Biochemistry
Biochemistry
m o
l.c
ai
gm
5@
00
u2
m k
h ic
rt
ka
|
w
ro
ar
M
©
Instructions
Please note:
• The information in this book has been printed based on the transcript of the Marrow videos. This
book has to be used in conjunction with the Marrow videos and not as a standalone material.
• The information contained in this book is for educational purposes only. The content provided is
not intended to substitute for professional medical advice, diagnosis or treatment.
mo
l.c
• This book cannot be sold separately. It has been made available to only select eligible users who
ai
have an active subscription to Marrow videos.
gm
5@
• The text, images, slides, and other materials used in this book have been contributed by the
00
u2
faculty, who are subject matter experts. We have merely reproduced them as video transcripts in
m
this book.
k
hic
rt
• The notes have been consciously designed in a way that is concise and revisable. To ensure this,
ka
we have intentionally added only the most relevant modules and images that are needed for you.
|
w
ro
• The notes contain blank spaces primarily for labelling diagrams, completing cycles and more to
ar
M
• Reasonable care has been taken to ensure the accuracy of the information provided in this book.
Neither the faculty nor Marrow takes any responsibility for any liability or damages resulting from
applying the information provided in this book.
No part of this publication shall be reproduced, copied, transmitted, adapted, modified or stored in any form or
by any means, electronic, photocopying, recording or otherwise.
©Marrow
Contents
Basic Biochemistry
Cell and Subcellular Organelles 1
Enzymes
Introduction to Enzymes 8
Classification of Enzymes 12
m o
l.c
Enzyme Kinetics 22
ai
gm
Enzyme Inhibition 5@ 26
00
Enzyme Regulation 31
k
ic
h
Clinical Enzymology 36
rt
ka
|
w
Chemistry of Carbohydrates 42
©
Glycosaminoglycans 50
Digestion of Carbohydrates 56
Glucose Transporters 58
Glycolysis : Part 1 61
Glycolysis : Part 2 66
Pyruvate Dehydrogenase 69
Glycogen Metabolism 72
Gluconeogenesis 82
Phospholipids 117
m o
Ketone Body Synthesis 135
l.c
ai
gm
Lipid Metabolism in Fed State 5@ 139
Dyslipidemia 155
m k
ic
h
rt
Tryptophan 201
m
Hematopoietic Vitamins 267
o
l.c
ai
Energy Releasing Vitamins 272
gm
5@
Vitamin B6 and C 277
00
u2
Molecular Biology
Chemistry of Nucleotides 326
Transcription 349
Translation 355
Regulation of Gene Expression 360
Mutation 395
m o
l.c
Xenobiotics and Miscellaneous
ai
gm
5@
Xenobiotics 426
00
Properties :
• Basic unit of any organism (Unicellular or multicellular).
• Dynamic in nature : Grow, divide, specialize to other forms.
m
Cell membrane Rigid cell wall Fluid plasma membrane
o
l.c
ai
Sub cellular organelles - Distinct organelles +
Nucleus gm
Ill-defined nucleoid Well-defined nucleus
5@
00
Cytoplasmic organelles/cytoskeleton - +
h
rt
ka
|
NUCLEUS
M
©
Structure :
Cisternae : Flattened
interconnecting
channels extending
from outer nuclear
membrane to
plasma membrane
m
o
l.c
ai
gm
5@
00
u2
m
• Drug metabolism
M
©
GOLGI APPARATUS
Structure : 1
Network of flattened smooth
2 membranes & vesicles
3
Medial cisterns
5
Route of proteins from ER to target site :
Cis cisterns Medial cisterns Trans cisterns Secretory vesicles.
LYSOSOMES
Structure :
• Contains hydrolytic enzymes : Digest proteins, nucleic acids, polysaccharides, lipids.
• Acidic pH.
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
Function :
ro
ar
Clinical significance :
1. Gout : Accumulation of monosodium urate crystals Damage the lysosome
Released enzymes
initiate inflammation
& pain.
2. Cathepsins : Lysosomal proteases that enhance tumor metastases.
3. Silicosis : Rupture of lysosomes Release of hydrolytic enzymes
Fibroblast activation.
4. Inclusion cell (I-cell) disease : Protein targeting defect in which enzymes
lack mannose-6-phosphate.
5. Lysosomal storage disorder : Sphingolipidosis, mucopolysaccharidosis, etc.
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
Functions :
©
Clinical Significance :
Oxphos : Defect in mitochondrial oxidative phosphorylation
1. Leigh syndrome.
2. MERRF : Myoclonic Epilepsy & Ragged Red Fibers.
3. MELAS : Mitochondrial Encephalopathy Lactic Acidosis Stroke-like syndrome.
Clinical Significance :
Peroxisomal targeting & biogenetic disorders :
1. Zellweger syndrome.
2. Adrenoleukodystrophy. Defect in VLCFA oxidation
3. Primary hyperoxaluria.
Accumulation of VLCFA
m
4. Refsum’s disease : Defect in a-oxidation.
o
l.c
ai
gm
MARKER ENZYMES 5@
Organelle Marker Enzyme
00
u2
Lysosomes
h
rt
Golgi apparatus
ka
|
Microsomes
w
ro
Cytoplasm
ar
M
©
Arrangement of Phospholipids
m
Fluid & mosaic model
o
l.c
Mosaic pattern : Formed by
ai
gm
• Phospholipids & sphingolipids. 5@ • Carbohydrates.
• Proteins. • Cholesterol.
00
u2
Membrane Phospholipids :
m
k
• Phosphatidylinositol
©
Membrane Cholesterol :
• Amphipathic in nature <Tm (Melting temperature) :↑Fluidity
• Alters fluidity of the membrane & permeability.
>Tm : ↓Fluidity.
Membrane Proteins :
Melting Temperature :
• Temperature at which membrane shifts from a solid gel to fluid state.
• Determined by :
1. Length of aliphatic hydrocarbon chain
2. Degree of unsaturation : Directly proportional to fluidity.
3. Cis/trans forms of unsaturated fatty acids : Trans forms a/w ↓fluidity.
m
o
l.c
ai
Functions of Plasma Membrane :
1. Protects the cell from the external environment. gm
5@
2. Anchors the cytoskeleton to provide shape to the cell.
00
u2
Marker Enzyme :
©
1. Na+-K+ ATPase.
2. 5’ Nucleotidase.
3. Adenylyl cyclase.
Clinical Significance :
• Insulin resistance : Occurs d/t impaired ligand-receptor interaction.
• Excess cholesterol.
• Trans fatty acid. ↓Membrane fluidity Impairs ligand-receptor interaction.
• ↑Saturated fatty acids.
Enzymes
Specialised proteins that can act as biological catalysts.
Exception :
Ribozyme : RNA acts as enzymes.
Ribozymes Function
Ribosome
• 28S rRNA Peptide bond synthesis.
• Peptidyl transferase
m
o
Sn RNA Splicing of exons : post-transcriptional
l.c
ai
Group II introns modification of mRNA.
Ribonuclease P gm
Post-transcriptional modifications of tRNA.
5@
00
u2
m
Types of enzymes :
ka
|
w
ro
Simple Complex
ar
M
Properties of enzymes :
Enzymes are proteins.
• Nitrogen : 16% by weight.
• Heat labile.
• Precipitated by protein precipitating agents.
Co-enzyme :
• Second substrate or co-substrate.
• Mostly B-complex vitamins.
Examples :
Active form Reactions involved.
• Oxidative decarboxylation.
Thiamine (B1) Thiamine pyrophosphate (TPP)
• Transketolase.
• Oxidative decarboxylation.
• Redox reaction :
Flavine adenine dinucleotide (FAD)
Riboflavin (B2) - Complex I of electron
FMN
transport chain (ETC).
- Predominantly FMN.
m
o
• Oxidative decarboxylation :
l.c
Nicotinamide adenine dinucleotide
ai
Predominantly NAD+
gm
Niacin (B3) (NAD+), Nicotinamide adenine
• Oxidative-reduction reaction
5@
dinucleotide phosphate (NADP+)
00
(dehydrogenase)
u2
• Transamination.
h
• Trans-sulfuration.
ka
|
cobalamin (B12)
M
Lipomide
Lipoate - Oxidised form oxidative decarboxylation
- Reduced form
Ascorbic acid (C) Ascorbate Hydroxylation reaction
Co-factor :
• Inorganic molecules.
• Predominantly minerals.
Holoenzyme 00:17:29
m
• Completed form of complex enzyme.
o
l.c
• Apoenzyme + co-enzyme/ co-factor.
ai
gm
5@
Examples :
00
u2
Alkaline phosphatase.
M
medium .
Zinc
©
m
o
Hypouricemia.
l.c
ai
• Pyruvate kinase
gm
Potassium -
• Na+-K+ ATPase
5@
00
Melanin synthesis :
u2
Hypopigmentation.
h
rt
ka
Collagen synthesis :
w
ro
manifestations.
©
OVERVIEW
m
Enzyme commission/class/code number : 4 digits.
o
l.c
Eg : 1 1 1 1 (Alcohol dehydrogenase).
ai
1 1 1 gm 1
5@
00
Classes of enzymes :
ka
|
• Oxidoreductase. • Isomerase.
ar
M
• Transferase. • Ligase.
©
Acceptors (Co-enzymes) :
Flavoproteins
• FAD FADH2
• Catalyzing enzymes
Nicotinamide
m
- Malic enzyme.
o
l.c
ai
SUBCLASS - 2 : OXIDASES
gm
5@
Substrate oxidase Product + H2O / H2O2
00
(catalyze H2 transfer)
(H2 acceptor is O2)
u2
m
k
ic
Eg :
h
rt
Produce
ro
SUBCLASS 3 : OXYGENASE
Add O2 directly to the substrate.
Types :
Monooxygenase/ mixed function oxidase Dioxygenase
Features • Enzymes adding 1 atom of O2 • Enzymes adding both atoms of O2
• Most are hydroxylases • Homogentisate dioxygenase
• Eg : • Tryptophan dioxygenase
- Phenylalanine hydroxylase aromatic
Examples - Tyrosine hydroxylase amino acid
- Tryptophan hydroxylase hydroxylases
- 7α hydroxylase
- Cytochromes
Types :
Peroxidase Catalase
Substrate H2O2 > organic peroxide
Eg : Glutathione (GSH) H2O2
2H2O2
H2O2 GSH (reduced)
Catalase
Glutathione peroxidase
Electron H2O GSSG (oxidised) 2H2O
acceptor +
O2
• Ascorbate
m
• Quinones
o
l.c
ai
• Cytochrome C
gm
5@
Class II : Transferases and Class III : Hydrolases
00
00:23:25
u2
m
CLASS II : TRANSFERASES
k
hic
Examples
|
w
ro
ar
M
• Transaminase
©
• Transketolase
(enzymes with trans prefix)
kinases Phosphorylases
Catalyse transfer of PO43- Glycogen phophorylase
Glycogen Glycogen
from ATP (organic molecule) (n) Glu-1 PO43- (n-1)
Pi
Glucokinase/ (inorganic
Hexokinase PO43-)
a) Glucose/Galactose Galactose/Glucose
6-phosphate n=number of glucose molecules
ATP ADP
Phosphofructokinase
b) Fructose 6-phosphate (PFK)
Fructose 1,6
ATP ADP bisphosphate
m
Lipids Ester bond Lipase, esterase
o
l.c
2) Phosphatase
ai
3) Arginase (in urea cycle)
gm
5@
G-6 Pase
G 6 PO4 Glucose
00
H20 Pi
u2
m
k
F-1,6-B Pase
ic
F-1,6 BF Fructose 6P
h
rt
H20 Pi
ka
|
w
Class IV Lyases
ro
00:34:45
ar
M
Examples :
©
m
o
l.c
ai
gm
5@
00
u2
m
5) Decarboxylases :
w
ro
Type of decarboxylation
ar
M
©
m
aspect Lack of
o
l.c
neurotransmitters
ai
gm
5@
Seizures
00
u2
m
00:48:13
hic
rt
ka
CLASS V : ISOMERASES
|
Subclasses
©
Subclass Examples
Phosphohexose isomerase
• G 6 PO4 (6C) F6PO4 (6C)
1) Isomerases
• Dihydroxyacetone P04 (3C) Phosphotriose isomerase Glyceraldehyde 3 P04 (3C)
2) Mutase
• G 6 PO4Phosphoglucomutase G 1 PO4
Intra molecular transfer of
functional groups. • 3PG
Phosphoglycerate mutase
2PG (phosphoglycerate)
3) Racemase • D alanine L-alanine
Create D and L isomers • D glucose L-glucose
from each other.
Note : Kinase: Transfers PO43- from 1 substrate to another.
Subclass 1
Biotin dependent carboxylase
• Propionyl CoA (3C) Propionyl CoA carboxylase Methyl Malonyl CoA (4C)
ATP ADP
m
o
l.c
Biotin independent carboxylation :
ai
• Carbamoyl phosphate Synthetase (CPS) I - urea cycle.
gm
5@
• CPS II-Pyrimidine synthesis.
00
• Malic enzyme.
k
ic
Subclass II :
|
w
• Eg :
- Arginosuccinate synthetase.
- Carbamoyl phosphate synthetase.
Active site
m
Types :
o
Reactions
l.c
ai
gm
5@
Uncatalysed Catalysed (On adding enzymes)
00
Transition state
u2
Eact reduced.
h
rt
• ∆G0 Unchanged
ka
∆G+
Eact
|
Gs
w
Gibbs (free) energy
ro
Transition
ar
Reactants state
∆rG 0
M
©
Gp
Free Energy
Products
∆G0
Reaction coordinate
Gs : Free energy of substrate
Gp : Free energy of product
Substrate
Desolvation of substrate
Enzyme from shell of hydration
Shell of hydration
Active site
m
Enzyme & Substrate Interactions 00:19:47
o
l.c
ai
Theories explaining alignment of enzyme and substrate
gm
5@
Features
00
u2
reaction
rt
ka
Theory
ar
Features Example
Reactants come in bond forming
Catalysis by proximity -
distance
Catalytic residue
Aspartate protease
Acid base catalysis Acid Base enzyme :
• Pepsin
Proton donors Proton acceptors
Serine proteases :
Transient covalent bond b/w enzyme • Trypsin.
Covalent catalysis
and substrate • Chymotrypsin
m
• Elastase
o
l.c
Metal enables alignment of enzyme
ai
Metal ion catalysis Zn in carboxypeptidase
gm
towards substrate
5@
Enzymes in lytic reactions
00
Catalysis by strain
m
Lysing of substrate
k
Lyases Hydrolases
hic
rt
ka
|
w
ro
ar
M
©
Enzyme kinetics
Depends on
m
o
l.c
At Equilibrium :
ai
gm
• r1 = r2 5@
• k1 [A][B] = K2 [P][Q]
00
K2 [A][B] [Substrate]
m
1. SUBSTRATE CONCENTRATION
ar
M
m
o
l.c
Active state Well fed state Fasting state
ai
Michaelis-Menten Equation : gm
5@
00
V × [S]
V1 = max
u2
Km + [S]
mk
h ic
Km + [S]
Reciprocal : 1
rt
=
ka
V1 Vmax × [S]
|
w
ro
1 Km [S]
ar
=V +
M
V1 [S] Vmax[S]
©
max
1 Km 1 + 1
V1 = × [S]
Vmax Vmax
X intercept 1
[S]
Enzyme [E]
concentration
TEMPERATURE
m
o
V0 Bell shaped curve
l.c
Optimum Temperature (OT)
ai
gm
Vmax 5@• Temperature at which Vmax is attained.
• In humans : 35-40°C
00
u2
Denaturation of enzymes
h
rt
ka
|
w
OT Temperature
ro
ar
M
Temperature Coefficient :
©
Optimum [S]
PH
m
o
kd : Dissociation constant. k1 : Rate constant of association of E and S.
l.c
ai
k-1 : Rate constant of dissociation of ES complex.
gm
K-1 Tendency to dissociate
kd = k2 : Rate of product formation Irreversible.
5@
K1 Tendency to associate
00
u2
ka : Association constant.
m
K
k
ka = 1
hic
K-1
rt
ka
|
w
Summary :
ro
K1
1. Keq = [Product]
ar
4. Ka =
M
[Substrate] K-1
©
m
o
l.c
Competitive inhibition Non-competitive inhibition Uncompetitive inhibition
ai
gm
Inhibitor • Competes for the • Binds to a distinct site.
5@ • Cannot bind to free
same active site where • Not a structural analogue of enzyme.
00
substrate. + +
k
X
↑ +
hic
I I I I
rt
ka
|
m
(α : Constant) Km unchanged Km’< Km
o
l.c
Vmax unchanged
ai
gm
5@
Lineweaver 1
00
Burk Plot V0
u2
m
k
X-shaped graph
hic
Y-intercept= 1
rt
ka
X-intercept = -1 1
ro
ar
Km [S]
M
©
X & Y intercept X-intercept moves closer to X-intercept unchanged. Both Y and X intercept move
zero. Y-intercept moves away from away from zero.
Y-intercept remains the same zero.
Examples 1. Most pharmacological Most poisons : Phenylalanine X Placental ALP
drugs : • Complex IV of Electron
• Methotrexate X DHF transport chain :
reductase - Cyanide X Cyt C oxidase
• Statins X HMG CoA - CO X Cyt C oxidase
reductase. • Fluoride X Enolase.
