory of Equations 185
On adding, we get b
Option (d) a < 0, c < 0, - <0
- 8 ≤ 3a + 2b ≤ 8 2a
Also, - 8 ≤ a + 2b ≤ 8 or a < 0, c < 0, b < 0
∴ - 16 ≤ 2a ≤ 16 ∴ abc < 0
⇒ | a| ≤ 8 41. Here, D ≤ 0
Q -1 ≤ - c ≤ 1, - 8 ≤ - a ≤ 8 and f ( x ) ≥ 0, ∀ x ∈ R
We get, - 16 ≤ 2b ≤ 16 ∴ f (3 ) ≥ 0
⇒ |b | ≤ 8 ⇒ 9a + 3b + 6 ≥ 0
or 3a + b ≥ - 2
∴ | a| + | b| + | c | ≤ 17
⇒ Minimum value of 3a + b is - 2.
- 5 ± 25 + 1200 -5 ± 35 30 - 40
38. Q x = = = , and f (6 ) ≥ 0
50 50 50 50 ⇒ 36a + 6b + 6 ≥ 0
3 -4 ⇒ 6a + b ≥ - 1
or cos α = ,
5 5 ⇒ Minimum value of 6a + b is -1.
But -1 < x < 0 42. Since, f ( x ) = x 3 + 3 x 2 - 9 x + λ = ( x - α ) 2(x - β)
4 ∴ α is a double root.
∴ cos α = - [ lies in II and III quadrants]
5 ∴ f ′( x ) = 0 has also one root α.
3 i.e. 3 x 2 + 6 x - 9 = 0 has one root α.
∴ sin α = [ lies in II quadrant]
5
∴ x 2 + 2 x - 3 = 0 or ( x + 3 ) ( x - 1 ) = 0
3
∴ sin α = - [lies in III quadrant] has the root α which can either -3 or 1.
5
If α = 1, then f (1 ) = 0 gives λ - 5 = 0 ⇒ λ = 5.
24
∴ sin 2α = 2 ⋅ sin α ⋅ cos α = - If α = - 3, then f ( - 3 ) = 0 gives
25
- 27 + 27 + 27 + λ = 0
[ lies in II quadrant] ⇒ λ = - 27
24 2
43. We have, D = (b - c ) - 4a (a - b - c ) > 0
∴ sin 2α = 2 ⋅ sin α ⋅ cosα = [lies in III quadrant]
25
⇒ b 2 + c 2 - 2bc - 4a 2 + 4ab + 4ac > 0
39. Qa + 2b + 4c = 0
⇒ c 2 + ( 4a - 2b ) c - 4a 2 + 4ab + b 2 > 0, ∀c ∈ R
2
1 1 Since, c ∈ R, so we have
∴ a + b + c = 0
2 2
( 4a - 2b ) 2 - 4 ( - 4a 2 + 4ab + b 2 ) < 0
1
It is clear that one root is . ⇒ 4a 2 - 4ab + b 2 + 4a 2 - 4ab - b 2 < 0
2
1 b ⇒ a (a - b ) < 0
Let other root be α. Then, α + =- If a > 0, then a - b < 0
2 a
1 b i.e. 0 <a <b
⇒ α=- - or b >a > 0
2 a
which depends upon a and b. If a < 0, then a - b > 0
i.e. 0 >a >b
40. Q Cut-off Y -axis, put x = 0, i.e. f ( 0) = c
or b <a < 0
b 44. We have, x 3 - ax 2 + bx - 1 = 0 …(i)
Option (a) a < 0, c < 0, - <0
2a 2 2 2 2
Then, α + β + γ = (α + β + γ ) - 2 (αβ + βγ + γα )
or a < 0, c < 0, b < 0
∴ abc < 0 = a 2 - 2b
b α 2 β 2 + β 2 γ 2 + γ 2 α 2 = (αβ + βγ + γα ) 2
Option (b) a < 0, c > 0, - >0
2a - 2 αβγ (α + β + γ ) = b 2 - 2a
or a < 0, c > 0, b > 0 and α 2 β2 γ 2 = 1
∴ abc < 0
Therefore, the equation whose roots are α 2, β 2 and γ 2, is
b
Option (c) a > 0, c > 0, - >0 x 3 - (a 2 - 2b ) x 2 + (b 2 - 2a ) x - 1 = 0 …(ii)
2a
or a > 0, c > 0, b < 0 Since, Eqs. (i) and (ii) are indentical, therefore
∴ abc < 0 a 2 - 2b = a and b 2 - 2a = b
