APL3528
APL3528
• Notebook VBIAS
• AIO PC BIAS
VIN1
VOUT1
Pin Configurations
VIN1 VOUT1
VIN2 APL3528
VIN2
APL3528
VOUT2 VOUT2
VIN1 1 14 VOUT1
VIN1 2 13 VOUT1 On EN1
EN1 3 12 SS1 Off
EN2
BIAS 4 11 GND
EN2 5 10 SS2 SS1 SS2 GND
VIN2 6 9 VOUT2
VIN2 7 8 VOUT2
TDFN2x3-14
(Top View)
= Exposed Pad
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant)and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Thermal Characteristics
Symbol Parameter Typical Value Unit
θJA
(Note 2) o
Junction-to-Ambient Resistance in Free Air 80 C/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Electrical Characteristics
Unless otherwise specified, these specifications apply over VIN1= VIN2= 0.8V~5.5V, VEN1= VEN2=VBIAS =5V and TA= -40~85oC.
Typical values are at TA=25oC.
APL35 28
Sym bol P ara met er Test Conditions Unit
Min. Typ. Max .
SUPPLY CURRENT
BIAS Suppl y Curren t (bo th
No load, VBIAS=5V =VEN1,2=5V - 20 30 µA
chan nels)
I BIAS
BIAS Suppl y Curren t (singl e
No load, VBIAS=5V, VEN1 =5V, VEN 2=0 V - 15 25 µA
chan nel)
BIAS Suppl y Curren t at
I SD No load, VBIAS=5V, VEN1 ,2 =0V - - 1 µA
Sh utd own
No load, VBIAS=5V, VEN1 ,2 =0V, VIN1 ,2=5V - 0.1 8 µA
No load, VBIAS=5V, VEN1 ,2 =0V, VIN1 ,2=3.3V - 0.1 3 µA
VIN Off-Sta te Supply Curren t
IOFF No load, VBIAS=5V, VEN1 ,2 =0V, VIN1 ,2=1.8V - 0.1 2 µA
(pe r ch anne l)
APL35 28
Sym bol P ara met er Test Conditions Unit
Min. Typ. Max .
Timing Chart
50% 50%
tR tF
VEN
tON tOFF
90% 90%
50% 50%
VOUT VOUT
10% 10%
tD
21 85 13 85
125 125
17 11
13 9
9 7
5 5
3 3.5 4 4.5 5 5.5 3 3.5 4 4.5 5 5.5
BIAS Supply Voltage, VBIAS(V) BIAS Supply Voltage, VBIAS(V)
Shutdown Current vs. BIAS Supply Off-Stage Supply Current vs. VIN
Voltage (Both Channels) Supply Voltage (Single Channel)
0.5 14
- 40 - 40
VBIAS=5.5V
Off-Stage Supply Current, IOFF(µA)
VBIAS=VIN
25 12 25
0.4 85 85
Quiescent Current, ISD(µA)
125 10 125
0.3 8
6
0.2
4
0.1
2
0 0
3 3.5 4 4.5 5 5.5 3 3.5 4 4.5 5 5.5
BIAS Supply Voltage, VBIAS(V) VIN Supply Voltage, VIN(V)
VBIAS=3 V
Switch On Resistance, RDS(ON)(m0 )
36 0 28 0
25 25
50 50
32 75 75
100 24 100
125 125
28
20
24
16
20
16 12
0.5 1 1.5 2 2.5 3 0.5 1.5 2.5 3.5 4.5 5.5
VIN Supply Voltage, VIN(V) VIN Supply Voltage, VIN(V)
28 28
VBIAS=3.3V
26 26
24 24
VBIAS=5V
22 22
20 20
0 .5 1 .5 2.5 3.5 4.5 5.5 0 1 2 3 4 5 6
VIN Supply Voltage, VIN(V) Output Current, IOUT(A)