• Dicoumarol X Vit. K • Iodoacetate X
epoxide. glyceraldehyde-3-
• Ethanol X Alcohol phosphate dehydrogenase.
dehydrogenase (used • Fluoroacetate X Aconitase
in methanol poisoning :
prevents formation of
formaldehyde.)
2. Poisons : Malonate X
Succinate degydrogenase.
Reactive inhibitor
m
Suicide inhibition
o
Examples
l.c
ai
• Allopurinol →
X Xanthine oxidase (xo)
gm
5@
- Use : Treatment of
00
hyperuricemia/gout
u2
- MOA : Hypoxanthine
mk
h ic
XO
rt
ka
|
Xanthine
w
ro
XO Allopurinol
ar
M
Uric acid
Uric acid not produced
• Aspirin →
X Cyclooxygenase.
• Difluoromethylornithine (DFMO) →
X Ornithine decarboxylase
FEEDBACK INHIBITION
A B C D (end product).
E1 E2 E3
Feedback Inhibition
• Prevents unwanted
accumulation of product.
• Optimal concentrations
maintained.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Concept of Enzyme Regulation 29
Sites of phosphorylation
Hydroxyl group containing amino-acids:
- Serine (M/C)
- Threonine
- Tyrosine
Mechanism
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Examples
Enzyme Insulin : Glucagon ratio High activity in
Phosphofructokinase (in glycolysis) High DP state
Fructose-1,6-bisphosphate (in
Low P state
gluconeogenesis)
Glycogen synthase High DP state
Glycogen phosphorylase (in
Low P state
glycogenolysis)
Pyruvate dehydrogenase (link
High DP state
between glycolysis & TCA cycle)
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
30 Enzymes
m
Feed Forward reaction Feedback inhibition
o
l.c
ai
+ -
gm
↑[Substrate] Forward reaction 5@ ↑[Product] Forward reaction
00
Phosphofructokinase
k
ic
Substrates in glycolysis
ka
• ATP
• 5’ AMP
|
• Fructose-6-
ro
phosphate
M
(Product)
Acetyl CoA carboxylase
• Malonyl CoA (product)
Citrate (substrate) • Acyl CoA (fatty acid
product)
Acetyl CoA Malonyl CoA
ALA synthase - Heme (product)
Control of enzyme
Enzyme quantity synthesis
o m
l.c
1. CONTROL OF ENZYME SYNTHESIS
ai
gm
a) Heme synthetic pathway b) Cholesterol synthetic pathway
5@
00
u2
m
k
hic
rt
Nucleus
ka
Cytosol ↑ heme
|
w
(-)
ro
Production of
ar
ALA synthase
M
protein
©
↓ heme
synthesis
Types :
Covalent modification
Irreversible Zymogen activation
Reversible (Formation and breakdown of Covalent bonds)
(Proteolytic cleavage)
Phosphorylation - ADP
Gastrointestinal enzymes. Clotting factors. Acetylation Methylation
Dephosphorylation. ribosylation.
Eg :
Eg :
• Chymotrypsinogen
• Plasminogen Most versatile M/c covalant
m
(inactive) - -
(inactive) mechanism. modification.
o
l.c
Chymotrypsin (active).
Plasmin (active).
ai
• Trypsinogen Trypsin.
gm
5@
Phosphorylation (P) - Dephosphorylation (DP) :
00
state). state).
Fasting state
Glucagon Epinephrine (Ligand)
(Ligand) Adenylyl
t e in r cyclase
ro
G-p recept
o Fed state
Plasma pled (+)
cou rotein
Insulin
membrane G-p ATP CAMP 5’AMP (+)
(3P) (1P)
Phosphodiesterase
CAMP dep
Proteinkinase A
P (+)
Enzyme Phosphorylated
enzyme
Protein phosphatase
m
o
l.c
Hence in Diabetes, ↑ HSL.
ai
2. ALLOSTERIC REGULATION gm
5@
00
substrate
u2
Catalytic/
m
k
Active site
hic
rt
Enzyme
ka
Modifier
|
Allosteric site
w
ro
ar
M
Allosteric modifiers
©
Positive Negative
Induces Induces
Favourable conformational Unfavourable conformational
changes to catalytic site changes to catalytic site
m
(Vo)
o
l.c
ai
Coopertive binding
gm
5@
Increase in Vo at
00
high rate
u2
m
k
hic
1/2 Vmax
K series V series
Vmax constant ↓
K0.5 ↑ constant
Kinetic Similar to Non-Competitive
Similar to competitive inhibition
property inhibition
m
Enzyme
o
l.c
(mostly products) (mostly substrate)
ai
gm
ALA Synthase Heme 5@ -
Aspartate Transcarbamoylase
00
Carbamoyl Phosphate
M
- NAG
©
Synthetase-I
Isoenzymes 00:02:15
Physically distinct forms of the same enzyme (Catalyze the same reaction).
Properties of isoenzymes :
Properties Examples
m
Subunits may be different
• Creatine kinase (CK) 1-3
o
l.c
ai
Different electrophoretic • LDH - 1 fastest, LDH - 5 slowest
mobility • CK - 1 fastest, CK - 3gm slowest
5@
00
• Heat labile
hic
rt
on all hexoses)
w
ro
Differ in cofactor
M
requirement
• Mitochondrial : requires NAD+
Note :
• Functional enzymes : Perform a function in the blood.
Eg :
- Lipoprotein Lipase : Hydrolyses triacylglycerol from lipoproteins.
- Coagulation factors.
• Non functional enzymes :
- No function in blood.
- Usually intracellular Normal cell turnover low levels in serum
Tissue damage/necrosis high level in serum
diagnostic markers
- Eg. LDH, CK.
Identification of
m
o
l.c
EXAMPLES OF ISOENZYMES
ai
gm
1. Lactate Dehydrogenase (LDH) : 5@
Reaction : Pyruvate LDH Lactate.
00
H M
u2
Site: Cytoplasm.
m
k
ic
Structure : M H
h
rt
ka
• Tetramer.
H
|
M
ar
Isoenzymes of LDH :
M
©
Mobility in
Tissue
Isoenzyme Subunits electrophoretogram % in Serum
Localization
(towards anode)
LDH - 1 H4 Fastest Heart 30%
LDH - 2 H3M1 Faster RBC 35%
LDH - 3 H2M2 Intermediate/Fast Brain 20%
LDH - 4 H1M3 Slower Liver and 10%
LDH - 5 M4 Slowest Skeletal muscle 5%
2. Creatine Kinase (CK) :
Reaction : Creatine CK Creatine Phosphate. Structure : Dimer.
Site : Cytoplasm except CK -Mt : Located in Mitochondria
M B
Enters bloodstream if
CK - 2 : MB Subunits
irreversible injury
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
38 Enzymes
Mobility in Tissue % in
Isoenzyme Subunits
electrophoretogram Localization Serum
CK - 1 BB Fastest Brain 1%
CK - 2 MB Intermediate Heart 5%
CK - 3 MM Slowest Skeletal Muscle 80%
m
o
Membrane of epithelial Elevated in Extrahepatic obstruction to bile flow
l.c
α-1-ALP
ai
cells of biliary canaliculi (Cholestasis); e.g., Stone, Carcinoma
gm
5@
Heat labile Hepatic Sinusoidal cells Marker of hepatic injury
00
• Elevated in :
|
- Vit D deficiency
ar
M
Elevated in
• Ulcerative colitis
Gamma ALP Intestinal cells
• Hepatitis (d/t impaired clearing from plasma by
sinusoidal cells of liver)
Leukocyte ALP Leukocytes Associated with leukemia
1. CARDIAC BIOMARKERS
Any chemical compound (enzyme or other biomolecule) elevated in cardiac injury.
Examples :
• Cardiac Troponin : Stays in the blood for • CK-MB : First enzyme to rise.
longest time • AST.
- Trop T. • LDH.
- Trop I.
m
o
- First biomarker to rise (starts to rise at 2hrs).
l.c
ai
- Non specific.
• Hs CTn (High Sensitivity Cardiac Troponin) : gm
5@
00
<1 ng/l.
m
k
hic
Blood levels :
rt
ka
1 2 3 4 5 6 7 8 9 10
Days
m
• Less specific for
o
l.c
cholestasis
ai
Features
gm
<1 (ALT>AST) >1 (AST>ALT) Specific marker • Marker of More specific
and 5@
of extra hepatic alcoholic hepatitis/ than ALP and
causes of • Chronic viral hepatitis • Alcoholic hepatitis : D/t
cholestasis heavy drinkers/ GGT
00
toxicity
ro
by sinusoidal cells
ar
• Liver neoplasia
M
©
Aminotransferase level
Ischemic or
toxic liver
Acute viral injury
Alcoholic hepatitis
Aminotransferase level, IU/L
liver Autoimmune
disease hepatitis
Chronic
Liver hepatitis
cirrhosis
Reference
range
m
o
Bone formation markers Bone resorption markers
l.c
ai
Origin Osteoblast osteoclast
• pre beta ALP gm
• N-Telopeptide of Type 1 Collagen
5@
00
|
|
| | |
CH2OH CH2OH CH2OH
Ketone derivative Polyhydroxy Aldehyde derivative
(Ketose) alcohol (Aldose)
m
o
l.c
Types :
ai
gm
1. Monosaccharides. 5@
2. Disaccharides.
00
3. Oligosaccharides.
u2
m
4. Polysaccharides.
k
hic
rt
ka
MONOSACCHARIDES
ar
M
Examples :
Examples :
Reducing Disaccharides (Free functional group)
Name Monomer units Glycosidic linkage
Maltose Glucose + Glucose α 1,4
Isomaltose Glucose + Glucose α 1,6
Lactose Galactose + Glucose β 1,4
Lactulose (Synthetic) Galactose + Fructose α1, β4
Non reducing Disaccharides (No free functional group)
Trehalose Glucose + Glucose α 1,1
Sucrose Glucose + Fructose α1, β2
m
o
l.c
OLIGOSACCHARIDES
ai
gm
3-10 monosaccharides. 5@
00
POLYSACCHARIDES
u2
>10 monosaccharides.
m
k
hic
Types :
rt
ka
Polysaccharides
|
w
ro
ar
M
Homopolysaccharides : Heteropolysaccharides :
©
Structure : Linkage :
• Branched polymer of α D glucose. α(1→6)
Glycogen in mammal :
• Center : Single reducing end (Glycogenin)
• Terminal portions : Multiple non reducing ends. α(1→4)
Structure :
Starch
Amylose : Amylopectin :
• soluble • insoluble
• linear, no branches • multiple branches
Linkage :
• α(1→4) : Linear. • α(1→6) : Branched.
Other Polysaccharides :
m
o
Monosaccharide unit Significance
l.c
ai
1. Inulin Fructose (Fructosan) Inulin clearance test : Assessment of GFR
gm
5@
2. Chitin N-Acetyl Glucosamine Exoskeleton of crustaceans
00
• Dental plaque
©
Dietary fibres :
AKA non starch polysaccharides.
Constituents :
• Remnants of edible parts of plants.
• Major fibre : Cellulose (Made of β D Glucose)
Human intestine lacks cellulase Metabolism
No digestion/absorption of fibre
Uses :
• Soften and ↑ fecal bulk.
• Regular bowel movements.
• Sequestration of bile salts.
m
o
l.c
ai
↓ cholesterol
gm
5@
• Improve satiety.
00
• ↑ glucose tolerance.
m
k
ic
Structures of Carbohydrates
w
00:33:00
ro
ar
RING STRUCTURE
M
©
a) Glucose :
H O| 6 CH2OH
1C
=
| 5 O
H 2C OH
Linkage of C1 and C5
|
|
|
HO 3C H (In solution form) 4 1
|
|
|
H 4C OH OH OH OH
|
|
| 3 2
H 5C OH
|
|
|
6
CH2OH OH
Pyranose ring :
Straight chain : • 6 membered ring
AKA Fischer projection. • AKA glucopyranose
ISOMERISM
Chirality :
Asymmetrical carbon atoms :
o m
H O
l.c
|
H 1C OH
ai
1C
=
gm
|
|
| C,C,C,C |
H 2C OH 2 3 4 5 H 2C OH O C1, C2, C3, C4, C5
5@
|
|
|
|
| |
00
HO 3C H HO 3C H
|
|
|
|
| |
u2
H 4C OH H 4C OH
m
|
|
|
| | |
k
ic
H 5C OH H 5C
h
|
|
| |
rt
CH OH CH OH
ka
6 2 6 2
|
• Formula = 2n.
n : Number of asymmetric carbon atoms.
Classification :
Isomerism
Structural Stereo-
isomerism isomerism
D&L d&l
isomerism Anomerism Epimerism isomerism
Stereoisomerism : Aka optical isomerism
|
|
2
| 2
|
C C
|
|
3
| 3
|
C Reference/ C
|
|
4
| 4
| Note :
H 5C OH Penultimate carbon OH 5C H
|
|
|
|
Anomerism :
• Isomerism at the functional carbon atom.
m
o
l.c
• Types : α and β anomers.
ai
gm
• Examples : 5@
a. C1 of Glucose.
00
b. C2 of Fructose.
u2
m
OH OH OH
k
hic
rt
4 6 4 6 4 6 Above
O OH O
ka
OH S 5 OH R 5 OH S 5
|
R 2 H R 2 R 2 OH
H
w
3 3 1 3
ro
OH R OH R OH R
S 1S S S 1 R
ar
OH OH OH
M
OH O H
©
|
|
|
|
| | |
HO 3C H HO 3C H HO 3C H C-3.
|
|
|
|
|
|
| | |
H 4C OH H 4C OH OH 4C H
|
|
|
|
|
|
| | |
H 5C OH H 5C OH H 5C OH
|
|
|
|
|
|
| | |
6
CH2OH 6
CH2OH 6
CH2OH
D-Mannose D-Glucose D-Galactose
(Epimer at C2) (Epimer at C4)
Epimerism
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
48 Chemistry and Metabolism of Carbohydrates
m
o
l.c
Oxidation of carbohydrates :
ai
Sugars Oxidation Sugar acid.
gm
5@
Examples :
00
u2
Note :
M
Examples :
1. Glucose Reduction Sorbitol Diabetic cataract.
Aldose reductase
(In lens, seminal fluid)
Reduction
Sorbitol
2. Fructose
Mannitol
3. Mannose Reduction Mannitol (Given IV to ↓ intracranial pressure) ----- Active space -----
Note :
1. Monosaccharide with single asymmetric carbon atom : Glyceraldehyde (C2).
2. Ketoses : 1 asymmetric carbon atom less than corresponding aldoses.
3. Monosaccharide with no asymmetric carbon : Dihydroxyacetone.
4. Amino acid with no asymmetric carbon : Glycine.
5. Predominant form of glucose in free form : β-D-Glucopyranose.
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Glycosaminoglycans 00:00:50
m
o
l.c
ai
Epimers
gm
5@
Properties & functions :
00
m
(Non-uronic acid or • No uronic acid
o
sulphate (KS) connective tissue (KS II)
l.c
acidic sugar) • Most heterogeneous GAG
ai
gm
N-acetyl galactosamine 5@
Chondroitin • Most abundant GAG
00
•
rt
Structure of sclera
ka
+ Iduronic acid
w
atherosclerosis
Glucosamine
• Receptor in plasma membrane
• Present in synaptic vesicles
Skin,
• Anchor LPL (lipoprotein lipase) in
Heparan glomerular
+ Glucuronic acid the endothelial surface
sulphate basement
• Charge selectiveness of GBM
membrane (GBM)
- Repels the entry of albumin
into the filtrate
• Anticoagulant
- Binds to anti-thrombin III
+ Iduronic acid Heparin Mast cells, lungs, skin. • Only intracellular GAG
• Dislodge LPL from its anchoring
site
Proteoglycan
Glycosaminoglycans are usually attached to
proteins to form proteoglycans
GAG
Small Stalk :
Attach GAG to
core protein
made of
m
o
gal-gal-xyl
l.c
ai
gm
5@
00
u2
m
Proteoglycan aggregate
Present in extracellular matrix
m
- Frontal bossing.
o
l.c
- Depressed nasal bridging.
ai
gm
- Gingival hypertrophy Upper respiratory
5@
- Large tongue tract infection
00
u2
m
GIT :
w
ro
• Visceromegaly.
ar
M
• Umbilical hernia.
©
Hand :
Claw hand
m
Histological feature :
o
l.c
Inclusion body in leukocytes : Reilly body inclusions.
ai
gm
5@
TYPES OF MPS
00
u2
Sanfilippo disease (M/c) MPS III - Enzyme that degrades heparan sulfate
|
w
ro
SPECIFIC FEATURES
ar
M
TREATMENT
Rx MPS
Stem cell therapy IH
I : Aldurazyme
Enzyme replacement therapy
II : Elaprase
Substrate reduction therapy III : Flavinoids
m
inclusion bodies in lysosomes
o
l.c
ai
gm
5@ Features of MPS
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
m
o
l.c
Disaccharidases :
ai
gm
1. Sucrase Sucrose 5@ Glucose + fructose
00
Intestine : maltase
u2
Microvilli of
k
ic
cells
|
Note :
• Digestion in mouth : Short & incomplete (Completed in jejunum).