186 Textbook of Algebra
⇒ ab ≥ 36 × 2 68. We have,
Q
a+b
≥ ab ≥ 6 2 ⇒
a+b
≥6 2 (5 + 2 ) x 2 - ( 4 + 5 ) x + 8 + 2 5 = 0
2 2
4+ 5
∴ a + b ≥ 12 2 ∴Sum of the roots =
5+ 2
or (a + b ) 3 ≥ 3456 2
8+2 5
Hence, minimum value of (a + b ) 3 is 3456 2. and product of the roots =
5+ 2
Solutions (Q. Nos. 64 to 66) ∴The harmonic mean of the roots
∴ α +β+γ+δ=-A …(i)
2 × Product of the roots 2 × (8 + 2 5 )
(α + β ) ( γ + δ ) + αβ + γδ = B …(ii) = = =4
Sum of the roots (4 + 5 )
αβ ( γ + δ ) + γδ (α + β ) = - C …(iii)
and αβγδ = D …(iv) 69. Let x 2 - ax + 30 = y
C αβ ( γ + δ ) + γδ (α + β ) ∴ y = 2 y + 15 …(i)
64. Q =
A α+β+γ+δ
k ( γ + δ ) + k (α + β ) ⇒ y 2 - 4y - 60 = 0
= [Qαβ = γδ =k]
α+β+γ+δ ⇒ (y - 10 ) (y + 6 ) = 0
=k …(v) ∴ y = 10, - 6
65. From Eq. (ii), we get ⇒ y = 10, y ≠ - 6 [Qy > 0]
(α + β ) ( γ + δ ) = B - (αβ + γδ ) = B - 2k [Qαβ = γδ = k] Now, x 2 - ax + 30 = 10
66. From Eq. (iv), we get
⇒ x 2 - ax + 20 = 0
αβγδ = D
⇒ k ⋅k = D [Qαβ = γδ = k] Given, αβ = λ = 20
2 α+β
C ∴ ≥ αβ = 20
⇒ =D [from Eq. (v)] 2
A
⇒ α + β ≥ 2 20
∴ C 2 = A 2D
67. The given equation is | x - 2 | 2 + | x - 2 | - 2 = 0. or µ= 4 5
Now, (r + s ) 3 + (s + t ) 3 + (t + r ) 3 = ( - t ) 3 + ( - r ) 3 + ( - s ) 3 Q a (b - c ) + b (c - a ) + c (a - b ) = 0
[Qr + s + t = 0] ∴ x = 1 is a root of
= - (t 3 + r 3 + s 3 ) = - 3 rst [Qr + s + t = 0] a (b - c ) x 2 + b (c - a ) x + c (a - b ) = 0 …(ii)
= - 3 ( - 251 ) = 753 Given, roots [Eq. (ii)] are equal.
c (a - b )
Now, 99 λ = (r + s ) 3 + (s + t ) 3 + (t + r ) 3 = 753 ∴ 1 ×1 =
a (b - c )
753
∴ λ= = 7.6 ⇒ a (b - c ) = c (a - b )
99
2ac
∴ [λ ] = 7 or b=
a+c
77. A Æ (r,s); B Æ (p, q, r,s, t); C Æ (p, q, t)
∴ a, b and c are in HP. …(iii)
x 2 - 2x + 4
(A) We have, y = From Eqs. (i) and (ii), we get
x 2 + 2x + 4
a =b =c
⇒ x 2 (y - 1 ) + 2 (y + 1 ) x + 4 (y - 1 ) = 0 ∴ a,b and c are in AP, GP and HP.
As x ∈ R , we get (B)Q x 3 - 3x 2 + 3x - 1 = 0
D≥0 ⇒ (x - 1)3 = 0
⇒ 4 (y + 1 ) - 16 (y - 1 ) 2 ≥ 0
2
∴ x = 1, 1, 1
⇒ 3y 2 - 10y + 3 ≤ 0 ⇒ Common root, x = 1
⇒ (y - 3 ) (3y - 1 ) ≤ 0 ∴ a (1 ) 2 + b (1 ) + c = 0
1 ⇒ a+b+c=0
⇒ ≤y ≤3
3
(C) Given, bx + ( (a + c ) 2 + 4b 2 ) x + (a + c ) ≥ 0
2
2x 2 + 4x + 1
(B) We have, y = 2 ∴ D≤0
x + 4x + 2
⇒ (a + c ) 2 + 4b 2 - 4b (a + c ) ≤ 0
⇒ x 2(y - 2 ) + 4(y - 1 ) x + 2y - 1 = 0
⇒ (a + c - 2b ) 2 ≤ 0
As x ∈ R , we get
D≥0 or (a + c - 2b ) 2 = 0
⇒ 16 (y - 1 ) 2 - 4 (y - 2 ) (2y - 1 ) ≥ 0 ∴ a + c = 2b
Hence a, b and c are in AP.