Turn On Delay Time vs. VIN Supply Turn On Delay Time vs. VIN Supply
Voltage Voltage
400 500
VBIAS=3V ,R L=10Ω - 40 V BIAS=5.5V,RL =10 Ω - 40
CSS =OPEN,C OUT =0.1uF 25 C SS=OPEN,COUT = 0.1 uF 25
350 450
Turn On Delay Time, tD(µs)
85 85
125 125
300 400
250 350
200 300
150 250
100 200
0.8 1.2 1.6 2 2 .4 2.8 0 .5 1.5 2.5 3.5 4.5 5.5
VIN Supply Voltage, VIN(V) VIN Supply Voltage, VIN(V)
125 125
300 400
250 350
200 300
150 250
100 200
0.8 1.2 1.6 2 2.4 2.8 0.5 1.5 2.5 3.5 4.5 5.5
VIN Supply Voltage, VIN(V) VIN Supply Voltage, VIN(V)
125
3 3
2 2
1 1
0 0
0.8 1.2 1.6 2 2.4 2 .8 0.5 1.5 2.5 3.5 4.5 5 .5
VIN Supply Voltage, V IN(V) VIN Supply Voltage, VIN(V)
Turn Off Time vs. VIN Supply Turn Off Time vs. VIN Supply
Voltage Voltage
8 8
VBIAS=3 V,R L=10Ω - 40 VBIAS=5.5V,R L=10Ω - 40
C SS=OPEN ,C OUT =0.1uF 25 CSS =OPEN,C OUT =0.1uF 25
85 85
Turn Off Time, tOFF(µs)
Turn Off Time, tOFF(µs)
6 6
125 125
4 4
2 2
0 0
0.8 1.2 1.6 2 2.4 2 .8 0.5 1 .5 2.5 3.5 4.5 5.5
VIN Supply Voltage, VIN(V) VIN Supply Voltage, V IN(V)
Rising Time vs. VIN Supply Voltage Rising Time vs. VIN Supply Voltage
VBIAS=3V,R L=10Ω - 40 VBIAS=5.5V,R L=10 Ω - 40
CSS=OPEN,C OUT=0.1uF 25 CSS=OPEN,C OUT=0.1uF 25
90 90
85 85
Rising Time, tR(µs)
125 125
70 70
50 50
30 30
0 .8 1.2 1.6 2 2.4 2.8 0.5 1.5 2 .5 3 .5 4.5 5 .5
VIN Supply Voltage, VIN(V) VIN Supply Voltage, VIN(V)
125
90
70
50
3 3.5 4 4 .5 5 5 .5
VBIAS Supply Voltage, VBIAS(V)
Operating Waveforms
Enable Shutdown
EN EN
1 1
VOUT
VOUT
2 2
VBIAS=5V,VIN=0.8V VBIAS=5V,VIN=0.8V
COUT=0.1µF,CSS=1nF COUT=0.1µF,CSS=1nF
CH1:VEN,5V/Div, DC CH1:VEN,5V/Div, DC
CH2:VOUT,200mV/Div, DC CH2:VOUT,200mV/Div, DC
TIME:200µs/Div TIME:20µs/Div
Enable Shutdown
EN
EN
1 1
VOUT VOUT
2 2
VBIAS=5V,VIN=5V VBIAS=5V,VIN=5V
COUT=0.1µF,CSS=1nF COUT=0.1µF,CSS=1nF
CH1:VEN,5V/Div, DC CH1:VEN,5V/Div, DC
CH2:VOUT,2V/Div, DC CH2:VOUT,2V/Div, DC
TIME:500µs/Div TIME:10µs/Div
Pin Description
PIN
FUNCTION
NO. NAME
1 VIN1
Power supply Input of switch 1. Connect this pin to an external DC supply.
2 VIN1
3 EN1 Enable input of switch 1. Logic high turns on switch 1. The EN1 pin cannot be left floating.
4 BIAS Bias voltage input pin for internal control circuitry.
5 EN2 Enable input of switch 2. Logic high turns on switch 2. The EN2 pin cannot be left floating.
6 VIN2
Power supply Input of switch 2. Connect this pin to an external DC supply.
7 VIN2
8 VOUT2
Switch 2 output.