• Salivary α-amylase : Inactivated by acidic gastric juices.
Lactose Intolerance :
Types :
• Congenital : Lactase deficiency from birth.
• Acquired : D/t ↓ production of lactase (>6-7 y/o) D/t ↓ milk consumption.
Pathophysiology : Lactase
Lactose Glucose + galactose
Accumulation of lactose
Bacterial fermentation
m
Short chain fatty acids + gases.
o
l.c
ai
gm
C/f : 5@
• Bloating.
00
• Abdominal pain.
u2
m
• Osmotic diarrhoea.
k
ic
• Flatulence.
h
rt
ka
Rx :
|
w
• Curd : Lactobacilli + .
ro
Rich in lactase.
ar
• Yeast.
M
©
Rx :
• Sucrose free diet.
• Enzyme replacement therapy : Yeast-derived sacrosidase.
Glucose is hydrophilic.
G
Plasma membrane
Carrier protein
Cell
Types 00:01:29
Glucose transporters
m
o
l.c
ai
gm
Sodium dependent (SGLT) 5@ Sodium independent (GLUT)
SGLT :
00
u2
• Unidirectional.
hic
rt
Types :
©
Clinical applications :
ORS : SGLT-1 in intestine is a sodium - glucose symport.
Renal glycosuria :
• Mutation in SLC5A2 gene Affects • Renal threshold : ↓.
SGLT-2 Defective reabsorption of • Oral glucose tolerance test (OGTT) :
glucose in renal tubules Excretion. Test to rule out renal glycosuria.
• Blood glucose : (N). • Renal threshold for excretion : 180 mg/dL.
• Benedict’s test : +ve. Note :
(Urine glucose : +ve). In DM, blood & urine glucose : ↑.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Glucose Transporters 59
Facilitated carrier
m
Rate of
o
mediated transport
l.c
transport
ai
hyperbolic
gm
plateau after 5@
an initial phase
00
Conc. of solute
u2
Types :
k
hic
rt
GLUT-1
retina, colon, RBC • Absorption of glucose
ro
ar
• β-cells of pancreas
M
mo
l.c
ai
gm
5@
GLUT-2 GLUT-2
00
u2
m
↑ Insulin
ic
glycogen
h
Liver
ka
Pancreas
|
w
GLUT-4 GLUT-4
ro
GLUT-4
ar
M
©
Adipose
tissue
Skeletal
muscle Heart
↓ Blood glucose
Glycemic index :
Glucose > Fructose
Transported by SGLT-1 GLUT-5
Conc. gradient Against Along
Absorption Complete Incomplete
In fed state :
↑ Blood glucose
Entry via GLUT-2
Liver
Undergoes glycolysis
Forms
Pyruvate
In the presence Pyruvate
Link reaction
m
of O2 dehydrogenase
o
l.c
Acetyl CoA
ai
gm
5@
Enters TCA cycle FADH2 and Enters electron transport ATP synthesis
00
u2
GLUT-2
M
©
Insulin secretion Enters HMP shunt Undergoes fatty acid (FA) synthesis
pathway
↑ level of GLUT4 in : FA
• Heart Forms NADPH Glycerol
• Adipose tissue Triacyl glycerol (TAG)
• Skeletal muscle FA synthesis
Transported into blood via VLDL
Storage of excess glucose
Stored in adipose tissue
Glycolysis Pathway 00:07:30
m
o
l.c
Overview :
ai
gm
Preparatory phase : 5@
• ATP utilized. Glucose (6C)
00
u2
- Stage of splitting.
k
hic
ATP
ar
• ATP is generated.
M
Glyceraldehyde 3 Pyruvate
©
• Stages :
phosphate NADH
- Oxidative phosphorylation.
- Substrate level phosphorylation. Enters ETC
ATP synthesis
Preparatory phase :
Glucose
ATP Hexokinase/Glucokinase
ADP
Glucose 6 Phosphate
Phosphohexose isomerase
Fructose 6 Phosphate
ATP Phosphofructokinase (PFK )
ADP 1
Hexokinase vs Glucokinase :
m
o
Inducible by insulin
l.c
4) Inducible/constitutive Constitutive
ai
(Postprandial)
gm
5@
5) Inhibited by G6P Yes No
00
u2
Glyceraldehyde 3 phosphate
hic
1
ka
ADP
2 ATP 1,3 BPG kinase
M
©
3 phosphoglycerate (3 PG)
PG mutase
2 phosphoglycerate
Mg2+
H20 Enolase (Lyase)
Mn2+
Note :
I) In RBC, NADH accumulation (D/t lack of mitochondria) is prevented by LDH :
LDH
NADH NAD+
2) Energetics of 1 Glucose undergoing aerobic oxidation :
m
o
l.c
a) Aerobic Glycolysis : 7 ATP.
ai
b) 2x (Pyruvate PDH Acetyl CoA) : 2x2.5 ATP = 5 ATP.
gm
5@
c) 2x (TCA cycle) : 2 x 10 ATP = 20 ATP.
00
Net : 32 ATP.
u2
m
k
ANEROBIC GLYCOLYSIS
hic
rt
Pyruvate
w
ro
NAD+
M
Lactate
©
Energetics :
• 1,3 BPG kinase : 2 ATP
• Pyruvate kinase : 2 ATP
• Hexokinase : -1 ATP
• Phosphofructokinase : -1 ATP
Net ATP : 2 ATP
INHIBITORS OF GLYCOLYSIS
1) Iodoacetate : 2) Arsenate :
a) Glyceraldehyde 3 a) Glyceraldehyde 3
phosphate dehydrogenase. phosphate dehydrogenase.
b) ↓ availability of Pi.
Note :
Vacutainer for blood glucose estimation (Grey colored) : Contains sodium fluoride
oxalate mixture.
CLINICAL APPLICATIONS
m
2) Aldolase deficiency :
o
l.c
↓ glycolysis Hemolysis.
ai
Note : gm
5@
00
mo
Glucose-6-phosphate
l.c
2 ATP used
ai
gm
Fructose-6-phosphate
5@
00
Phosphofructokinase
u2
Fructose-1,6-bisphosphate
m
k
hic
rt
Glyceraldehyde-3-phosphate
ka
|
w
ro
se
M
p
2x kinase X hos
BP Gp
ATP 2,3- H2O
Pi
3-PG
PEP
2 ATP Pyruvate kinase
Pyruvate
Lactase
Net ATP : Zero.
2,3- BPG :
• Shifts O2 dissociation curve to right ↓ Affinity of O2 to Hb Unloading of O2
in tissues.
• Leads to taut state/ low affinity state of Hb in tissues.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Glycolysis : Part 2 67
Hormonal regulation :
m
o
l.c
ai
PFK II (Phosphofructokinase II) : Regulatory enzyme in glycolytic pathway.
gm
5@
Allosteric regulation :
00
u2
Regulatory enzymes of
m
glycolysis
h
rt
ka
• Fructose-6-phosphate ATP
w
ro
• Fructose-2,6-bisphosphate
(D/t ↑ lactate)
Pyruvate kinase -
ATP (Product)
Warburg hypothesis :
By Otto Warburg in 1924.
Cancer cells +O High uptake of glucose.
2
↑Glucose → Lactate : Aerobic fermentation/Glycolysis
Net ATP production : 2
Mitochondrial intermediates :
• Acetyl CoA Biosynthetic pathway (Consumes ATP) Cachexia.
• Citrates
Phosphoenol pyruvate
Isomeric forms of
pyruvate kinase PKM1 PKM2
PKM1 : 7 ATP PKM2 :
• Tetramer. • Dimer.
• High catalytic activity. • Low catalytic activity.
Pyruvate
Acetyl CoA Lactate
m
o
l.c
ai
TCA cycle
Total : 32 ATP gm
Total : 2 ATP
5@
00
To compensate :
u2
m
o
l.c
Pyruvate dehydrogenase
ai
00:04:17
gm
5@
Site: Mitochondria.
00
CO2
h
(3C) (2C)
|
NAD+ NADH
w
ro
ar
M
ETC
©
ATP
PDH complex :
Multienzyme complex :
Pyruvate CO2
1. PDH.
2. Dihydrolipoamide transacetylase.
(1) 3. Dihydrolipoamide dehydrogenase.
Thiamine Hydroxyethyl TPP
pyrophosphate (TPP)
(2)
Oxidized lipoamide Acetyl lipoamide
FADH2 CoA
NAD
+ (3) (2)
Reduced Acetyl CoA
FAD
lipoamide
NADH
+H
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
70 Chemistry and Metabolism of Carbohydrates
Note :
Oxidative decarboxylation reactions :
1. PDH.
2. α Ketoglutarate dehydrogenase (TCA cycle).
3. Branched chain ketoacid dehydrogenase.
Regulation of PDH :
1. Hormonal regulation : 2. Allosteric regulation :
m
↑ Insulin: Glucagon ratio ↑ Acetyl CoA: CoA ratio OR
o
l.c
↑ ATP: ADP ratio OR
ai
gm
Covalent modification of PDH 5@ ↑ NADH: NAD+ ratio
00
Activation of PDH
ic
Inhibition of PDH
h
rt
ka
|
w
ro
Significance of PDH :
ar
PDH
M
Thiamine deficiency
↓ ATP
(energy depletion)
Clinical Application
PDH deficiency (M/c deficiency in the PDH complex)
m
a. Pyruvate PDH Acetyl CoA
o
l.c
ai
gm
Lactate 5@
00
u2
Lactic acidosis
m
k
b. Glycolysis
ic
↓ oxidative pathways
h
rt
ka
m
o
• Multiple non-reducing ends
l.c
Fast release of glucose.
ai
• Less osmolar :
gm
5@
- Glucose is hydrophilic Attracts water into cell Cell lysis.
00
Liver Muscle
|
w
GLYCOGEN SYNTHESIS
Occurrence :
Well fed state Insulin Stored as glycogen.
Excess carbohydrates
Sites :
Liver & skeletal muscle.
Organelle: Cytoplasm.
Steps :
I. Synthesis of UDP glucose (Active glucose donor).
II. Synthesis of linear polymer.
III. Branching of linear polymer.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Glycogen Metabolism 73
m
o
l.c
ai
gm
II. Synthesis of linear polymer : 5@
00
(UDP glu)n
ka
Glycogen synthase
UDP
|
w
ro
11 glucose residues
ar
M
©
GLYCOGENOLYSIS
• Early fasting Low insulin : Glucagon Glycogenolysis of hepatic glycogen.
(4- 16 hrs without food)
• Glycogen stores depleted by 16-18 hrs.
m
o
l.c
B. α 1 6 glucosidase
ai
gm
5@
B A
Linear polymer
00
u2
m
Free glucose
k
hic
Glucose 1 phosphate
|
w
G-6-phosphate • Glycogenolysis
M
©
HORMONAL REGULATION
Fasting state :
Liver
Glucagon Epinephrine (Flight, fight response)
Muscle
Attach GPCR
Muscle
Release of G-protein
+ (+) Insulin
Adenylyl cyclase PDE
ATP cAMP 5’ cAMP
Block cAMP dependent
cAMP dependent pathway
protein kinase A
m
o
Glycogen Glycogenolysis
l.c
ai
synthesis
gm
P 5@ P
Glycogen Glycogen synthase Glycogen Glycogen
00
+
|
Insulin Phosphatase
w
ro
ar
Activates phosphodiesterase
M
©
Action of insulin :
• Dephosphorylation of glycogen synthase & phosphorylase.
• Activation of phosphodiesterase.
Glucose 6-P
Glucose 6-P
ATP
Glycogen Glycogen Glycogen
Glycogenolysis
phosphorylase synthase synthesis
Glucose
m
o
Glucose-1-phosphate
l.c
ai
gm
5@
B) Muscle :
00
u2
m
Glycogen
k
hic
rt
Glucose 6-P
ka
Glucose 6-P
|
w
ATP
ro
ar
Glycogen Glycogen
M
Glycogenolysis Glycogen
synthesis
©
phosphorylase synthase
AMP
Ca2+
Glucose-1-phosphate
m
o
bacterial infection reticulum
l.c
ai
gm
Cori’s/Forbes disease/Limit
III Debranching Enzyme
5@
dextrinosis
00
Present Absent
Type V/Mc Ardle’s
Type II/Pompe’s disease
disease Type VII/
GSD (Also, Lysosomal storage
• M/c Muscle GSD. Tarui’s disease
disorder)
• M/c GSD in adolescent.
• Acid maltase
Enzyme AKA Muscle glycogen Erythrocyte/
Defect - Acid α glucosidase phosphorylase muscle PFK-1
- Acid α 1-4 glucosidase
X
Glucose
↓ Glycogenolysis
Purine
Catabolism
Fasting hypoglycemia
Uric acid
OAA : Oxaloacetic acid.
m
Hyperuricemia
o
l.c
ai
Triacyl glycerol
gm
5@
Glucose 6 phosphate
00
Oxidation Pyruvate
k
ic
Pyruvate dehydrogenase
ka
|
↓ OAA
w
Ketosis : Rothera’s
test +ve
Clinical features :
• Chubby cheeks. • Renomegaly (d/t fat deposition
• Thin extremities. around kidney).
• Massive hepatomegaly. • No splenomegaly.
Investigations :
• S. Glucose ↓↓. • Liver enzymes : AST, ALT = Normal.
• Rothera’s test +ve. • Liver biopsy : Normal glycogen ↑.
• S. uric acid ++. • IV glucagon challenge : No rise in
• S. lactate ++. blood glucose.
Clinical features :
• Hypoglycemia (Moderate).
• Accumulation of abnormal glycogen.
• Non-progressive cirrhosis.
Investigation :
• S. Glucose ↓. • Liver enzyme : AST, ALT = ↑↑.
• Rothera’s test -ve. • Liver biopsy : Accumulation of
• S. uric acid abnormal glycogen (limit dextrin).
• S. lactate Normal
m
o
IV glucagon challenge :
l.c
ai
IV glucagon Promotes glycogenolysis.
gm
5@
Rise of blood glucose after bolus of IV glucagon :
00
u2
m
Clinical features :
• Hypoglycemia.
• Hepatomegaly d/t accumulation of amylopectin like material (abnormal
glycogen).
• Progressive cirrhosis Liver failure :
- Portal hypertension.
- Oesophageal varices.
- Death around 5yrs (d/t liver failure).
Investigation :
• S. glucose ↓. • S. lactate : Normal.
• Uric acid • Liver enzymes : ALT, AST = ↑↑.
• Ketone bodies Normal • Liver biopsy : Amylopectin-like material.
Clinical features :
• Feeding difficulties. • Hypertrophic cardiomyopathy.
• Failure to thrive. • Death around 2 yrs, (D/t cardiac failure).
• Hypotonia.
Investigation :
• S. glucose : ↓. • S. lactate : Normal.
• Uric acid • Liver enzymes : Normal.
Normal
• ketone bodies • S. creatine kinase, LDH : ↑
m
McArdle’s disease :
o
l.c
ai
Clinical features :
• Exercise intolerance. gm
5@
00
• Rhabdomyolysis.
m
k
• Myoglobinuria.
hic
rt
Muscle
ka
Glycogen X
|
w
phosphorylase
ro
Pi G1PO4
©
Investigation :
• S. glucose during exercise : ↓.
• S. lactate : ↓.
• S. creatine kinase, LDH : ↑↑.
• Liver enzymes : ALT, AST : Normal.
Clinical features :
• Hemolysis (+). • Rhabdomyolysis.
• No second wind phenomenon. • Myoglobinuria.
• Exercise intolerance.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Glycogen Storage Disorders 81
m
• Liver GSD + Neurological manifestation : Type IV.
o
l.c
ai
- Anterior horn cells, brain cells are affected.
• Liver GSD + Abnormal glycogen : Type III, IV. gm
5@
00
Summary :
u2
m
k
ic
Von Gierkes ↓ + ↑ ↑ N
w
N
ro
Pompe’s ↑
ar
↓/N
M
Cori’s N
©
↓ ↑ N
Anderson
- N
McArdle N/↓ ↓ ↑
VI ↓ N N N
VII N ↓ ↑
Introduction :
• Source of blood glucose during 16-48 hrs of fasting.
• Low Insulin : Glucagon ratio.
Definition :
The process of synthesis of glucose from non-carbohydrate substrates.
Site :
Organ : Liver, kidney.
Organelle : Cytoplasm, Mitochondria, Smooth endoplasmic reticulum(SER).
m
o
l.c
ai
Substrates 00:03:44
gm
5@
1) Glucogenic amino acids : Mainly alanine.
00
u2
Glucose Glucose
m
k
hic
rt
Pyruvate
ka
|
Pyruvate
w
ro
ar
Transamination
M
Alanine
©
Liver
Alanine Skeletal muscle
Glucose Alanine/ Cahill cycle
2) Lactate :
Source : Skeletal muscle and RBC.