⇒ 4 (y - 1 ) 2 - (y - 2 ) (2y - 1 ) ≥ 0
79. A Æ (q,r,s,t); B Æ (q,r); C Æ (p,q)
⇒ 2y 2 - 3y + 2 ≥ 0
ax 2 + 3 x - 4
3 (A) We have, y =
⇒ y2 - y + 1 ≥ 0 3x - 4x 2 + a
2
3 7
2 ⇒ x 2 (a + 4y ) + 3 (1 - y ) x - (ay + 4 ) = 0
⇒ y - + ≥0
4 16 As x ∈R , we get
∴ y ∈R D≥0
2
2
x - 3x + 4 ⇒ 9 (1 - y ) + 4 (a + 4y ) (ay + 4 ) ≥ 0
(C) We have, y =
x -3 ⇒ ( 9 + 16a ) y 2 + ( 4a 2 + 46 )y + (9 + 16a ) ≥ 0, ∀ y ∈ R
⇒ x 2 - (3 + y ) x + 3y + 4 = 0 ⇒ If 9 + 16a > 0, then D ≤ 0
As x ∈ R , we get Now, D≤0
D ≥ 0 ⇒ (3 + y ) 2 - 4 (3y + 4 ) ≥ 0 ⇒ ( 4a + 46 ) - 4 ( 9 + 16a ) 2 ≤ 0
2 2
⇒ y 2 - 6y - 7 ≥ 0 ⇒ (y + 1 ) (y - 7 ) ≥ 0 ⇒ 4 [( 2a 2 + 23 ) 2 - ( 9 + 16a ) 2 ] ≤ 0
ax 2 + x - 2 f (1 ) > 0
(B) We have, y =
a + x - 2x 2 ⇒ 1 -6 + 9 + λ > 0
⇒ x 2 (a + 2y ) + x (1 - y ) - (2 + ay ) = 0 ⇒ λ>-4 …(ii)
and f (3 ) < 0
As x ∈R , we get
⇒ 27 - 54 + 27 + λ < 0
D≥0
2
⇒ λ<0 …(iii)
⇒ ( 1 - y ) + 4 ( 2 + ay ) (a + 2y ) ≥ 0
From Eqs. (i), (ii) and (iii), we get
⇒ ( 1 + 8a ) y 2 + ( 4a 2 + 14 ) y + (1 + 8a ) ≥ 0 -4<λ<0
⇒ If 1 + 8a > 0, then D ≤ 0 ⇒ -3 < λ + 1 < 1
⇒ ( 4a 2 + 14 ) 2 - 4 (1 + 8a ) 2 ≤ 0 ∴ [ λ + 1 ] = - 3, - 2, - 1, 0
⇒ 4 [(2a 2 + 7 ) 2 - (1 + 8a ) 2 ] ≤ 0 ∴ |[ λ + 1 ]| = 3, 2, 1, 0
(B)Q x 2 + x + 1 > 0, ∀ x ∈ R
⇒ [(2a 2 + 7 ) + (1 + 8a )] [(2a 2 + 7 ) - (1 + 8a )] ≤ 0
x 2 - λx - 2
⇒ (2a 2 + 8a + 8 ) (2a 2 - 8a + 6 ) ≤ 0 Given, -3 < <2
x2 + x + 1
⇒ 4 (a + 2 ) 2 (a 2 - 4a + 3 ) ≤ 0
⇒ - 3 x 2 - 3 x - 3 < x 2 - λx - 2 < 2 x 2 + 2 x + 2
⇒ a 2 - 4a + 3 ≤ 0
⇒ 4x 2 - (λ - 3) x + 1 > 0
⇒ (a - 1 ) (a - 3 ) ≤ 0
⇒ 1 ≤a ≤3 and x 2 + (λ + 2)x + 4 > 0
Thus, 1 + 8a > 0 and 1 ≤ a ≤ 3 ∴ (λ - 3)2 - 4 ⋅ 4 ⋅ 1 < 0
⇒ 1 ≤a ≤3 and (λ + 2)2 - 4 ⋅ 1 ⋅ 4 < 0
x 2 + 2x + a
(C) We have, y = 2 ⇒ (λ - 3)2 - 42 < 0
x + 4 x + 3a
and (λ + 2)2 - 42 < 0
⇒ x 2(y - 1 ) + 2 (2y - 1 ) x + a (3y - 1 ) = 0
⇒ - 4 < λ -3 < 4
As x ∈ R , we get and -4<λ+2<4
D≥0 or - 1 < λ <7
⇒ 4 (2y - 1 ) 2 - 4 (y - 1 ) a (3y - 1 ) ≥ 0 and -6 < λ <2