9 VOUT2
Soft start control of switch 2. A capacitor from this pin to ground sets the VOUT2’s rise slew
10 SS2
rate.
11 GND Ground pin of the circuitry. All voltage levels are measured with respect to this pin.
Soft start control of switch 1. A capacitor from this pin to ground sets the VOUT1’s rise slew
12 SS1
rate.
13 VOUT1
Switch 1 output.
14 VOUT1
Block Diagram
Bulk
Select
VIN1 VOUT1
UVLO Charge
BIAS
Pump
SS1
Control OTP1
EN1 Logic
OTP2
EN2
Bulk
Select
VIN2 VOUT2
Charge
Pump
SS2
GND
VBIAS
4
BIAS
C BIAS
0.1µF
V IN1 1, 2
VIN1 VOUT1 13 , 14
C IN1 C OUT1 C L1
1µF RLOAD 1
0.1µF 150µF
VIN2
APL3528
6, 7
VIN2
CIN2
1µF 8 ,9
VOUT2
C OUT2 CL 2 R LOAD2
3 0.1µF 150 µF
On EN1
Off 5
EN2
C SS1 C SS2
Soft-Start Time (µs) 10% t o 90 %, V BIA S=5V, C L=0.1µF, CIN=1µF, RL =1 0Ω, Typical values are at TA =25 °C
C SS(pF)
VIN=5V VIN=3.3V VIN=1.8V VIN=1.5V VIN=1.2V VIN=1.05V V IN=0 .8V
0 10 0 80 61 59 52 50 45
220 50 1 352 227 202 1 71 15 7 13 2
330 71 0 490 310 270 2 23 211 15 6
470 1013 694 427 369 3 17 28 2 23 4
100 0 1949 1 339 795 688 5 82 52 8 43 2
220 0 4381 2 984 17 96 15 33 127 7 11 50 92 6
470 0 9825 6 601 39 51 34 16 277 0 2534 2039
Note: The table Contains soft-start time values measured on a typical device. The soft-start times shown are only valid for the power-
up sequence where VIN and VBIAS are already in steady state condition, and EN pin is asserted high.
Function Description
VIN Under-voltage Lockout (UVLO)
Power Switch
Soft-start
Enable Control
Application Information
Power Sequencing A bulk output capacitor, placed close to the load, is rec-
VBIAS ommended to support load transient current.
Thermal Consideration
VEN1, VEN2
The APL3528 maximum power dissipation depends on
the differences of the thermal resistance and tempera-
VOUT1, VOUT2 ture between junction and ambient air. The power dissi-
pation PD across the device is:
VIN1, VIN2
PD = (TJ - TA) / θJA
VBIAS where (TJ-TA) is the temperature difference between the
junction and ambient air. θJA is the thermal resistance
Figure 2. APL3528 Power Sequencing Diagram
between junction and ambient air. Assuming the TA=25°C
The APL3528 has a built-in reverse current blocking cir- and maximum TJ=150°C (typical thermal limit threshold),
cuit to prevent a reverse current flowing through the body the maximum power dissipation is calculated as:
diode of power switch from the VOUT back VIN pin when
PD(max)=(150-25)/80
power switch disabled. The reverse current blocking cir-
= 1.56(W)
cuit is not active before VBIAS is ready. When IC is in UVLO
state, the internal parasitic diodes of power switch con- For normal operation, do not exceed the maximum oper-
nected from VOUT to VIN will be forward biased. ating junction temperature of TJ = 125°C. The calculated
Otherwise, VOUT should not be higher than VBIAS, and power dissipation should be less than:
VBIAS must be higher than the voltage of any other input PD =(125-25)/80
pin, the reason is that the internal parasitic diodes con- = 1.25(W)....................................................TA=25oC
nected from VOUT to VBIAS will be forward biased. PD =(125-85)/80
Capacitor Selection = 0.5(W)......................................................TA=85oC
The APL3528 requires proper input capacitors to supply
current surge during stepping load transients to prevent
The power dissipation depends on operating ambient
the input voltage rail from dropping. Because the para-
temperature for fixed TJ=125oC and thermal resistance
sitic inductor from the voltage sources or other bulk ca-
θJA. For APL3528 packages, the Figure 3~4 of derating
pacitors to the VIN pin limit the slew rate of the surge
curves allows the designer to see the effect of rising
currents, more parasitic inductance needs more input
ambient temperature on the maximum power allowed.
capacitance.