Glucose
Glucose
Pyruvate
Pyruvate
Lactate Liver
Lactate
Skeletal muscle
Glucose lactate/ Cori’s cycle
Glycerol-3-phosphate dehydrogenase
Dihydroxyacetone phosphate
Glucose Glyceraldehyde-3-phosphate
4) Propionyl CoA :
m
o
Source : Odd chain FA.
l.c
ai
gm
Propionyl CoA carboxylase
Propionyl CoA (3C) D-Methyl malonyl CoA (4C)
5@
ATP, Biotin, CO2
00
u2
Racemase
m
Vit. B12
rt
ka
|
w
ro
Oxaloacetate Glucose
ar
M
Note :
©
Enzymes 00:11:43
m
Malate-aspartate shuttle Aspartate Malate
o
l.c
ai
gm
5@ OA (4C)
GTP PEP carboxykinase
00
1. Decarboxylation
u2
GDP 2. Phosphorylation
m
k
hic
PEP (3C)
rt
ka
|
Regulation
w
00:22:38
ro
ar
M
1. Hormonal Regulation :
©
Fasting state:
• ↓Insulin : Glucagon ratio.
• Enzymes are in phosphorylated state : Active.
2. Allosteric regulation :
a. Acetyl CoA : Allosteric activator of pyruvate carboxylase (Rate limiting
enzyme of gluconeogenesis).
b. Fructose-2,6-bisphosphate :
- Allosteric activator of PFK1 (Enzyme of glycolysis).
- Allosteric inhibitor of Fructose-1,6-bisphosphatase (Rate limiting enzyme
of gluconeogenesis).
a. Well-fed state :
Fructose-6-phosphate (F-6-P) F-1,6-BP
PFK2
b. Fasting state :
PFK2 is inactive No inhibition of F-1,6-BPase
F-1,6-BP
m
o
F-6-P
l.c
ai
Enters gluconeogenesis gm
5@
00
u2
Clinical applications :
m
k
ic
1. Raw egg :
h
rt
ka
↓Gluconeogenesis
2. Biguanides :
Biguanides Inhibits Pyruvate carboxylase (PC)
Pyruvate Oxaloacetate
Lactate
Lactic acidosis
ADP
1,3- bisphosphoglycerate (1,3-BPG)
m
o
Glyceraldehyde-3-phosphate DHAP
l.c
ai
gm
5@
00
P� H2O P� H2O
k
hic
rt
ka
|
Note :
w
ro
Energetics :
• Pyruvate carboxylase : 1 ATP.
• PEP carboxykinase : 1 ATP (GTP)
• 1,3- Bisphosphoglycerate kinase : 1 ATP.
• Total : 3 ATP (Per molecule of lactate).
• Net consumption : 2 x 3ATP = 6 ATP (2 molecules of lactate).
Galactose 00:00:10
Sources : Functions :
Lactose (Milk sugar). 1. Conversion to glucose and glycogen.
2. Synthesis of lactose, GAG, proteoglycans.
Metabolism :
Site : Liver, fibroblasts, RBC.
Pathway : Galactose
m
(1)
o
l.c
Galactose 1-phosphate UDP Glucose 1. Galactokinase
ai
(2) (3) (3)
gm
Glucose 1-phosphate UDP Galactose 5@ 2. Galactose 1-phosphate uridyl
transferase (GALT)
00
Used for :
k
ic
• Glycolysis
h
rt
ka
• Glycogen synthesis
|
w
ro
Classic galactosemia :
ar
M
Biochemical defect :
↓ Galactose 1-phosphate uridyl transferase
after it is Galactose Aldose Dulcitol/Galactitol
Accumulation of Galactose 1-phosphate
depleted ↑ Galactose deposition in reductase (Osmotically
the eyes active)
↓ Inorganic P04 (Pi)
Oil drop cataract
↓ ATP ↓ Phosphorylation of
Glycogen phosphorylase Rate-limiting enzyme (RLE)
Effects on the brain in glycogenolysis
↓ Glycogenolysis
Intellectual disability
Hepatomegaly
Fasting hypoglycemia Accumulation of glycogen Liver failure
in the liver Oil drop cataract
Jaundice
m
Treatment :
o
l.c
1. Stop breastfeeding.
ai
gm
2. Lactose free diet upto 4-5 years. 5@
After 4-5 yrs : Activation of
00
Galactose 1 phosphate
u2
Galactose
k
ic
Sources :
1. Sucrose (Cane sugar). 3. Fruit juices.
2. Honey. 4. Glucose (Through polyol pathway).
Metabolism :
Site : Liver.
Pathway: Fructose (1) Fructose 1-phosphate
(2) 1. Fructokinase
Glyceraldehyde Dihydroxy acetone Deficiency Essential fructosuria
phosphate (DHAP) 2. Aldolase B
Deficiency H ereditary fructose
m
o
intolerance
l.c
Glyceraldehyde-3-phosphate
ai
gm
5@
Pyruvate
00
u2
No regulatory step in fructose metabolism : Fructose Pyruvate Acetyl CoA Fatty acid (FA)
m
k
hic
Dyslipidemia ↑ TAG
rt
Note :
ka
|
Deficiency of Aldolase B.
Biochemical defect :
↓ Aldolase B ↑ Fructose excreted d/t No cataract
r
afte ion low renal
let
↑ Fructose 1 phosphate dep threshold
↓ availability of Pi
Clinical features :
• Age of onset : 6 months (Precipitated by weaning diet).
• Similar to galactosemia, but no cataract.
Treatment :
m
Sucrose free diet.
o
l.c
ai
Note :
Galactosemia vs Hereditary fructose intolerance : gm
5@
00
u2
Galactosemia HFI
m
Essential fructosuria :
Defect in fructokinase.
Biochemical defect :
Defect in fructokinase ↑ Fructose Excreted d/t Fructosuria
low renal
threshold
Hexose Monophosphate Pathway 00:34:18
Oxidative Phase :
Glucose 6 phosphate (G6P) H2O2 GSH NADP+
NADP+ (1) (2)
(1) H2O GS SG NADPH
NADPH
6 Phosphogluconate 1. Glutathione peroxidase (Needs Se).
NADP+ 2. Glutathione reductase (Needs NADPH) :
(2) GSSG : oxidised glutathione.
NADPH CO2
m
GSH : Reduced glutathione.
o
Ribulose 5 phosphate
l.c
ai
gm
1. G6P dehydrogenase (G6PD) : RLE 2. Maintains the reduced state of iron in
5@
2. 6 Phosphogluconate dehydrogenase hemoglobin :
00
adipose tissue.
|
w
ro
ar
Functions of NADPH :
M
©
m
o
l.c
• X linked recessive disorder.
ai
gm
• M/c enzyme deficiency in humans. 5@
• Common in the Middle East and Mediterranean
00
P. falciparum.
k
ic
methemoglobinemia.
ar
M
©
Bite cells
Introduction :
Oxidative pathway for glucose.
Site :
• Organ : Liver. • Organelle : Cytoplasm.
Functions :
1. Uronic acid synthesis : 2. Synthesis of pentoses : 3. Synthesis of ascorbic
Glucuronic acid : Minor source. acid :
a. Conjugation of Not seen in humans and
bilirubin. higher primates (Absence
b. Synthesis of GAGs. of L-gulonolactone
oxidase).
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Minor Metabolic Pathways 93
Urinary excretion
Sorbitol
m
dehydrogenase
o
Glucose Aldose reductase Sorbitol Fructose
l.c
ai
gm
NADPH NADP+ NAD+ NADH
5@
00
u2
Significance :
m
k
• Lens
rt
Diabetic cataract.
ka
Normal levels :
• Fasting blood sugar (FBS) : 70-100 mg/dL.
• 2 hour post prandial blood sugar (PPBS) : ≤140 mg/dL.
m
o
l.c
Stage Time period Source
ai
gm
Well fed state Within 1-4 hours of food intake
5@ Dietary glucose
Hepatic glycogenolysis : Glycogen
00
Prolonged fasting/
2-5 days without food intake
|
w
Mechanism of normalizing
State Blood glucose levels Hormone
blood glucose levels
β cells of pancreas • ↑Glucose uptake by ↑GLUT 4
Well fed state ↑
• ↑Glucose utilization
Insulin
α cells of pancreas • ↓Glucose uptake by ↓GLUT 4
Fasting state ↓ • ↑Glucose release
Glucagon • ↑Glucose synthesis
m
o
l.c
ai
β cells of pancreas
gm
5@
Insulin : Activation of various pathways by
00
u2
+ -
ka
↑GLUT4
|
w
Pathways
ro
• Heart.
©
• Skeletal muscle.
↑Glucose utilization
• Adipose tissue.
Stored as TAG
Glucose
en Glycolysis
Glycog
sis
synthe G6PO4
Glycogen
Pyruvate
PDH
m
Fatty acid
o
l.c
ai
Lipogenesis + Glycerol
gm
5@ Cells of :
TAG
00
: Adipose.
u2
m
k
: Common to all 3.
|
w
ro
ar
M
• Glycogen synthesis
• Glycolysis
Liver GLUT 2
• PDH (Pyruvate dehydrogenase)
• TCA cycle
• Glucose uptake by ↑GLUT 4
• Glycolysis
Adipose tissue GLUT 4
• PDH
• Fatty acid synthesis & ↑lipogenesis
• Glucose uptake by ↑GLUT 4
• Glycolysis
Skeletal muscle GLUT 4 • PDH
• TCA cycle
• Glycogen synthesis
Fasting (Post-Absorptive) State : ↓Insulin : Glucagon Ratio 00:23:39 ----- Active space -----
No dietary glucose
α cells of pancreas
m
o
l.c
ai
Covalent modification by glucagon : Goal gm
↑Blood glucose.
5@
00
u2
Glycolysis ↓
hic
rt
Gluconeogenesis
|
w
ro
substrates
M
©
ORGAN MAPPING
----- Active space -----
Effects on organs upon release of glucagon from α cells of pancreas d/t ↓ blood
glucose.
Adipose : Skeletal muscle : Liver :
Lipolysis : Glycogen
Stored TAG ↑Glycogenolysis
Glycogen
↑ HSL Glycerol G6PO4
Glycogenolysis
Fatty acid Glycolysis
Glucose Released into blood
β oxidation Pyruvate
Gluconeogenesis
Acetyl CoA
Alanine Non-carbohydrate
substrates
m
Ketone body synthesis (Gluconeogenic
o
l.c
substrate)
ai
gm
5@
00
Note : End product of glycogenolysis in skeletal muscle is G-6-PO4 & not glucose
u2
m
• Glycogenolysis
w
Liver
ro
• Gluconeogenesis
ar
M
• GLUT4
©
• Glucose uptake
Adipose tissue
• HSL (Hormone sensitive lipase)
• Lipolysis
• GLUT4
Skeletal muscle • Glucose uptake
• Glycogenolysis
Diabetes mellitus :
• ‘Diabetes’ (Aretaeus of Cappadocia) : “To siphon”.
• ‘Mellitus’ (Thomas Willis) : “Sweet urine”.
• Metabolic disorder with hyperglycemia d/t absolute/relative insulin deficiency.
• Complex interaction b/w genetic & environmental factors.
CLASSIFICATION
m
o
l.c
ai
Type I DM Type II DM Diabetes prone state Secondary to other causes :
gm
• Hyperthyroidism.
5@
• Pancreatic disease.
00
u2
• Drug induced.
m
k
• Endocrinopathies :
hic
rt
during pregnancy.
Type 1 DM Type 2 DM
↓ Secretion of insulin by ↓ Biological response to insulin :
Etiology
β cells of pancreas Insulin resistance
Onset < 30 yrs > 40 yrs
Insulin dependence + -
(Obsolete criteria) Insulin dependent DM (IDDM) Non-insulin dependent DM (NIDDM)
Ketosis Prone Less prone
Genetic predisposition Usually - Family h/o +
Circulating antibodies Autoantibodies + -
Plasma insulin levels ↓ ↑
Carbohydrate Metabolism :
• ↓ Glucose uptake
+ Hyperglycemia
• ↓ Glucose utilization
m
o
l.c
• Glycogen synthesis : ↓.
ai
gm
↓ Glucose uptake by : 5@ • ↓Activity of pyruvate dehydrogenase.
• Glycogenolysis : ↑
00
• Gluconeogenesis : ↑
u2
m
Hyperglycemia.
ro
ar
M
©
Lipid Metabolism :
Absolute/relative insulin deficiency Note :
-
Insulin HSL
Low insulin/glucagon ratio
(Simulated fasting state in spite of hyperglycemia)
+
Hormone sensitive lipase (HSL)
TCA
TAG
Depletion of OAA d/t
Gluconeogenesis Hydrolysis ↑ Lipolysis
Ketone body Acetyl CoA Fatty acid Glycerol
b oxidation
synthesis
Protein Metabolism :
• ↑ Transamination.
• ↑ Protein catabolism (Degradation).
• ↓ Protein synthesis.
Cardinal Symptoms :
m
Symptom ↑ Frequency of micturition ↑ Thirst ↑ Appetite
o
l.c
Glycosuria ↑Protein, carbohydrate &
ai
ECF contraction
gm
(Glucose in urine) 5@ + lipid catabolism
Pathophysiology Thirst centers
00
↑Thirst
Polyuria
k
↑Appetite
hic
rt
Other Symptoms :
ka
|
Boils
Acanthosis nigricans : Black pigmentation at the nape of neck, axilla etc.
Black pigmentation
Investigations :
1. Blood glucose estimation.
a. Fasting blood sugar (FBS) : 70-100 mg/dL.
b. Post prandial blood sugar (PPBS) : ≤ 140 mg/dL.
2. Glycated hemoglobin (HbA1c).
3. Oral glucose tolerance test (OGTT).
m
o
American Diabetes Association 2017 Criteria :
l.c
ai
gm
5@ Impaired glucose tolerance Diabetes
Normal
(Pre-diabetes) mellitus
00
u2
Note :
Glycosylation :
• Enzymatic addition of glucose to proteins.
• Sites : Endoplasmic reticulum, golgi apparatus.
HbA1c :
• Glucose attached to N-terminal valine of Hb.
• M/c assessed fraction of glycated hemoglobin.
• Normal value : < 6.5%.
• Significance :
m
o
l.c
Determines glycemic control of the past 6-8 wks > 10-12 wks. (~ Lifespan
ai
gm
5@ of RBCs).
Estimated average glucose (EAG) : (HbA1c x 28.7) - 46.7.
00
u2
FOLLOW-UP/DIAGNOSIS OF COMPLICATIONS
m
k
Clinical Assessments :
hic
rt
• BP assessment : Quarterly.
ka
Lab Assessments :
• Fasting lipid profile : Biannually.
• Renal function tests (RFT) : Annually.
• Microalbumin in urine : Annually.
• Glycemic control : FBS, PPBS, HbA1c (Every visit).
Glucose tolerance :
• Ability of the body to metabolize exogenous/dietary glucose &
bring it back to baseline level.
• Assessed in a clinical setting by OGTT.
OGTT : Measuring glucose levels at frequent intervals for 2-2.5 hours after
administering an oral glucose load.
m
o
Indications of OGTT :
l.c
ai
1. Suspected case of diabetes mellitus with inconclusive FBS values.
2. During pregnancy : gm
5@
00
• H/o miscarriages.
u2
3. Renal glycosuria
ka
|
w
Contraindications of OGTT :
ro
ar
m
o
l.c
ai
Blood glucose (mg/dL)
gm
5@
350
00
u2
300
mk
250
h ic
rt
200 Renal
ka
threshold
|
150
w
ro
100
ar
M
50
©
0 hr 1 hr 2 hr 3 hr
0 h (FBS) 1 h (Peak) 2h
:N ormal GTT curve 70-100 <160 <140
: Impaired glucose tolerance 100-126 - 140-200
Peak
: D iabetes mellitus >126 >200
(>>200)
Alimentary Glycosuria:
Seen in patients with hyperthyroidism/post-gastrectomy.
Findings :
Blood glucose Urine glucose
m
Fasting Normal -
o
l.c
ai
1 hr >160 mg/dL +
gm
5@
2 hr Normal -
00
u2
Renal Glycosuria :
m
k
Mini GTT :
• WHO recommendation.
• Only 2 samples taken : Zero hour sample & 2 hour PPBS.
Procedure :
• Done b/w 22-24 weeks of pregnancy.
• Oral glucose load : 50g of anhydrous glucose.
• Fasting : Not required.
• Sample : 2 hours post glucose load.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Diabetes Mellitus : Part 2 107
IV GTT :
Indication : Malabsorption.
Procedure :
• 12 hour fasting.
• 25g glucose in 100 mL sterile distilled water administered.
• Blood sample collected at 10 min intervals for 1 hour.
Interpretation :
Normal : Blood glucose value <100 mg/dL by 45-60 mins.
m
o
Corticosteroid Stressed GTT :
l.c
ai
Indication : Pre-diabetes & diabetes prone states.
gm
5@
Procedure :
00
• 100g steroid : Given in 2 divided doses orally, 2 hours prior to the test
u2
m
Followed by
k
hic
Glucose load.
rt
ka
Acute :
1. Diabetic ketoacidosis (DKA).
2. Hyperosmolar non-ketotic coma (HONK)/
hyperglycemic hyperosmolar state (HHS).
3. Lactic acidosis : Occurs d/t hypoxia
↑Anaerobic glycolysis.
m
o
l.c
4. Hypoglycemia : Occurs d/t insulin overdose.
ai
Chronic : gm
5@
00
Microvascular :
u2
• Diabetic nephropathy.
m
k
• Diabetic retinopathy.
hic
rt
• Diabetic neuropathy.
ka
|
• Diabetic gastropathy.
w
ro
ar
Macrovascular :
M
Others :
• Diabetic cataract.