⇒ ( 4 - 3a ) y 2 - ( 4 - 4a )y + (1 - a ) ≥ 0 We get, -1 < λ <2
⇒ If 4 - 3a > 0, then D ≤ 0 ∴ [ λ ] = - 1, 0, 1
⇒ ( 4 - 4a ) 2 - 4 ( 4 - 3a ) (1 - a ) ≤ 0 ⇒ |[ λ ]| = 0, 1
⇒ 4 (2 - 2a ) 2 - 4 ( 4 - 3a ) (1 - a ) ≤ 0 (C)Q (b - c ) + (c - a ) + (a - b ) = 0
∴ x = 1 is a root of
⇒ 4 + 4a 2 - 8a - ( 4 - 7a + 3a 2 ) ≤ 0
(b - c ) x 2 + (c - a ) x + (a - b ) = 0
⇒ a2 - a ≤ 0
Also, x = 1 satisfies
⇒ a (a - 1 ) ≤ 0 x2 + λ x + 1 = 0
⇒ 0 ≤a ≤1
⇒ 1+λ+1=0
80. A Æ (p,q,r,s);B Æ (p,q); C Æ (s) ∴ λ = -2
(A) Let y = f ( x ) = x 3 - 6 x 2 + 9 x + λ Now, λ -1 = -3
[ λ - 1] = - 3
f ′ ( x ) = 3 x 2 - 12 x + 9 = 0
⇒ |[ λ - 1 ]| = 3
∴ x = 1, 3 81. If quadratic equation ax 2 + bx + c = 0 is satisfied by more than
f ′′ ( x ) = 6 x - 12 two values of x, then it must be an identity.
f ′′(1 ) < 0 and f ′′ (3 ) > 0 Therefore, a = b = c = 0
∴ Statement-2 is true.
But in Statement-1,
4 p - 3 = 4q - 3 = r = 0
3
0 3 Then, p =q = ,r = 0
1 4
λ
which is false.
Since, at one value of p or q or r, all coefficients at a time ≠ 0.
Also, f (0) < 0 ⇒ λ < 0 …(i) ∴ Statement-1 is false.
192 Textbook of Algebra
Case I D ≥ 0
∴ m ∈R [from Eq. (i)]
X Case II f (2 ) > 0
α β 2 7 - 33 7 + 33
∴ m ∈ - ∞, ∪ , ∞ [from part (a)]
Consider the following cases: 2 2
Case I D ≥ 0 Case III f (3 ) > 0
∴ m ∈R [from Eq. (i)] 1
Case II x -coordinate of vertex < 2. ⇒ 9 - 3 (2m + 1 ) + m (m + 1 ) > 0
2
1
⇒ m + <2 [from Eq. (ii)] or m 2 - 11m + 12 > 0
2
3 11 - 73 11 + 73
or m< ∴ m ∈ - ∞, ∪ , ∞
2 2 2
Case III f (2 ) > 0 Case IV 2 < x -coordinate of vertex < 3
1 1
⇒ 4 - (2m + 1 ) 2 + m (m + 1 ) > 0 ⇒ 2 <m + <3
2 2
⇒ m 2 - 7m + 4 > 0 or
3 5 3 5
< m < or m ∈ ,
2 2 2 2
7 - 33 7 + 33
∴ m ∈ - ∞, ∪ , ∞ Combining all cases, we get
2 2
m ∈φ
Combining all cases, we get (iv) Exactly one root lie in the interval (2,3) .
7 - 33 Consider the following cases:
m ∈ - ∞,
2 Case I D > 0
∴ m ∈R [from Eq. (i)]
(ii) Both roots are greater than 2.