For normal applications (except OTP or output short cir- PD = (I2OUT1 + IOUT2
2
) ⋅ RDS,ON
cuit has occurred), the recommended input capacitance RDS,ON = 0.031Ω LLLLLLLL TJ = 125 ° C
of VIN is 1µF. Additional input capacitance may be needed
IOUT2 = k ⋅ IOUT1 LLLLLLLLk ≤ 1
on the input to reduce voltage overshoot from exceeding
or
the absolute maximum voltage of the device during load
transient conditions. The output capacitance of VOUT is IOUT1 = k ⋅ IOUT2 LLLLLLLLk ≤ 1
0.1µF at least. Please place the capacitors near the IOUT1,2(MAX) = 6A
APL3528 as close as possible.
1.1
mize thermal dissipation and to minimize voltage drop,
1.0
droop and EMI. The following guidelines must be
0.9
considered:
0.8
1. Please place the input capacitors near the VIN pin as
0.7
close as possible.
0.6
2. Output decoupling capacitors for load must be placed
0.5
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 near the load as close as possible for decoupling high
Ambient Temperature (oC)
frequency ripples.
Figure 3. Derating Curves for APL3528 Package
3. Locate APL3528 and output capacitors near the load to
12
TDFN2x3-14A reduce parasitic resistance and inductance for excellent
Output Current, IOUT1+IOUT2 (A)
11 VBIAS=5V
10
9
load transient performance.
8
4. The negative pins of the input and output capacitors
7
6 and the GND pin must be connected to the ground plane
5
4 of the load.
3
k=1 k=0.5
2 5. Keep VIN and VOUT traces as wide and short as
1 k=0 k=0.2
0 possible.
-40 -35 -30 -25-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
10 0.48 1.3
9 (0.0192) (0.051)
8
0.2
7 (0.008)
0.55 0.6
6 (0.021) (0.0236)
5
4 0.2
100% On Time
3 (0.008)
90% On Time 0.2
2 (0.008) 0.7
70% On Time
1 (0.027)
50% On Time
(0.098)
0
2.5
0.9
(0.035)
0.2
(0.008) 0.2
(0.008)
TDFN2x3-14 Unit: mm, (Inch)
Package Information
TDFN2x3-14
D A
Pin 1
b
E
A1
D2
A3
NX
aaa c
SEATING PLANE
Pin 1 Cornar
E2
e
K L
S TDFN2x3-14
Y
M MILLIMETERS INCHES
B
O
L MIN. MAX. MIN. MAX.
A 0.70 0.80 0.028 0.031
E1
F
W
B0
K0 A0 A
OD1 B
B
SECTION A-A
T
SECTION B-B
d
H
A
T1
Application A H T1 C d D W E1 F
8.4+2 .0 0 13.0+0 .5 0
178.0±2.00 50 MIN. 1 .5 MIN. 2 0.2 MIN. 8.0±0.20 1.75±0.10 3.50±0.05
-0.00 - 0.2 0
TDFN2x3 -14 P0 P1 P2 D0 D1 T A0 B0 K0
1.5+0.10
4.0±0.10 4.0 ±0.1 0 2.0±0.05 1 .5 MIN. 0.25±0.05 2.3 0±0.20 3.30 ±0 .2 0 1.00±0.20
-0.00
(mm)
Classification Profile
Customer Service
Head Office :
No.6, Duxing 1st Rd., East Dist.,
Hsinchu City 300096, Taiwan (R.O.C.)
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No.11, Ln. 218, Sec. 2, Zhongxing Rd., Xindian Dist.,
New Taipei City 231037, Taiwan (R.O.C.)
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838