• Autonomic dysfunction.
m
Acetyl CoA
o
l.c
Ketone body (KB)
ai
+
gm
synthesis 5@ TCA
00
Net effect :
u2
m
1. Hyperglycemia.
k
ic
2. ↓ Glucose uptake.
h
rt
ka
3. ↓ Glucose utilization.
|
4. ↑ Activity of hSL.
w
ro
Clinical Manifestations :
Metabolic acidosis :
↑ Ketone bodies High anion gap metabolic acidosis (↑H+)
↑H+(Acidosis) + HCO3-
H2CO3
Carbonic anhydrase
Expelled in air CO2 + H2O
Respiratory compensation by hyperventilation.
ECF contraction
Dehydration
if untreated
Coma.
Electrolyte imbalance :
1. Hyperkalemia :
Causes
m
o
l.c
H+
ai
Expulsion of K +
↓ K+ excretion.
gm
K+
out of the cell.
5@
Cell K+ efflux
00
u2
m
2. Hyponatremia :
k
Hyperglycemia
hic
rt
ka
Dilutional hyponatremia.
©
Laboratory Diagnosis :
• Blood glucose : 250 – 600 mg/dL.
• Rothera’s test : Positive.
• ABG analysis : High anion gap metabolic acidosis (HAGMA).
• Serum electrolytes : Hyperkalemia, hyponatremia.
Treatment :
1. Fluid replacement : 0.9% saline.
2. Administer short acting insulin (To ↓K+).
3. Correction of electrolyte imbalance.
4. Treat the underlying cause.
Severe hyperglycemia
Osmotic diuresis
m
o
l.c
ai
DKA vs HHS 00:26:23
gm
5@
00
DKA HHS
u2
Serum K+ N
|
w
N - Slightly ↑
Anion gap
(HCO3 : N )
Definition of lipids :
• Heterogeneous group of compounds which are soluble in non polar solvents
(Eg : chloroform, ether) and insoluble in polar solvents.
• Related physically rather than chemically.
Bloor’s Classification :
1. Simple lipids : 3. Derived lipids :
Esters of acids (fatty acids) and alcohol Derived from simple/compound lipids.
m
o
Glycerol
l.c
(glycerol).
Eg : TAG
ai
gm
Eg : Triacylglycerol (TAG). 5@ Fatty acid (FA)
2. Compound lipids :
4. Miscellaneous lipids :
00
group.
k
ic
o
ka
CH2OH RICOOH
|
|
|
|
| | o
w
CH OH + R2COOH CH O C R2
=
ro
o
|
|
|
|
|
ar
CH2 OH R3COOH |
C R3
M
3H20 CH2 O
=
|
|
|
|
©
Non polar
Glycerol 3 FA TAG
Hydrophobic
Triacyl glycerol AKA fat
Fatty Acids 00:06:30
CLASSIFICATION
1. Based on number of carbon atoms : R COOH
|
m
2. Butyric acid (4C)
o
l.c
Butter
ai
3. Valeric acid (5C)
4. Caproic acid (6C) gm
5@
00
Medium chain FA
u2
Long chain FA
|
Animal fat
ro
Common unsaturated FA :
Unsaturated FA Source
Mono unsaturated FA
1. Palmitoleic acid (16c :1 double bond)
Vegetable oils
2. Oleic acid
(18c :I double bond) (richest sources : Mustard oil, rapeseed oil)
3. Elaidic acid
Polyunsaturated FA
1. Linoleic acid (18C : 2 double bonds) Safflower oil, sunflower oil
α α : Flaxseed oil (richest source)
2. Linolenic acid γ (18C : 3 double bonds) γ : Oil of evening primrose
3. Arachidonic acid (20c : 4 double bonds) Body fat
4. Timnodonic acid (EPA) (20C : 5 double bonds) Fish oil, algal oils
5. Cervonic acid (DHA) (22c : 6 double bonds) Fish oil, algal oils, breast milk
EPA : Eicosa pentaenoic acid
DHA : Docosa hexaenoic acid
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
114 Chemistry and Metabolism of Lipids
----- Active space ----- • Highest PUFA : Safflower oil. • Highest α linolenic acid : Flaxseed oil.
• 2nd highest PUFA : Sunflower oil. • Highest MUFA : Mustard/rapeseed oil.
• Least PUFA : Coconut oil. • Highest MCFA : Coconut oil.
3. Based on source of FA :
a. Essential FA : b. Semi essential FA :
• Only source : diet. • Synthesized from linoleic acid.
• Examples : • Examples :
a. Linoleic acid (most essential FA). a. Arachidonic acid.
b. α Linolenic acid. b. γ linolenic acid.
• Deficiency :
- Follicular hyperkeratosis Toad skin.
NUMBERING OF FA
m
Omega numbering : > Delta numbering :
o
l.c
Starts from the tail (methyl end). Starts from the head (Carboxyl) end.
ai
gm
ω3 (1st double bond at C3) 5@ Δ7 (1st double bond at C7)
00
1 2 3 4 5 6 7 8 9 10
u2
CH3
10
- CH2
9
- CH
8
= CH
7
- CH2
6
- CH2
5
- CH2
4
- CH2
3
- CH2
2
- COOH
1
k m
ic
ω3 FA : ω6 FA :
h
rt
• Significance : • Significance :
- ↓ Cardiovascular risk. ↑ Linoleic acid
- ↓ Platelet aggregation.
- ↓ Inflammation. Arachidonic acid (source of
- Infant brain development (DHA). prostaglandins, leukotrienes)
- ↓ Risk of mental illness (ADHD,
depression). Inflammation
- ↓ Risk of degenerative diseases
Note :
(Rheumatoid arthritis, Alzheimer’s).
ω6 : ω3 ratio :
- Protective in Type 2 diabetes,
• Ideal (1 : 1 to 2 : 1).
cancer and non alcoholic fatty liver
• Recommended (3 : 1 to 4 : 1).
disease.
• Western diet (50 : 1).
• Indian diet (16 : 1).
m
o
l.c
Unsaturated FA
ai
gm
5@
Trans form :
00
Cis form :
u2
Sources :
|
w
ro
Advantages Disadvantages
• ↑ Shelf life • ↑ Trans FA (TFA)
• ↓ risk of rancidity
2. Deep frying.
3. Reheating of oil.
4. Heating oil at very high temperatures.
Insulin resistance
Note :
• Cis FA ↑ fluidity of membrane.
• Daily allowance of TFA : 2-7g/day.
m
MCFA UFA
o
l.c
Richest source coconut oil Sunflower oil
ai
gm
1. No double bond 5@
00
Advantages Essential FA
m
Glycerophospholipids 00:01:32
Components : Glycerol
1. Glycerol o
CH2- O -C - R
=
Diacylglycerol (DAG)
2. 2 fatty acids (FA) o FA
m
CH - O -C -R
=
3. Phosphoric acid (PA).
o
l.c
CH2- O -P -Base
ai
4. Nitrogenous/Non-nitrogenous base.
gm
5@ Structure
Classification :
00
Based on
u2
m
k
hic
rt
• Cephalin. • Cardiolipin.
ar
m
- Cardiomyopathy + skeletal myopathy.
o
l.c
ai
b. Aging.
gm
c. Hypothyroidism.5@
d. Cardiac failure.
00
u2
|
R C C3 OH
=
• Function : Component of
|
|
|
m
o
G : Ganglioside.
l.c
ai
M : Monosialo (NANA) containing.
gm
5@
NANA : Type of sialic acid (Derivative of carbohydrate).
00
u2
Sphingolipidoses 00:27:37
m
k
ic
Lysosomal-storage disorder.
h
rt
ka
Accumulating
|
substance
ro
ar
Typical facies :
Low-set ears
1. GM1 Long philtrum
GM1 • Blindness
gangliosidosis • Angiokeratoma
• Hepatosplenomegaly
• Intellectual disability
Angiokeratoma • Cherry red spot
2. GM2 gangliosidosis :
β-hexosaminidase A
(GM2 GM3) • Neurological deficits
• Cherry-red spot in macula & retina
a. Tay-Sach’s
• Hyperacusis
disease
GM2 • No visceromegaly
• Muscle weakness
c. Sandhoff’s
β-hexosaminidase A & B Hepatosplenomegaly ±
disease
m
o
l.c
ai
gm
5@
β-glucocerebrosidase/ • Abdominal distension/
00
u2
β-glucosidase visceromegaly
m
- Pain
h
in long
rt
ceramide) - Pathological
ka
fractures bones
|
w
- Pancytopenia
ro
4. Gaucher’s
Glucocerebroside in - Thrombocytopenia
ar
disease (M/c)
M
Painful joint
swelling with
6. Farber’s nodules (Resembles
ceramide ceramidase
disease rheumatoid arthritis)
m
o
l.c
ai
7. Fabry’s • X-linked recessive disorder
gm
Globotriaosylceramide α-galactosidase
disease 5@ Only males affected
• Angiokeratoma
00
appearance in lens)
m
k
proximal joints.
rt
ka
intolerance)
w
ro
sediments
M
©
m
Globoid : Krabbe’s disease.
o
l.c
ai
Summary :
gm
5@
Disease Enzyme Defect
00
u2
Krabbe’s disease
|
β-galactocerebrosidase/β-galactosidase
w
ro
Digestion 00:00:30
STOMACH
Lingual lipase Gastric lipase
From mouth • Produced by : Chief cells
Source
Mostly seen in infants • Stimulated by : Gastrin
Active at pH 2 - 2.5 (Stomach) 5 - 5.5
Digestion/ 30% triglycerides 30% of TAG
m
Hydrolysis of (Short chain fatty acids) (Short & long chain FA)
o
l.c
ai
gm
INTESTINE 5@
Enzymes :
00
Cholesterol + FA
|
TAG
w
ro
FA Lipase Phospholipase A2 :
ar
M
Phospholipids
2,3-DAG (Diacylglycerol)
©
FA Lipase
Lysophospholipids + FA
2-MAG (Monoacylglycerol) (78%)
Isomerase (Shifts FA from 2nd 1st position)
1-MAG (Monoacylglycerol)
Lipase
Glycerol + Fatty Acid (FA)
Products of Digestion :
• 2-MAG. • Fatty acid.
• 1-MAG. • Cholesterol.
• Glycerol. • Lysophospholipids.
m
o
l.c
ai
Absorption
gm
5@ 00:09:40
00
Cholesterol
|
w
Phospholipid
ro
Mixed micelle
ar
M
©
Mixed
micelle
m
o
l.c
ai
gm
5@
00
u2
chylomicrons
ER to form TAG
ka
|
w
ro
ar
M
©
Note : Short chain FA and medium chain FA can be directly absorbed to portal vein.
They do not need micelle formation or re-esterification.
Lipolysis 00:01:12
Steps : Regulation :
Triacyl glycerol (TAG)
Activators of hsl Inhibitors of hsl
Acyl Hormone sensitive lipase • Glucagon • Insulin
2,3 Diacyl glycerol (DAG) • Epinephrine • Niacin
Acyl Hormone sensitive lipase (hsl) • Glucocorticoids • Prostaglandin
m
• ACTH E1 (PGE1)
o
2 Monoacyl glycerol (MAG)
l.c
• TSH
ai
gm
Acyl 2 MAG esterase • Melanocyte stimulating
5@
Glycerol hormone
00
u2
• Thyroxine
m
k
hic
rt
Types :
ro
ar
β oxidation : α oxidation :
M
(Major). (Minor).
©
ω oxidation :
Eg : Saturated FA. Eg : Branched chain FA.
(if β oxidation is defective).
Unsaturated FA.
Very long chain FA (VLCFA).
Odd chain FA.
β OXIDATION
• The process by which FA is cleaved successively to form a 2 carbon unit called
acetyl CoA with release of energy.
• M/c FA oxidation. • m/c FA to undergo β oxidation :
Palmitic acid (16C).
Overview :
a. Cutting/Cleaving Acetyl CoA TCA cycle.
b. Oxidation of β carbon atom.
c. Generation of reducing equivalents Electron transport chain Energy.
(ETC)
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Lipid Metabolism in Fasting State 127
Site :
• Organ : liver, adipose tissue, skeletal muscle.
• Organelle : Mitochondria.
Steps :
1. Preparatory : 2. β oxidation.
a. Activation of FA.
b. Transportation of activated FA into mitochondria.
m
o
l.c
Role : Provides ATP for gluconeogenesis.
ai
Stage of fasting gm
1° metabolic fuel
5@
00
3. Prolonged fasting/
h
starvation
ka
|
w
Activation of FA :
ro
ar
Site : Cytoplasm
M
Transportation of activated FA :
Carnitine :
• FA transporter.
• Synthesized from lysine and methionine.
• FA with <14 carbon atoms : Do not need carnitine.
β oxidation
m
o
l.c
CAT : Carnitine acyl transferase.
ai
gm
CPT : Carnitine palmitoyl transferase : 5@
- Gateway of beta oxidation.
00
CPT 1
u2
β oxidation Pathway :
|
w
Acyl CoA
ro
ar
FAD
M
28 ATP
1 NADH 2.5 ATP
1 β oxidation
1 FADH2 1.5 ATP
4 ATP
• Total ATP = 80 + 28
= 108 ATP
m
• ATP utilised = 2 ATP (Activation of FA).
o
l.c
• Net ATP = 106 ATP.
ai
gm
5@
Regulation :
00
FA synthesis)).
k
hic
FA synthesis No FA synthesis
©
↓ β oxidation ↑ β oxidation
Oxidation of VLCFA :
----- Active space -----
VLCFA (>20C) :
VLCFA
VLCFA
Modified
H2O2 β oxidation Octanoyl CoA
Acetyl CoA
Octanoyl CoA β oxidation
Octanoyl CoA (8C)
Peroxisome Mitochondria
Oxidation of unsaturated FA :
m
o
l.c
In mitochondria Energetics :
ai
α
gm
5@ 1 FADH2 less per double bond
00
α
h
rt
α β unsaturated FA
ka
|
CH3 β COOH
w
ro
in even position
©
β oxidation
Oxaloacetate
Pyruvate
m
o
Glucose
l.c
ai
gm
α OXIDATION 5@
Oxidation of α carbon atom.
00
Site :
u2
m
• Peroxisomes.
k
ic
Features :
|
w
ro
• No ATP generation.
M
©
MCAD DEFECT
Deficiency of medium chain acyl CoA dehydrogenase (MCAD).
m
↓ Pyruvate ↓ Gluconeogenesis
o
l.c
ai
carboxylase activity
gm
(acetyl CoA is
5@
Fasting
allosteric activator) hypoglycemia
00
u2
Clinical features :
|
w
Treatment :
©
Frequent meals (To avoid fasting) : Low fat high carbohydrate diet.
JAMAICAN VOMITING SICKNESS
• Precipitated by consumption of ackee fruit.
• Common in West Africa.
Biochemical defect :
Acyl CoA Unripe ackee fruit
Acyl CoA dehydrogenase
β oxidation Hypoglycin
↓ β oxidation
REFSUM’S DISEASE
Defect in phytanoyl CoA oxidase/hydroxylase.
Biochemical defect :
↓ Phytanoyl CoA oxidase activity
↓ α oxidation
↑ Phytanic acid
m
o
l.c
Clinical features :
ai
gm
• Mostly asymptomatic. 5@
• If symptomatic :
00
a. Retinitis pigmentosa.
u2
m
b. Ichthyosis.
k
ic
c. Peripheral neuropathy.
h
rt
ka
d. Cardiac arrhythmia.
|
w
ro
ar
M
©
Ichthyosis
Treatment :
Restrict phytanic acid (Green leafy vegetables, dairy products).
Biochemical defect :
Mutation in PEX gene RER proteins :
• Synthesised in rough endoplasmic
No production of peroxisomal reticulum.
• E.g :
m
targeting sequences (PTS)
o
l.c
- Peroxisomal enzymes.
ai
gm
RER proteins do not attach to PTS 5@ - Mitochondrial proteins.
- Nuclear proteins.
00
oxidation biogenesis
M
©
Clinical features :
Similar to Down’s syndrome :
• Mongoloid facies. • High forehead.
• Hypertelorism. • Brushfield spots.
• Frontal bossing. • Intellectual disability.
• Unslanting palpebral fissure.
Investigations :
1. Peroxisomal ghost : Empty peroxisome.
2. ↑ VLCFA.
3. ↑ Phytanic acid.
4. ↓ Peroxisome synthesis.
SYNTHESIS
Trigger :
Converted to
Prolonged fasting/ starvation Fatty acid Acetyl CoA Ketone bodies
(Source of blood
Site : glucose)
Exclusively in liver mitochondria.
Steps :
m
o
l.c
Fatty acid
ai
gm
β oxidation
5@
Acetyl CoA (2C) Acetyl CoA (2C)
00
u2
Acetoacetate : Primary KB
Steps :
β hydroxy(OH) butyrate
NAD+
Via electron transport chain
NADH 2.5 ATPs produced
TCA cycle
Acetoacetate
m
Succinyl coA Total energy produced :
o
l.c
Succinyl CoA CoA CoA transferase/
a. From β hydroxy (OH) butyrate :
ai
Substrate level thiophorase
gm
thiokinase
Succinate • Expected : 2.5 + 10 + 10 =
phosphorylation 5@
(SLP) Succinate Acetoacetyl CoA (4C) 22.5 ATPs.