Consider the following cases:
3
f(2) X
2 α β
X
2 α β
Case II f (2 ) f (3 ) < 0
Case I D ≥ 0 1
4 - 2 ( 2m + 1 ) + m ( m + 1 )
∴ m ∈R [from Eq. (i)] 2
Case II x -coordinate of vertex > 2 1
1 9 - 3 ( 2m + 1 ) + m ( m + 1 ) < 0
⇒ m + >2 [from Eq. (ii)] 2
2
⇒ ( m 2 - 7m + 4 ) ( m 2 - 11m + 12 ) < 0
3
∴ m> 7 - 33 7 + 33
2 ⇒ m - m -
Case III f (2 ) > 0 2 2
7 - 33 33 11 - 73 11 + 73
m ∈ - ∞, ∪ 7 + , ∞ [from part (a)] m - m - <0
2 2 2 2
Chap 02 Theory of Equations 195
7 + √33 11 - 73 11 + 73
∴ m ∈ ,
+ + 2 + 2 2
7 – √33 – 7 – √73 – 11 + √73
Combining all cases, we get
2 2 2
7 - 33 7 + 33
m ∈ ,
7 - 33 11 - 73 7 + 33 11 + 73 2 2
∴ m ∈ , ∪ ,
2 2 2 2 (vii) Atleast one root lies in the interval (2, 3).
Combining all cases, we get i.e. (d ) ∪ (c )
7 - 33 11 - 73 7 + 33 11 + 73 7 - 33 11 - 73 7 + 33 11 + 73
m ∈ , ∪ , ∴ m ∈ , ∪ ,
2 2 2 2 2 2 2 2
(v) One root is smaller than 1 and the other root is greater (viii) Atleast one root is greater than 2.
than 1.
i.e. (Exactly one root is greater than 2) ∪ (Both roots are
Consider the following cases: greater than 2)
1 X 2
α β X
α β
Case I D > 0
∴ m ∈R [from Eq. (i)] or(Exactly one root is greater than 2) ∪ (b ) …(I)
Case II f (1 ) < 0 Consider the following cases:
1 Case I D > 0
⇒ 1 - (2m + 1 ) + m (m + 1 ) < 0 [from Eq. (iii)]
2 ∴ m ∈R [from Eq. (i)]
⇒ m 2 - 3m < 0 Case II f (2 ) < 0
⇒ m (m - 3 ) < 0 ⇒ m 2 - 7m + 4 < 0
∴ m ∈( 0, 3 )
7 - 33 7 + 33
Combining both cases, we get ∴ m ∈ ,
m ∈( 0, 3 ) 2 2
(vi) One root is greater than 3 and the other root is smaller Combining both cases, we get
than 2. 7 - 33 7 + 33
Consider the following cases: m ∈ , …(II)
2 2
Finally from Eqs. (I) and (II), we get
7 - 33 7 + 33 7 + 33
m ∈ , ∪ , ∞
2 2 2
2 3 X
α β (ix) Atleast one root is smaller than 2.
i.e. (Exactly one root is smaller than 2) ∪(Both roots are
smaller than 2)
Case I D > 0
or (h) (II) ∪ (a)
∴ m ∈R [from Eq. (i)]
7 - 33 7 - 33 7 + 33
Case II f (2 ) < 0 We get, m ∈ - ∞, ∪ ,
⇒ m 2 - 7m + 4 < 0 2 2 2
1
Case II f (2 ) < 0
cn + 1
⇒ m 2 - 7m + 4 < 0 ⇒ α=
a
7 - 33 7 + 33 ∴ From Eq. (i), we get
∴ m ∈ ,
2 2 1 n
cn + 1 cn + 1 b
Case III f (3 ) < 0 + =-
a a a
⇒ m 2 - 11m + 12 < 0
1 1 1 n
- +1 - +1
11 - 73 11 + 73 ⇒ (c )n + 1 ⋅ a n+1
+ (c n )n + 1 ⋅ a n+1
+b=0
∴ m ∈ ,
2 2 1 n 1 1
n+1 n+1 n n+1 n +1
Combining all cases, we get ⇒ c ⋅a + (c ) ⋅a +b=0
11 - 73 7 + 33 1 1
m ∈ ,
2 2 ⇒ (anc )n + 1 + (c na )n + 1 + b = 0
α b
90. Q =r 93. We have, α+β=-
β a
c m n
α+β r +1 αβ = ⇒ γ+δ=- and γδ =
⇒ = a l l
α -β r -1
Now, sum of the roots
[using componendo and dividendo method]
= (αγ + βδ ) + (αδ + βγ ) = (α + β ) γ + (α + β ) δ
- b /a r + 1
⇒ = ⇒ b (1 - r ) = (1 + r ) D = (α + β ) ( γ + δ )
D r -1
b m mb
a = - - =
a l al
On squaring both sides, we get
and product of the roots
⇒ b 2(1 - r ) 2 = (1 + r ) 2 (b 2 - 4ac ) = (αγ + βδ ) (αδ + βγ )
(1 + r ) 2 b 2 = (α 2 + β 2 ) γδ + αβ ( γ 2 + δ 2 )
or (1 + r ) 2 ⋅ 4ac = b 2( 4r ) or =
r ac = {(α + β ) 2 - 2αβ} γδ + αβ {( γ + δ ) 2 - 2 γδ }
1 1 1
91. We have, + = b 2 2c n c m 2 2n
x+p x+q r = - - + - -
a l a l
(x + q ) + (x + p ) 1 a l
⇒ =
x 2 + ( p + q ) x + pq r b 2 - 2ac n c m 2 - 2nl (b 2 - 2ac ) ln + ( m 2 - 2nl ) ac
= 2 + 2 =
⇒ x 2 + ( p + q - 2r ) x + pq - ( p + q ) r = 0 a l a l a 2l 2
Now, since the roots are equal in magnitudes, but opposite in ∴ Required equation is
sign. Therefore, mb (b 2 - 2ac ) ln + (m 2 - 2nl ) ac
Sum of the roots = 0 x2 - x + =0
al a 2l 2
⇒ p + q - 2r = 0
⇒ a 2l 2x 2 - mbalx + (b 2 - 2ac ) ln + (m 2 - 2nl ) ac = 0
⇒ p + q = 2r …(i)
and product of the roots = pq - ( p + q ) r 94. Since, the roots are equal.