00
u2
1 ATP produced
ic
h
1 Acetyl CoA
ka
10 + 10 - 1 = 19 ATPs.
|
cycle cycle
ro
ar
M
10 ATPs 10 ATPs
©
STARVATION KETOSIS
Mechanism :
• ↓blood glucose ↑glucagon activity.
↓insulin activity.
• Starvation : ↓Glut 4 No gluçose transport into adipose cell
Glucose
Triacyl Step 1 via β Produce Used in
Glut 4 glycerol stores oxidation ATP gluconeogenesis
Fatty
Fatty acid TCA cycle (Does not occur because
Glycerol acid ds
e starvation ↓OAA)
Step 2 Ne AA
O
m o
organs
l.c
↑ KBs
ai
eg : Brain
gm
Liver cell
DIABETIC KETOACIDOSIS (DKA)
5@
00
Mechanism :
u2
↓ GLUT-4
ka
|
w
↓insulin
ar
↑ glucagon action
↑↑blood glucose
GLUT 2
↓insulin Blood glucose (Bidirectional)
Glucose
↑ activity of hormone ↑ glucose ↑ gluconeogenesis
Glut 4 sensitive lipase (HSL)
TCA cycle
A
Triacyl glycerol OA (Does not occur d/t ↓OAA)
Acetyl CoA
Fatty Ketone body synthesis
Glycerol oxidation
acid Fatty acid (Predominates
(+)
in DKA)
Adipose cell
Liver cell
3. Gerhardt’s test :
Postive for Ketone bodies : Only positive for acetoacetate.
• Aceto acetate. 4. β OH butyrate DH based enzymatic test :
• Acetone. Detects β OH butyrate.
m
o
l.c
Not excreted in urine in
ai
gm
ketoacidosis 5@
(Added to urine in lab)
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Overview :
Well fed state
m
synthesis • Elucidated by Feodor Lynen
o
l.c
• Aka Lynen’s spiral
ai
gm
5@
Site :
00
u2
Organs : Organelle :
m
k
• Adipose tissue.
ka
• Kidney.
|
w
ro
• Brain.
ar
Substrate :
Acetyl CoA.
Mitochondria
TCA transporter
Cytoplasm
Citrate (6c)
o m
l.c
Oxaloacetate ATP citrate lyase
ai
gm
Acetyl CoA (2c)
5@
00
Biotin ATP
h
CO2 ADP
ka
|
Reduction unit : ER
- Ketoacyl reductase (KR) ER KR KR
- Dehydratase (DH) ACP
ACP
- Enoyl reductase (ER)
DH
DH
TE
TE
Releasing unit:
KA
- Thioesterase (TE) KAS S
MAT MAT
Condensing unit:
- Malonyl acetyl
Fatty acid synthase complex transacylase (MAT)
- Keto acyl synthase
(KAS)
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Lipid Metabolism in Fed State 141
MAT KAS
2. Reduction :
(1) KR (NADPH)
(2) DH
(3) ER (NADPH)
m o
l.c
ai
gm
Ketoacyl (4C) Acyl (4C)
5@
00
MAT KAS
|
w
ro
CO2
ar
M
KAS
(1) KR (NADPH)
(2) DH
(3) ER (NADPH)
4. Releasing :
TE + Palmitoyl CoA
Palmitoyl CoA
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
142 Chemistry and Metabolism of Lipids
Regulation :
Regulatory enzyme : Acetyl CoA carboxylase.
Allosteric regulation :
Allosteric activator : Citrate (Substrate) .
Allosteric inhibitor : Long chain acyl CoA (Product).
Hormonal regulation :
A) Well fed state B) Fasting state
m
↑ Insulin : Glucagon ratio ↓ Insulin : Glucagon ratio
o
l.c
ai
gm
Dephosphorylation of 5@ Phosphorylation of
acetyl CoA carboxylase Acetyl CoA carboxylase
00
u2
↑ FA synthesis ↓ FA synthesis
|
w
ro
ar
Cholesterol Synthesis
M
00:24:48
©
Cholesterol :
• Not a metabolic fuel.
• Exclusive animal sterol.
Functions of cholesterol :
Anabolic role :
• Steroid hormone synthesis.
• Vitamin D synthesis.
Sites :
Organs : Organelles :
• Liver. • Cytoplasm.
• Adrenal cortex. • Endoplasmic reticulum (ER).
• Gonads.
Steps :
Mevalonate
m
Isoprenoid unit (5C) + Isoprenoid unit (5C)
o
l.c
ai
gm
Geranyl pyrophosphate (10C) + Isoprenoid unit (5C)
5@
00
Squalene (30C)
h
rt
ka
|
Lanosterol
w
ro
ar
Zymosterol
M
©
Desmosterol
Cholesterol (27C)
↑ Cholesterol synthesis
m
o
l.c
STEROID HORMONE SYNTHESIS
ai
Pathway : gm
5@
Cholesterol side chain cleavage :
00
u2
m
ACTH
k
ic
(cAMP)
h
rt
P450scc
ka
|
w
Pregnenolone Progesterone
17α-Hydroxypregnenolone 17α-Hydroxyprogesterone
Delta 4 pathway (Major)
Dehydroepiandrosterone Androstenedione
om
l.c
ai
17β-Hydroxysteroid 17β-Hydroxysteroid
dehydrogenase
gm dehydrogenase
5@
00
Δ5-Androstenediol Testosterone
m
Aromatase
k
hic
17β estradiol
rt
ka
|
w
ro
ar
M
©
Steps :
7α hydroxylase (RLE)
Cholesterol 7 OH cholesterol C holic acid >
(CYP7A1) 1° bile
NADPH Chenodeoxycholic
acids
Vit. C acid
Glycine
Conjugation Taurine
2° bile acids
m
Common bile duct
o
l.c
ai
gm
5@ Intestine :
Cholic acid Chenodeoxycholic
00
u2
acid
m
Deconjugation
k
ic
+
h
rt
ka
Dehydroxylation
|
w
(98-99%) minimal
M
©
Enterohepatic
circulation
Liver
Lipoproteins 00:01:03
m
- Fatty acids (FA).
o
l.c
ai
gm
5@
STRUCTURE
00
u2
m
k
ic
Core :
h
rt
• No polar component.
w
ro
• Slightly polar.
• Cholesterol, Phospholipids. Layer of complex proteins
• Apoproteins/Apolipoproteins
Lipoprotein structure
Peripheral Integral
TYPES
Metabolism :
Formation of nascent chylomicron :
Intestinal cells Microsomal TG transfer
Intestinal protein (MTTP/ MTP)
lumen
m o
l.c
Fatty Acids FA + Glycerol TAG TAG
ai
(FA) Binds to
gm
SER Apo B48
5@
00
Nascent chylomicron
u2
Smooth endoplasmic
m
reticulum
k
ic
h
Pathway :
rt
ka
Mature chylomicron :
|
Intestine Apo E
ar
Remnant chylomicron :
Low TAG content Causes hydrolysis of Taken
Chylomicron TAG in chylomicron up into
E Apo E acts Apo B48 loses Apo C2 adipose
Liver as ligand in order to cell
TAG Glycerol Fatty acids
preserve
E
Receptor for Apo E remaining TAG
Remnant chylomicron content
taken up into liver :
Receptor Mediated
Endocytosis
TAG : Tri acyl glycerol
m
Liver cell
o
Metabolism of VLDL, IDL and LDL
l.c
ai
gm
Formation of VLDL : FA + Glycerol
MTTP
5@
SER
TAG
00
TAG
u2
Binds to
m
Apo B 100
k
h ic
rt
Nascent VLDL
ka
|
w
Nascent VLDL
M
Apo E
©
B - 100 B - 100
Generates Apo C2
Nascent VLDL TAG / Apo C2 TAG / activates
C C
Liver
E C2 Peripheral
organ
TAG : Triacylglycerol
C : Cholesterol Adipose
Lipoprotein lipase tissue
IDL : Intermediate density lipoprotein
E
Receptor
m
for Apo E
o
l.c
ai
gm
Liver 5@
Fate of LDL
00
u2
m
k
ic
70 % taken 30 % taken up by
h
rt
ka
as ligand
ar
M
©
Receptor
C C
mediated
B - 100 endocytosis B - 100
Receptor for B100
Receptor for B100
Extrahepatic
No mechanism to
tissues
m
Lecithin cholesterol acyl transferase (LCAT) :
o
l.c
• Transports FA from lecithin to cholesterol.
ai
gm
5@
• Lecithin + Cholesterol (Amphipathic)
00
LCAT
u2
m
Metabolism :
ka
|
w
ro
Cholesterol
ar
M
©
CE
A1
↑ PL
SRB 1
↑C Apo A1
Transporter of
Amphipathic
Synthesize Intestine
CE into liver activates
(Polar + Non
polar end)
m
Excess CE
o
l.c
unloaded
ai
Cholesterol LCAT
gm
from HDL to 5@ Cholesterol ester
liver
00
u2
m
k
ic
h
rt
• Hepatic lipase
ka
of hydrophobic
ro
+
ar
by LDL
©
PL : Phospholipid.
C : Cholesterol.
CE : Cholesterol ester.
Origin Chylomicron
LDL (β-fraction)
Mobility VLDL (Pre β-fraction)
m
• Similar to LDL.
o
l.c
• AKA Little rascal.
ai
gm
Apoprotein : 5@
00
ApoB 100
u2
Disulphide
m
bond
k
Apo A
ic
h
rt
Inhibits fibrinolysis
ro
ar
M
b. Lipoprotein X :
Liver
↑ cholesterol
Phospholipid
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Dyslipidemia
Hyperlipoproteinemia : Hypolipoproteinemia :
↑ Lipoprotein levels ↓ Lipoprotein levels
Hyperlipoproteinemia 00:00:25
Classification :
Fredrickson classification :
Type I
m
Type IV
o
l.c
With hypertriglyceridemia Type V
ai
gm
5@
Hyperlipoproteinemia With hypercholesterolemia Type II
00
u2
and hypercholesterolemia
hic
rt
ka
Type I Hyperlipoproteinemia :
|
• Autosomal recessive.
ar
M
• Presents in childhood.
©
Biochemical defects :
• LPL deficiency.
• Apo C2 defect
Mature VLDL Mature chylomicron
LPL LPL
↓LPL activity Remnant VLDL Remnant chylomicron
• ↑ serum TAGs.
Plasma lipid
• Normal serum cholesterol
m
o
l.c
Type II Hyperlipoproteinemia :
ai
gm
• AKA familial hypercholesterolemia. 5@
• M/c hyperlipoproteinemia.
00
• Prevalence : 1 in 311.
rt
ka
|
Biochemical defects :
w
ro
ar
↓ LDL clearance
↑ LDL Tendon
xanthoma
• ↑ Serum cholesterol
Plasma lipid
• Normal serum TAGs
Clinical features :
1. Coronary artery disease (CAD).
2. Cerebrovascular accident (CVA).
3. Clear plasma.
4. Solitary tendon xanthoma : Corneal
M/c site : Achilles tendon. arcus
5. Corneal arcus : white ring around the cornea
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Dyslipidemia 157
Familial Hypercholesterolemia
Autosomal dominant ADH Type II ADH Type III Autosomal recessive Sitosterolemia
Hypercholesterolemia (ADH) (Rare)
Type 1 (M/c type).
LDL
m
o
Clathrin coated
l.c
ai
ApoB100 pit
LDL receptor gm
5@
00
u2
LDL receptor
m
adaptor protein
k
ic
Endosomes
h
rt
ka
|
w
ro
Lysosomes
ar
M
©
Recycled
Degraded Degraded
m
Liver
o
l.c
ai
Mutation of ABCG8/ABCG5 ↓ Excretion of plant sterols ↑ Plant sterols
gm
5@
00
u2
Biochemical defect :
Mutation in ABCA1
↓ HDL synthesis
Clinical features :
1. Enlarged greyish/orange tonsil 2. Hepatosplenomegaly
m
o
l.c
ai
gm
5@
00
u2
3. Peripheral neuropathy
m
k
hic
rt
ka
Abetalipoproteinemia 00:32:40
|
w
ro
Biochemical defect
ar
M
Defect in MTTP
©
↓VLDL ↓ Chylomicron
(Pre β)
↓ Fat soluble vitamins
↓ IDL (↓ Vitamin K)
(Broad β)
↓ γ carboxylation of
↓ LDL (β) clotting factors
Bleeding
manifestations
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
160 Chemistry and Metabolism of Lipids
m
5. Acanthocytes on peripheral smear
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
6. Bleeding manifestations
ro
ar
M
©
LCAT deficiency
Complete Partial
m
o
l.c
Lecithin Cholesterol ester
ai
LCAT
gm
+ + 5@
Cholesterol Lysolecithin
00
u2
m
k
hic
rt
ka
↑ Cholesterol ↓ Lysolecithin
w
ro
ar
M
©
1. Type I hyperlipoproteinemia :
Lipogene tiparvovec :
• Gene therapy treatment.
• Gain-of-function variant of LPL.
• Intramuscular injection using a vector (adeno associated viral vector).
2. Type II hyperlipoproteinemia :
a. Lomitapide :
Inhibits MTTP ↓ VLDL ↓ IDL ↓ LDL.
b. Mipomersen :
• Antisense oligonucleotide therapy against apoB.
• ↓ ApoB activity ↓ VLDL ↓ IDL ↓ LDL.
c. VERVE 101 :
Genome editing based on CRISPR cas9.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
162 Chemistry and Metabolism of Proteins
Amino acid :
• Most amino acids are α amino acids.
• Non-α-amino acids : β-alanine, β-aminoisobutyrate, γ-aminobutyrate.
H
|
Amino NH2 α C COOH Acid
|
|
|
R
Variable side chain
m
Classification of Amino Acids
o
00:02:18
l.c
ai
gm
BASED ON SIDE CHAIN 5@
I. Aliphatic : II. Hydroxyl (OH) group :
00
• Serine.
u2
• Threonine.
m
k
• Tyrosine.
h
rt
• Glycine • Leucine
ka
• Alanine • Isoleucine
|
w
ro
• Valine
ar
M
m
Sulphur containing
o
Sulphur containing : Cysteine
l.c
ai
: Methionine
gm
Imino acid : Proline
5@
00
Tyrosine, Tryptophan
ro
ar
M
©
m
Amino acid Characteristics Amino acid Characteristics
o
l.c
Protein : Collagen
ai
- Ornithine
gm
Hydroxylysine Formed by : Post-translational Intermediate in
- Argininosuccinate
5@
Hydroxyproline modification, hydroxylation (Needs urea cycle
00
- Citrulline
u2
Vit-C)
m
Gamma carboxy
w
glutamate Homoserine,
ar
Homocysteine
©
1. Isomerism :
• Central carbon atom of amino acid : Chiral/asymmetric carbon atom
- Isomers D & L.
- Most aminoacids : L-form.
- Amino acid with no optical activity/asymmetric H
|
carbon atom : Glycine. NH2 C COOH
|
|
|
H
Note :
Most carbohydrates : D-form.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Chemistry of Amino Acids 165
Note :
Substances that absorb UV light :
• DNA : 260 nm.
• NAD+ : 340 nm.
• Porphyrin : 400 nm, presence of Soret band.
m
o
l.c
a. At pH = pI : Zwitter ionic state b. pH < pI
ai
gm
• Positive charge = Negative charge Protonated/positive charge
5@
• No net charge No shell of
00
4. Buffering capacity :
w
ro
Titration curve :
a. Compound with single ionizable group, Eg : Acetic acid.
A : [Unionised] form of compound.
C B : [Ionised form] = [Unionised form].
Hence, pH = pKa Max. buffering
capacity :
PH
B
- Imidazole group of histidine : Has max.
buffering capacity (As pH of blood = pH
Partially ionized state of histidine).
C : Fully ionized form of compound.
A
Amount of alkali (OH-) added
II
pI = pK1 + pK2
PK2
PI 2
PH I pH = pI : Least buffering
PK1
pH = pKa : Max buffering
Addition of OH-
Protein 00:53:04
H H H H
| | | |
m
NH+
C COOH + NH3 C COOH
+
NH +
C CO NH C COOH
o
|
ai |
|
l.c
|
|
| |
|
|
3
|
|
3
R1 R2 R1 R2
gm
5@ Peptide bond
Uncharged
00
u2
Transisomeric form
k
ic
h
rt
ka
STRUCTURE OF PROTEINS
|
w
ro
ar
• 3° & 4° structures are bound by non-covalent bonds, Vanderwaals’ force, ----- Active space -----
hydrophobic interaction.
• Subunit interaction : Specific to quaternary.
• Amino acid that disrupts α-helix : Proline
- Present only in 1st turn of α-helix.
• Amino acid that induces bends in α-helix : Glycine.
PROTEIN FOLDING
1° 2° 3° 4°
Molecular chaperones :
Auxiliary Proteins that help in protein folding.
Eg: - Heat shock proteins
- BiP : Immunoglobulin heavy chain binding protein.
m
- GRP-94 : Glucose regulated protein.
o
l.c
ai
- Calreticulin
gm
- Calnexin Calcium binding protein 5@
Note : Calpain Not a chaperone.
00
u2
m
1. Prion disease.
©
PROTEIN DEGRADATION
Lysosomal degradation :
• ATP independent mechanism.
• Seen in :
- Long lived proteins.
- Extracellular proteins.
- Membrane protein.
PROTEIN DENATURATION
• Preservation of 1° structure : Covalent bonds are intact.
• Loss of 2°, 3°, 4° structure : Loss of biological activity.
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
PROTEOLYTIC ENZYMES
• Break peptide bonds.
• Includes Proteases/Peptidases Class : Hydrolases.
Peptidase :
Endopeptidase : Exopeptidase :
m
o
• Acts on peptide bond Acts on peptide bonds at the
l.c
ai
within polypeptide chain. ends of the polypeptide chain.
• Eg : Most proteases. gm
5@
00
Carboxypeptidase : Aminopeptidase :
u2
m
Stomach :
w
ro
1. Rennin/Chymosin :
ar
M
2. Pepsin :
Chief cells Pepsinogen HCl Pepsin
(Stomach) (Zymogen : Inactive) (Active)
Activation of zymogens :
Microvilli of intestine Enterokinase/enteropeptidase
Trypsinogen Trypsin
Trypsin
m
• Chymotrypsinogen Chymotrypsin.
o
l.c
ai
Trypsin
gm
• Proelastase
5@ Elastase.
00
Small Intestine :
u2
m
• Tripeptidase.
h
rt
• Dipeptidase.
|
Amino acid
Cell membrane
Gamma Glutamyl
Transpeptidase/Transferase (GGT) : Transfers gamma glutamyl
of glutathione to aa
m
cysteinyl-glycine) Glycine + Cysteine
o
l.c
aa
ai
gm
5@
Glutamate
00
u2
Gamma-glutamyl-
m
k
cysteine
hic
rt
ka
|
w
Note :
ro
ar
Glutathione contains :
M
©
1. γ Glutamic acid.
2. Cysteine.
3. Glycine.
Anticoagulant
• Albumin
Centrifugation Supernatant : Plasma • Globulin
• Fibrinogen
m
o
Blood sample
l.c
Clot retractor
ai
gm
(No anticoagulant) 5@ Supernatant : Serum • Albumin
• Globulin
00
u2
Salting Out :
k
hic
• Albumin.
|
w
• Globulin.
ro
ar
• Fibrinogen.
M
©
Electrophoresis :
Fractioning of serum proteins based on electric charge.
6-12% • α2-macroglobulin
• Haptoglobin
8-12% • Ceruloplasmin
12-22% • Transferrin
• Hemopexin
• Prothrombin
m
o
l.c
ai
gm
5@
00
u2
m
k
ic
• ↓ Albumin, β, γ • ↓ Albumin
M
©
• ↑ α2 band • ↑ γ globulin
• All protein lost through urine M band (Monoclonal (Compensatory) ↑ γ globulin :
except α2-macroglobulin. band) at γ1 region. • β bridging (β fuses with γ1) wide & smooth
(Sharp spike) rise.
Starling’s hypothesis :
Vessel
H2O
35 mmHg
15 mmHg
Capillary
Hydrostatic pressure
m
25 mmHg
o
25 mmHg
l.c
Colloid osmotic pressure
ai
gm Venous end :
5@
Arterial end :
00
↓ Albumin :
|
w
Transport Proteins :
Plasma protein Compound being transported
• Bilirubin • Free fatty acid
Albumin
• Ca 2+
• Steroid hormones
• Thyroxine
Transthyretin
• Retinol
• Thyroxine
Thyroid binding globulin
• T3, T4
Cortisol binding globulin Steroids
Haptoglobin Extracellular hemoglobin
Hemoperin Heme
Transferrin Fe3+
Ceruloplasmin Cu2+
Nutritional Purpose :
Albumin : Taken up by some cells for nutrition.
Other Functions :
• Hormones : Erythropoietin.
• Clotting factors.
• Defense mechanism : Immunoglobulins.
mo
Kernicterus :
l.c
ai
• Albumin bound bilirubin Cannot cross Blood-Brain Barrier (BBB).
• ↑↑↑Unconjugated bilirubin (↓Binding sites) : Lipophilic gm
5@
Can enter BBB
00
Kernicterus.
u2
m
Protein
©
Alkalosis : Acidosis :
• ↓H +
• ↑H +
Hypocalcemia Hypercalcemia
Edema :
↓Colloid osmotic pressure : H2O shifts to extravascular space.
NORMAL VALUES
• Total protein : 6-8 g/dl.
• Serum albumin : 3.5-5 g/dl.
• Serum globulin : 2.5-3.5 g/dl.
• Albumin globulin ration (A : G) : 1.5-2.5.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
176 Chemistry and Metabolism of Proteins
↓Albumin
↑Compensatory production of γ globulin.
• Reason : γ globulin synthesized from plasma cells (All other plasma proteins : Liver).
• Result : Reversal of A : G ratio.
m
o
l.c
ai
gm
HYPERGAMMAGLOBULINEMIA 5@
Causes :
00
• Infection.
h
rt
ka
MULTIPLE MYELOMA
|
w
ro
Pathophysiology :
ar
↑γ globulin
m
o
l.c
bone.
ai
gm
• ↑Serum calcium : D/t lysis of bone. 5@
• ↑ESR.
00
condition.
M
©
STRUCTURE
Contain 2 heavy chains & 2 light chains
Variable region : Towards N terminal.
N terminal Constant region : Towards carboxyl end.
Hinge region : Connects CH1 & CH2.
VH VH
VL VL Disulphide bonds : Connect hinge region.
CH1 CH1 Fab region :
CL
CL Hinge region • Towards N terminal.
CH2 CH2 • Seen in variable region of light & heavy chain.
• Function : Ag binding.
m
o
Fc region (Fraction crystallizable) :
l.c
CH3 CH3
ai
Carboxyl end
• Function : Complement binding region.
gm
5@
Key :
00
• g : IgG k (Kappa)
ro
Either 2k or 2l
ar
• a : IgA l (Lambda)
M
©
• μ : IgM
• d : IgD
• e : IgE
PEPSIN & PAPAIN DIGESTION
Action of Papain on Ig : Action of Pepsin on Ig :
F(ab’)2
Fab
Papain
site Pepsin Fragments
Fc site
Ig Structure Features
• Classical Y shaped structure
• Monomer
• Versatile : Can perform all functions of immunoglobulins
• Most abundant (75-80%) in serum
IgG
• Main antibody in secondary immune response
• Only class of IgG that crosses placenta
• Effective activator of classical complement pathway
• Involved in opsonization (Fc)
• Types :
- Serum IgA : monomer
- Secretory IgA : Dimer joined by J chain
m
IgA • Main effector of mucosal immune system
o
l.c
• Most abundant Ig in body secretions : Saliva, tears,
ai
gm
colostrum and gastrointestinal secretions
• Complement fixation -
5@
00
u2
m
k
ic
• Heavy chain : μ
h
rt
IgM
w
•
ar
pathway
©
• Monomer
• Heavy chain : δ type
• Low levels in serum
IgD
• Function uncertain
• Primarily found on B cell surface : Receptor for Ag
• Complement fixation -
• Monomer
• Heavy chain : ε
• Cytophilic AB
• Least common Ig in serum
IgE
• Involved in allergic reactions : Binds to basophils and
mast cells Release histamine.
• Role in parasitic helminthic diseases
• Complement fixation -
m
• With J chain :
o
l.c
• With secretory piece :
ai
gm
- Synthesized in mucosal cells. 5@
- Protects against proteolytic enzymes.
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
OF AMMONIA
NH2 H Co2
α | α
O=C-H NH2- C - COOH NH2-CH2
| |
(R) Aminoacid (R) Carboxylic acid (R)
NH2 Co2
α ketoacid Amino acid Biologically Important amines
PLP
Pyruvate Alanine Tyrosine Tyramine.
Oxaloacetate Aspartate Tryptophan Tryptamine.
α-ketoglutarate (α KG) Glutamate Glutamate Gamma amino butyric
m
o
acid.
l.c
ai
Histidine Histamine.
gm
5@
Co2
00
PLP
m
k
Deficiency of PLP :
hic
• ↓ GABA (neurotransmitter)
rt
ka
00:06:24
©
mo
l.c
Eg :
ai
gm
a. Alanine α-ketoglutarate 5@
PLP Alanine aminotransferase (ALT)/SGPT
00
Pyruvate Glutamate
u2
m
k
hic
b. Aspartate α-KG
rt
ka
Oxaloacetate Glutamate
ro
ar
(OA)
M
Specific Non-specific
©
Properties :
1. Specific for one pair of substrate (Alanine to pyruvate, aspartate to
oxaloacetate), non-specific for the other pair (α KG to glutamate).
2. Concentrate toxic amino group as non-toxic glutamate.
3. Bi-bi reaction (2 substrate, 2 product) : Ping pong mechanism.
• Transaminase.
• Oxidation-reduction reaction.
4. Biosynthesis of nutritionally non-essential aminoacid.
• α KG Glutamate.
• Pyruvate Alanine.
• OA Aspartate.
m
TRANSPORT OF AMMONIA
o
l.c
In brain & other organs :
ai
gm
Glutamine
Source: synthetase
5@
α-amino acid detoxified Glutamate Glutamine (transport form of
00
u2
pyrimidine, Porphyrin
rt
• Ligase.
ka
|
In skeletal muscle :
©
Inhibitor : Activator :
NADH, ATP, GTP ADP
m
o
l.c
ai
Transdeamination : Transamination Coupled with oxidative deamination.
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Aka Kreb’s Henseleit cycle, Ornithine cycle, urea bi-cycle, Kreb’s bi-cycle.
Fumarate
m
o
Organelle : Cytoplasm & mitochondria.
l.c
ai
Note : Reactions taking place in both cytoplasm & mitochondria.
Mnemonic : PUBG gm
5@
• Pyrimidine synthesis. • Blood : Heme synthesis.
00
u2
CO2 + NH3
ar
M
Mitochondria 2 ATP
enzyme
2 ADP
NAG
Carbamoyl phosphate TCA cycle
II. Ornithine
Aspartate
Ornithine transcarbamoylase (OTC) Citrulline
Ornithine (VII) Citrin transporter(VI)
transporter
Citrulline + Aspartate
Ornithine
Urea Arginase (V) 1 ATP
1 AMP AS synthetase (III)
H2O Argininosuccinate (AS)
Cytoplasm Arginine
AS lyase (1v)
Fumarate (C4)
Regulation :
• No hormonal regulation.
• ↑ protein in diet Induces enzymes of urea cycle.
• Allosteric regulation :
- NAG : N-acetyl glutamate.
- Obligate allosteric activator.
m
• Compartmentation : Partly cytoplasm & mitochondria.
o
l.c
ai
gm
Urea cycle disorders 00:16:17
5@
00
V Arginase Argininemia
M
©
Hyperammonemia type II :
• M/c urea cycle disorder (40%).
• X-linked recessive partially dominant (only males affected).
shunted for
Carbamoyl phosphate Pyrimidine synthesis
Arginemia :
• Least hyperammonemia.
• Spastic diplegia/quadriplegia.
m
• Scissoring gait : Characteristic.
o
l.c
ai
gm
Argininosuccinic aciduria : 5@
• Trichorrhexis nodosa : Brittle hair. Scissoring of lower limb
00
Encephalopathy :
ka
|
• Depletion of α-ketoglutarate.
w
ro
• ↑ GABA.
ar
M
Trichorrhexis nodosa
Respiratory alkalosis :
Tachypnea CO2 washout ↓ H2CO3 Respiratory alkalosis.
Hyperammonemia
In neonates :
Feeding difficulties, failure to thrive, lethargy, convulsions, coma.
MANAGEMENT
Investigation :
↑/N : urea cycle disorder
1. pH of blood
↓: Organic aciduria
2. Serum ammonia levels : ↑
3. Tandem mass spectrometry : Gold standard of all metabolic disorders.
(or)
High performance/pressure liquid chromatography (HPLC) : High sensitivity.
↑↑ : Hyperammonemia type II
4. Plasma orotic acid
N : Hyperammonemia type I
Treatment:
m
• First line d/t
o
l.c
ai
gm
Arginase
- Arginine Ornithine (catalytic role)
5@
00
Urea
u2
Acylation therapy
h
rt
Glycine synthase
ro
ar
Salient features :
Phenylalanine : Tyrosine :
• Essential amino acid. • Non essential amino acid (synthesized from phenylalanine).
• Both ketogenic & glucogenic. • Both ketogenic and glucogenic.
• Non polar. • Least non polar among aromatic amino acids.
Metabolism :
Phenyl alanine Hydroxylase (PAH)
Phenyl alanine Tyrosine
m
o
• Glucogenic. • Catecholamines.
l.c
ai
• Thyroid hormones.
gm
5@
Conversion of phenylalanine to Tyrosine :
00
u2
PAH
m
Phenylalanine Tyrosine
k
ic
• Irreversible reaction.
h
rt
ka
• PAH is a monooxygenase.
|
02 H2O
PAH
Phenyl alanine Tyrosine Tyrosine transaminase Para-hydroxyphenyl pyruvate (PHPP)
PLP
PHPP hydroxylase
Tetrahydrobiopterin (BH4) (BH2) Dihydrobiopterin (4-hydroxyphenyl pyruvate
Dihydrobiopterin reductase dioxygenase)
NADP + NADPH Homogentisic acid
Homogentisate
oxidase/ dioxygenase
(Dihydroxyphenyl acetate
dioxygenase)
FAA Fumaryl MAA Maleylacetoacetate (MAA)
Fumarate + Acetoacetate
hydrolase isomerase
(Glucogenic) (Ketogenic) acetoacetate
(FAA)
m
• Swimming pool odour +.
o
l.c
ai
CLASSIC PHENYLKETONURIA
gm
5@
Biochemical defect :
00
↓catecholamines
u2
Neurological
m
synthesis
rt
↓ melanin Hypopigmentation
ka
|
w
↓neurotransmitters
Neurological deficits
Clinical features :
• M/c amino acid metabolic disorder.
m
o
• Autosomal recessive.
l.c
ai
Presentation :
gm
5@
• Intellectual disability. • Severe vomiting in infants (D/d : Pyloric stenosis).
00
• Agitation.
m
• Hyperactivity.
k
hic
Investigations :
rt
ka
1. Guthrie’s test :
|
w
Indicates phenylalanine +
2. Blood phenylalanine estimation :
• 2-6 mg/dL : Normal.
• >20 mg/dL : Poor prognosis.
3. Enzyme studies.
4. Ferric chloride test :
Presence of phenyl pyruvic acid in urine
m
o
Defect in homogentisate oxidase/ dioxygenase (AKA dihydroxyphenyl acetate
l.c
ai
dioxygenase)
Diverted to
gm
5@
Homogentisate Benzoquinone acetate
form
00
u2
m
Urinary excretion
|
Black discoloration of
M
©
Backache
Clinical features :
Age of onset : Middle age
Presentation :
• Low backache.
• Black pigmentation of skin, sclera, pinna.
• Darkening urine (on standing/alkalanisation).
• No intellectual disability.
m
Type 1 :
o
l.c
AKA Hereditary/hepatorenal tyrosinemia.
ai
gm
• M/C type of tyrosinemia. 5@
• Resembles porphyria.
00
u2
Biochemical defect :
m
k
ic
Defect in FAA hydrolase ↑ FAA Succinyl acetone Hepatic and renal toxicity
h
rt
ka
Treatment : Nitisinone.
ro
ar
M
Type 11 :
©
CATECHOLAMINES
Synthesis :
Steps :
Tyrosine Tyrosine Dihydroxy DOPA decarboxylase Dopamine
hydroxylase PLP Dopamine β
phenylalanine
hydroxylase
(DOPA) Norepinephrine
N methyl SAM
transferase SAH
Site :
Epinephrine
• Epinephrine : Adrenal medulla (80%)
• Norepinephrine : Extra adrenal sites
Nerve endings.
m
o
l.c
Sympathetic ganglia.
ai
gm
Degradation : 5@
Homovanillic acid (HVA) Dopamine
00
u2
m
) COMT Norepinephrine
(MAO Normetanephrine
k
ic
Vanillyl mandelic
h
Mono
rt
am
ka
se
w
(MAO
)
ro
(COMT)
ar
Pheochromocytoma :
M
©
• Neuroendocrine tumour.
• AKA the great masquerader (Variable clinical presentation).
Biochemical defect :
Tumour in adrenal medulla ↑ catecholamines ↑ degradation products
Hypertension
Headache Profuse sweating
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Aromatic Amino Acids 195
m
o
l.c
Cu Tyrosinase
ai
DOPA
gm
5@
Cu Tyrosinase
00
Dopaquinone
u2
m
k
ic
Melanin
h
rt
ka
Albinism :
ro
ar
Autosomal recessive.
M
©
Biochemical defect :
Deficiency of tyrosinase Absence of melanin Depigmentation
Note : In PKU Hypopigmentation is d/t ↓tyrosine
(But dietary tyrosine Melanin)
Clinical features :
• Milky white skin.
• Milky white hair.