∴ D=0
p + q
= pq - ( p + q ) [from Eq. (i)] ⇒ 4 (b 2 - ac ) 2 - 4 (a 2 - bc ) (c 2 - ab ) = 0
2
⇒ (b 2 - ac ) 2 - (a 2 - bc ) (c 2 - ab ) = 0
2 pq - p 2 - q 2 - 2 pq
= ⇒ b (a 3 + b 3 + c 3 - 3abc ) = 0
2
p2 + q2 ⇒ b = 0 or a 3 + b 3 + c 3 - 3abc = 0
=-
2 95. Let α and β be the roots of x 2 - px + q = 0. Then,
92. Let α be one root of the equation ax 2 + bx + c = 0. α+β=p …(i)
Then, other root be α n . αβ = q …(ii)
b 1
∴ α + αn = - …(i) And α and be the roots of x 2 - ax + b = 0. Then,
a β
c 1
and α ⋅ αn = α + =a …(iii)
a β
c α
⇒ αn + 1 = =b ... (iv)
a β
Chap 02 Theory of Equations 197
x 2 = x (x - 2) (ii) Let y = β + γ - α = (α + β + γ ) - 2α = p - 2 α
p -y
∴ x=0 ∴ α=
2
⇒ x (x + x - 2) = 0
From Eq. (i), we get
∴ x=0 α 3 - pα 2 + qα - r = 0
fail ∴ x = 0, 1 fail
(p - y ) 3 p (p - y )2 q (p - y )
⇒ x = 0, 1, then y = 1, 0 ⇒ - + -r = 0
∴Solutions are (0, 1) and (1, 0). 8 4 2
If y < 0 then | y | = - y and then given system reduces to or y 3 - py 2 + ( 4q - p 2 )y + ( 8r - 4 pq + p 3 ) = 0
| x 2 - 2x | + y = 1 …(iii) Also product of roots = - (8r - 4 pq + p 3 )
and x2 - y = 1 …(iv) 105. Assume α + iβ is a complex root of the given equation, then
From Eqs. (iii) and (iv), we get conjugate of this root, i.e. α - iβ is also root of this equation.
| x 2 - 2x | + x 2 = 2 On putting x = α + iβ and x = α - iβ in the given equation, we
get
⇒ | x | | x - 2| + x 2 = 2
2
A12 A22 A3 An2
Now, x < 0, 0 ≤ x < 2, x ≥ 2 + + +… +
α + iβ - a1 α + iβ - a 2 α + iβ - a 3 α + iβ - an
x (x - 2) + x 2 = 2
- x (x - 2) + x 2 = 2 = ab 2 + c 2(α + iβ ) + ac …(i)
2
x (x -2 ) + x = 2 A12 A22 A32 An2
and + + +… +
2 α - iβ - a1 α - iβ - a 2 α - iβ - a 3 α - iβ - an
⇒ 2x - 2x - 2 = 0 ⇒ 2x = 2
⇒ x2 - x - 1 = 0 = ab 2 + c 2(α - iβ ) + ac …(ii)
200 Textbook of Algebra
∴ a ∈R ∴ [ x ] - 1.9 > 0
(iii) D>0 or [ x ] > 1.9
Chap 02 Theory of Equations 201
∴ [ x ] = 2, 3, 4, 5,…
If [ x ] = 2, i. e. 2 ≤ x < 3
2 - 1 .9
Then, x2 = = 1. 28
0.078 α β
X
γ δ
∴ x = 1.13 [fail]
If [ x ] = 3, i. e. 3 ≤ x < 4
Let f ( x ) = x 2 - 2(a + 1 ) x + a (a - 1 ), thus the following
3 - 1.9
Then, x2 = = 14.1 conditions hold good:
0.078
Consider the following cases:
∴ x = 3.75 [true]
Case I D>0
If [ x ] = 4, i.e. 4 ≤ x < 5 2
4 - 1.9 ⇒ 4 (a + 1 ) - 4a (a - 1 ) > 0
Then, x2 = = 26.9
0.078 ⇒ 3a + 1 > 0
∴ x = 5.18 [fail] 1
∴ a>-
If [ x ] = 5, i.e. 5 ≤ x < 6 3
5 - 1.9 Case II f (α ) < 0
Then, x2 = = 39.7
0.078 ⇒ f (1 + a ) < 0
∴ x = 6.3 [fail] ⇒ (1 + a ) 2 - 2 (1 + a ) (1 + a ) + a (a - 1 ) < 0
If [ x ] = 6, i. e. 6 ≤ x < 7 ⇒ - (1 + a ) 2 + a (a - 1 ) < 0
6 - 1.9 4.1
Then, x2 = = = 52.56 ⇒ - 3a - 1 < 0
0.078 0.078 1
∴ x = 7.25 [fail] ⇒ a>-
3
If [ x ] = 7, i. e. 7 ≤ x < 8 Case III f (s ) = 0
7 - 1.9 5.1
Then, x2 = = = 65.38 ⇒ f (1 - a ) < 0
0.078 0.078
⇒ (1 - a ) 2 - 2 (a + 1 ) (1 - a ) + a (a - 1 ) < 0
∴ x = 8.08 [fail]
⇒ ( 4a + 1 ) (a - 1 ) < 0
If [ x ] = 8, i. e. 8 ≤ x < 9
1
8 - 1.9 6.1 ∴ - <a <1
Then, x2 = = = 78.2 4
0.078 0.078
Combining all cases we get
1
∴ x = 8.8 [true] a ∈ - , 1
4
If [ x ] = 9, i. e. 9 ≤ x < 10
9 - 1.9 7.1 111. pr = ( - p ) (- r )
Then, x2 = = = 91.03
0.078 0.078 = ( α + β + γ + δ ) ( αβγ + αβδ + γδα + γδβ )
∴ x = 9.5 [true] = α 2 βγ + α 2 βδ + α 2 γδ + αβγδ + β 2 γα
If [ x ] = 10, i. e.10 ≤ x < 11
+ β 2 αδ + αβγδ + β 2 γδ + γ 2 αβ + αβγδ
10 - 1.9 8.1
Then, x2 = = = 103.8
0.078 0.078 + γ 2 δα + γ 2δβ + αβγδ + αβδ 2 + γαδ 2 + γβδ 2
∴ x = 10.2 [true] Q AM ≥ GM
If [ x ] = 11, i.e. 11 ≤ x < 12 pr
⇒ ≥ (α 16 β16 γ16 δ16 )1/6 = α β γδ = 5
11 - 1.9 16
Then, x2 =
0.078 pr
⇒ ≥5
9.1 16
= = 116.7
0.078 or pr ≥ 80
∴ x = 10.8 [fail] ∴ Minimum value of pr is 80.
Other values are fail. 112. (α 2 + β 2 ) 2 = (α + β ) (α 3 + β 3 )
Hence, number of solutions is four.
⇒ {(α + β ) 2 - 2 αβ } 2 = (α + β ) {(α + β) 3 - 3 αβ (α + β)}
110. Since, the given equation is 2
b 2 2c b - b
3
3bc
x 2 - 2x - a 2 + 1 = 0 ⇒ 2 - = - 3 + 2
a a a a a
⇒ (x - 1)2 = a 2
2
∴ x - 1 ≠ a or x = 1 ± a b 2 - 2ac 3
- b - b + 3abc
⇒ 2
=
⇒ α = 1 + a and β = 1 - a a a a3
202 Textbook of Algebra
h 2 - 1 2 h 3 - 1 q
⇒ x + x+1=0 -
h -1 h -1 p
⇒ =4
r
As a Æ 0, then h Æ 1
p
h 2 - 1 2 h 3 - 1
lim x + lim x+1=0 ⇒ q = - 4r ... (i)
h Æ 1 h - 1 h Æ 1 h - 1
Also, given p, q, r are in AP.
⇒ 2x 2 + 3x + 1 = 0 ∴ 2q = p + r
2
⇒ 2x + 2x + x + 1 = 0 ⇒ p = - 9r [from Eq. (i)] …(ii)
⇒ (2 x + 1 ) ( x + 1 ) = 0 D Q for ax 2 + bx + c = 0, α - β = D
1 Now, | α - β | =
∴ x = - 1 and x = - | a| a
2
137. Let e sin x = t …(i) (q 2 - 4 pr )
=
Then, the given equation can be written as | p|
1 (16r 2 + 36r 2
t - - 4 = 0 ⇒ t 2 - 4t - 1 = 0 = =
52 | r |
[from Eqs. (i) and (ii)]
t 9 |r | 9 |r |
4 ± (16 + 4 )
∴ t= 2 13
2 =
9
⇒ e sin x = (2 + 5 ) [Qe sin x > 0,∴taking + ve sign]
141. f ( x ) = x 5 - 5x and g( x ) = - a
⇒ sin x = loge ( 2 + 5 ) …(ii)
∴ f ′( x ) = 5 x 4 - 5
Q (2 + 5 ) > e [Qe = 2.71828… ]
⇒ loge ( 2 + 5 ) > 1 …(iii) 4
From Eqs. (ii) and (iii), we get
sin x > 1 [which is impossible]
Hence, no real root exists. –1 1
138. Given equations are
–4
ax 2 + bx + c = 0 …(i)
and x 2 + 2x + 3 = 0 …(ii) = 5 (x 2 + 1) (x - 1) (x + 1)
Clearly, roots of Eq. (ii) are imaginary, since Eqs. (i) and (ii) Clearly, f ( x ) = g( x ) has one real root, if a > 4 and three real
have a common root, therefore common root must be roots, if | a| < 4.
imaginary and hence both roots will be common. Therefore,
Eqs. (i) and (ii) are identical. 142. Since, b = 0 for p ( x ) = ax 2 + bx + c, as roots are pure
a b c imaginary.
∴ = = or a : b : c = 1 : 2 : 3
1 2 3 (- c ± i c )
⇒x = ± , which are clearly neither pure real nor
139. Q x - [ x ] = { x } [fractional part of x ] a
pure imaginary, as c ≠ 0.
For no integral solution, { x } ≠ 0
∴ a≠ 0 …(i) 143. Qαx 2 - x + α = 0 has distinct real roots.
The given equation can be written as ∴ D>0
3 { x } 2 - 2{ x } - a 2 = 0 2 1 1
⇒ 1 - 4α > 0 ⇒ α ∈ - , ...(i)
2 2
2 2
2 ± ( 4 + 12a ) 1 + (1 + 3a )
⇒ {x } = = [Q 0 < { x } < 1 ] Also, | x1 - x 2 | < 1 ⇒ | x1 - x 2 | 2 < 1
6 3
D 1 - 4α 2 1
1 + (1 + 3a 2 ) ⇒ <1 ⇒ < 1 ⇒α 2 >
⇒ 0< < 1 ⇒ (1 + 3a 2 ) < 2 a 2
α2 5
3
⇒ a2 < 1 ⇒ - 1 < a < 1 …(ii) 1 1
⇒ α ∈ -∞,- ∪ , ∞ ...(ii)
5 5
From Eqs. (i) and (ii), we get
a ∈ ( - 1, 0 ) ∪ ( 0, 1 ) From Eqs. (i) and (ii), we get
1 1 α+β 1 1 1 1
140. Q + = 4 ⇒ =4 S = - ,- ∪ ,
α β αβ 2 5 5 2
206 Textbook of Algebra
2
144. ( x 2 - 5x + 5) x + 4 x - 60
=1 Q α 1, β1 are roots of x 2 - 2 x sec θ + 1 = 0 and α 1 > β1
Case I ∴ α 1 = sec θ - tan θ and β1 = sec θ + tan θ
x 2 - 5 x + 5 = 1 and x 2 + 4 x - 60 can be any real number ⇒ α 2, β 2 are roots of x 2 + 2 x tan θ - 1 = 0
⇒ x = 1, 4 and α 2 > β2
Case II
∴ α 2 = - tan θ + sec θ
x 2 - 5 x + 5 = - 1 and x 2 + 4 x - 60 has to be an even number
and β 2 = - tan θ - sec θ
⇒ x = 2, 3
For x = 3, x 2 + 4 x - 60 is odd, ∴ x ≠ 3 Hence, α 1 + β 2 = - 2 tan θ