• Photophobia.
• Lacrimation.
Function :
Pigmentation of skin and hair.
• Tyrosinase : Contains copper.
• Copper deficieny Hypopigmentation.
Cysteine Methionine
H H
| |
NH2- C - COOH NH2-C - COOH
| |
SH CH2
Structure |
Sulfhydryl/Thiol/ CH2
|
S
Thioalcohol group | Thioether linkage
CH3
m
o
• Glucogenic • Glucogenic
l.c
ai
Type of • Polar aminoacid • Non-polar (Terminal group
gm
5@
amino acid • Non-essential (Can be is CH3)
00
HOMOCYSTEINE
hic
Adenosine
M
S-adenosyl methionine
Metabolic pathway : Methionine adenosyl transferase
m
Folate trap :
o
Methionine
l.c
ai
THFA B12
gm
Trapped N5 Methyl THFA Me B12
5@B12 deficiency
00
Homocysteine
u2
THFA starvation/
m
k
Functional deficiency
hic
rt
of THFA
ka
|
w
Classical homocysteinuria :
©
Biochemical defect :
Arachnodactyly : Elongated fingers
• ↑ Homocysteine in blood.
• ↑ Homocysteine in urine.
• ↓↓ Cysteine synthesis.
Clinical features :
• Asymptomatic (Initially). • Mental Retardation.
• Skeletal deformities : • Developmental delay.
Genu varum.
----- Active space -----
- knee
Genu valgum.
- Pes cavus/planus.
- Scoliosis.
Pes cavus
• Dislocation of lens • Thromboembolism :
m
Risk factor for atherosclerosis
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
Ectopia lentis :
|
Note :
ar
M
• No mental retardation.
• Superotemporal dislocation of lens.
Lab diagnosis :
• Cyanide nitroprusside test : Magenta color Positive test.
• Enzyme studies.
• Genetic mutation studies.
Treatment :
• Cysteine supplementation.
• Methionine (Substrate) restriction.
• High dose of Vit B6 (Co-enzyme of cystathionine β synthase).
• Vit B9 , B12 supplementation (Augments Homocysteine Methionine).
• Betaine supplementation
Trimethyl glycine methyl donor Homocysteine Methionine.
Classic Non-classic
Defect CBS B9 , B12 MTHFR
Cysteine ↓ Normal
Cystinuria :
Defect : Dibasic amino acid transporter in kidney.
• Reabsorb dibasic aminoacid : COLA
- Cystine
- Ornithine
Excreted
- Lysine
- Arginine
• Part of Garrod’s tetrad.
m
o
l.c
Cystinosis :
ai
gm
Lysosomal storage disorder. 5@
Defect :
00
Clinical manifestations :
rt
ka
(G) (SH)
Functions of glutathione :
1. Amino acid transport :
• Meister’s cycle/Gamma glutamyl cycle.
• Used in intestine, brain, kidney.
• Utilizes ATP.
m
Reduced glutathione
o
H2O2 NADP+ 1. Glutathione peroxidase
l.c
1. 2.
ai
H2O Oxidized glutathione NADPH + H+ 2. Glutathione reductase
gm
5@
HMP shunt
00
u2
4. Coenzyme role :
Maleyl acetoacetate Cis-trans isomerase Fumaryl acetoacetate.
|
w
ro
ar
M
©
m
o
l.c
FATE OF TRP
ai
Tryptophan (Trp)Trp pyrrolase
gm
5@
00
Tryptophan
m
k
Trp hydroxylase
h
transferase (QPRTase)
rt
ka
5' OH Trp
|
to a vitamin (Neurotransmitter)
SAM
N-methyl transferase
Melatonin
(Neurotransmitter responsible
for biological rhythm)
Serotonin Melatonin
Site of Argentaffin cells : Intestine,
Pineal gland
synthesis platelets, mast cells, brain.
• Vasoconstriction. • Biological rhythm :
• Neurotransmitter. ↓ melatonin Insomnia
Function • Temperature regulation. • Neurotransmitter.
• Mood elevation. • Antioxidant (Free radical
• Gastrointestinal tract motility. scavenger).
Note :
• Candle light
• Incandescent light ↑ production of melatonin
m
o
l.c
ai
gm
Biochemical Defects 00:21:27
5@
00
1. Carcinoid syndrome/tumour :
u2
m
Enters
ro
↓ production of Niacin
2. Hartnup disease :
m
defect in intestine & kidney
o
l.c
ai
↓ serotonin synthesis Neurological manifestations :
Excess Trp Not absorbed ↓ blood Trp
gm
5@ ↓ niacin synthesis • Intermittent ataxia
• Wide based gait
00
Bacterial • Diarrhoea
m
decomposition
k
• Dementia
hic
• Casal's necklace
w
ro
Absorbed
System Renal Excreted in urine Bluish discolouration
M
• Indigoblue
©
Diagnosis :
• ↓ S. serotonin.
• ↓ Niacin levels.
• Obermeyer test for indican.
GLYCINE
Properties :
• Simplest amino acid.
• Polar amino acid.
• Non-essential.
• Purely glucogenic.
• Optically inactive.
m
o
Synthesis :
l.c
ai
Glycoxylate Threonine
(α-keto acid of glycine)
gm
5@
e
las
00
ldo
ea
u2
nin
m
reo
k
ic
1C
Th
h
Serine
rt
5 10
methyl transferase synthase
w
ro
Metabolic Functions :
©
a) Synthesis of :
Entirely
1. C4, C5 & N7 of Purine (Glycine converted Purine)
2. Heme
3. Glutathione : Glutamic acid + Cysteine + Glycine
4. Collagen :
- Every 3rd amino acid : Glycine.
- Most abundant amino acid in collagen (33%).
5. Creatinine :
- Synthesized from 3 amino acids
(Glycine + Arginine + Methionine).
- Application : Serum creatinine levels in RFT.
Glycine + Arginine
m
1 ATP
o
• Lohmann’s reaction.
l.c
Creatinine
ai
gm
5@ Creatinine synthesis
b) Conjugation reactions :
00
u2
• Phase II Conjugation :
m
k
• Later : Glycogen
©
Hyperoxaluria
metabolic defect :
Alanine Pyruvate
Glycine Glycoxylate
PLP
Glycoxylate alanine
Enzyme defect
aminotransferase
↑Accumulation of Glycoxylate
↑Oxalate
Causes :
----- Active space ----- Hyperoxaluria
Primary : Secondary :
Inherited causes • B6deficiency
(Inborn errors of metabolism) (also causes xanthurenic aciduria) ↑Oxalate
• Type 1 Hyperoxaluria : • Vit C excess
• Ethylene glycol poisoning Oxaluria
Glycoxylate alanine amino
transferase defect. • Methoxy flourine Oxalate
• Enteric hyperoxaluria renal
stones
Serine
SERINE
H
Properties :
m
NH2 C CooH
o
• Non-essential
l.c
ai
CH2
• Polar (d/t OH group)
gm OH
5@
• Glucogenic
00
u2
Phosphorylation)
rt
ka
Metabolic Functions :
|
w
• 1° donor of 1C group
ro
ar
• Synthesis of Cysteine
M
• On decarboxylation Ethanolamine
• Choline and Betaine synthesis
• Precursor of Selenocysteine.
Serine Glycine
(loses 1 carbon) 1C
metabolism
THFA N5 N10 Methylene THFA
Common properties
• All are polar.
• Metabolic fate : Glucogenic.
HISTIDINE
Properties :
• Only polar aromatic amino acid.
• Imidazole ring : Maximum buffering action in blood.
Derivatives of Histidine :
• Carnosine (β-alanine + Histidine) Present in • Ergothionine
• Anserine (methylated carnosine) skeletal muscle. • Homocarnosine (GABA + Histidine)
m
• Histamine (via decarboxylation) : Allergic
o
• FIGLU
l.c
ai
reactions
gm
5@
Synthesis of FIGLU : FIGLU : Biochemical test for Megaloblastic
00
u2
Urocanate
rt
ka
|
Imidazole propionate
w
ro
1 C group
ar
Formiminoglutamic acid
M
©
ARGININE
Properties :
• Most basic amino acid (most -NH2 groups).
• Polar amino acid.
• Semi essential amino acid.
LYSINE
m
o
l.c
Properties : Note : Amino acids that do
ai
gm
• Contains Epsilon amino group 5@ not undergo transamination :
• Does not undergo transamination. • Lysine
00
u2
• Proline
m
k
• Hydroxyproline
ic
Derivatives :
h
• Threonine
rt
ka
|
w
• Positively charged.
ar
Coded by UAG
M
©
(Stop codon)
Lysine Desmosine : found in crosslinks of
Along with
methionine elastin. (Derived amino acid)
Hydroxylation
Carnitine (Vit C required) Deficiency of Vit C
↓Hydroxylysine, hydroxyproline
Hydroxylysine
• Found in collagen (absent in elastin) Collagen defect
ASPARTIC ACID
Synthesis : Synthesis
From Oxaloacetate and Asparagine : Oxaloacetate Aspartate Asparagine
Transamination
Functions :
• Pyramidine ring synthesis :
• Urea cycle : synthesis of urea C
TCA Cycle 4
C
NH3 CO2 Aspartic Acid 3 5
m
6
C
o
l.c
• Purine ring synthesis : 1
ai
gm
5@ N
Given by Aspartate
Aspartate
00
N1
u2
m
k
hic
rt
ka
|
w
ro
Canavan Disease :
ar
M
Features :
• Gross developmental delay • Distorted mitochondria
• Macrocephaly • Severe leukodystrophy
• Persistent head lag
GLUTAMIC ACID
Synthesis : From α-ketoglutarate (α-KG)
CO2
Branched Chain Amino Acids (BCAAs) 00:43:11
m
Properties :
o
l.c
• All are essential
ai
gm
• All are non-polar 5@
00
u2
REACTIONS :
m
k
ic
Note :
Branched chain
©
m
o
• Coma
l.c
ai
• Periods of hypertonicity alternating with hypotonicity (repetitive, like boxing/ bicycling)
gm
5@
Urine : sweet smell of burnt sugar/caramel/maple syrup
00
u2
m
Lab diagnosis :
k
ic
• Rothera’s test
w
ro
ar
M
Treatment :
©
• Restrict BCAAs
• Supplement B1 (co-enzyme) DNPH Test
Positive : Yellow precipitate
• Liver transplant (extreme cases)
m
o
Homogentisate oxidase/
l.c
ai
Alkaptonuria dioxygenase/Dihydroxy
gm
5@ phenylacetate dioxygenase
Fumaryl Aceto acetate
00
Tyrosinemia type I
hydrolase
u2
m
Parahydroxyphenyl Pyruvate
rt
Hydroxylase (Dioxygenase)
|
w
ro
Test Aminoaciduria/Tumor
Ferric Chloride Test PKU/Alkaptonuria
DNPH Test MSUD
Guthrie Test PKU
Obermeyer Test Hartnup’s Disease
Cyanide Nitroprusside Test Homocystinuria
LaBrosse VMA Spot Test Pheochromocytoma
5-HIAA Carcinoid Syndrome
m
Tyrosinemia Boiled cabbage/Rancid butter
o
l.c
ai
gm
5@
Trimethylaminuria/Fish Odour Disease :
00
u2
catabolised
©
(Eg: Choline)
↑Trimethylamines
Heme 00:00:40
Metalloporphyrin. 3 4
Porphyrin : 2 5
1
• Formed by 4 pyrrole rings joined by methenyl bridges. NH
Pyrrole
• Precursors : Porphyrinogens (Colorless). (5 membered ring)
• Forms Soret band : Sharp band at 400nm due to absorption Diagnostic for detecting porphyrin
• Emits red fluorescence on Wood’s lamp UV illumination accumulation in body fluids.
Use : Cancer phototherapy
• Porphyrin injected into tumor cells to destroy tumor cells.
m
o
• Mechanism : Porphyrin Sunlight Free radicals released
l.c
Destroys
ai
gm
lysosome Cutaneous photosensitivity 5@
Types of Porphyrin :
00
u2
U : Uroporphyrin
m
k
C : Coproporphyrin
hic
P : Protoporphyrin
rt
ka
|
w
Structure of heme :
ro
ar
m
o
Uroporphyrinogen decarboxylase
l.c
ai
Coproporphyrinogen III
gm
5@
Coproporphyrinogen oxidase
00
u2
Protoporphyrinogen III
m
Protoporphyrin oxidase
k
hic
rt
Protoporphyrin III
ka
Ferrochelatase
|
Fe2+
w
ro
Heme
ar
M
ALA Synthase :
©
↑ ALA synthase
↑Intermediates
Aggravate porphyria
INH :
• Antitubercular drug.
• ↓ availability of PLP Rx : Supplementation of PLP.
Porphyria 00:22:01
m
• Congenital erythropoietic porphyria
o
l.c
ai
• ALA dehydratase deficient porphyria AR
• Erythropoietic protoporphyria (EPP) gm
5@
• X-linked protoporphyria : X-linked
00
u2
m
CLINICAL FEATURES :
k
hic
rt
ka
Substances Manifestations
|
w
Neurovisceral manifestations :
ro
ar
• Convulsions
M
• Psychiatric manifestations
• Abdominal pain
↑ Porphyrins Cutaneous photosensitivity
In starvation :
• Lack of glucose Induces ALA synthase gene.
• Precipitate attack of porphyria by ↑ accumulation of intermediates.
Enzyme
Porphyria Features
Deficiency
• AKA plumboporphyria : D/t resemblance of
ALA dehydratase deficient
ALA dehydratase lead poisoning
porphyria (ADP)
• AKA Doss porphyria
Hydroxymethyl • ↑ ALA & ↑ PBG
bilane synthase/ • M/c acute porphyria
Acute intermittent porphyria
PBG deaminase/ • Neurovisceral manifestation
UPG I synthase • No photosensitivity
Congenital erythropoietic • ↑ hydroxymethylbilane
porphyria (CEP) Spontaneous
m
o
Uroporphyrinogen I Accumulated
l.c
AKA Günther’s disease
ai
gm
UPG III synthase
5@ Coproporphyrinogen I
• Non-immune hydrops
00
u2
• M/c porphyria
w
ro
Uroporphyrinogen
M
(UPG)
exposed areas)
decarboxylase
• Hemochromatosis causes PCT (Iron inhibits
Cutaneous porphyria uroporphyrinogen decarboxylase)
• Autosomal recessive
Erythropoietic • M/c porphyria in children
Ferrochelatase
Protoporphyria • Non-blistering photosensitivity
• Skin swelling and eczematous rash
Hereditary coproporphyria CPG oxidase -
Varigate porphyria PPG oxidase -
Gain of function
X-linked protoporphyria mutation of ALA -
synthase
ALA synthase • No porphyria
Sideroblastic anemia
B6 deficiency • X-linked disorder
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
218 Chemistry and Metabolism of Proteins
PATHWAY
Stages :
I : In Reticuloendothelial system : Heme Bilirubin
II : In liver: conjugation of bilirubin
m
III : In intestine: conversion to urobilinogen
o
l.c
In RE system Microsomal hemoxygenase
ai
gm
system. Heme 5@
NADPH, O2 (Only process in human body with
00
CO
Hemeoxygenase endogenous CO production)
u2
m
Biliverdin
k
ic
NADPH
h
rt
Biliverdin reductase
ka
Bilirubin
Enterohepatic 20% Urobilinogen (UBG)
circulation 80%
Portal vein kidney Stercobilinogen Excreted through feces
Liver Excreted in urine
m
o
l.c
To detect Bilirubin :
ai
gm
• Direct : Bilirubin + Ehrlich’s Diazo reagents Reddish purple azo compound.
5@
• Indirect : Unconjugated bilirubin Extraction with alcohol Gives color.
00
(Water insoluble)
u2
m
k
Delta bilirubin/Biliprotein :
hic
rt
m
ALP: Alkaline phosphatase
o
↑ ↑↑↑
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Structure of Hemoglobin :
• Quaternary structure.
• 4 globin chains : 2α, 2β (Adult Hemoglobin : HbA1).
- Alpha subunit : 141 amino acids, chromosome 16.
- Beta subunit
- Gamma subunit 146 amino acids, chromosome 11.
- Delta subunit
m
• Each globin chain carries 1 heme (Prosthetic group).
o
Hemoglobin
l.c
• Heme (Ferroprotoporphyrin) : Iron (Fe2+) + Protoporphyrin.
ai
gm
• Heme : Binds to oxygen 1 Hb : 4 Heme Carries 4 oxygen.
5@
00
Types of Hemoglobin :
w
ro
ar
HbA2 2α + 2δ 2%
HbF 2α + 2γ 1%
Structure of Iron :
Ferrous state (Fe2+) :
Can form 6 coordinate bonds :
• 4 bonds :
Nitrogen of each pyrrole ring.
• 5th bond :
Imidazole group of histidine (Proximal histidine).
• 6th bond :
Oxygen molecule (Attached to distal histidine).
Embryonic Hemoglobin :
• Hemoglobin Gower 1 (ζ2, ε2).
• Hemoglobin Gower 2 (α2,ε2).
• Hemoglobin Portland (ζ2,γ2).
Synthesis :
• Site before 8 weeks : Yolk sac.
• At 4-5 weeks :
- ζ & ε chain ↓.
- α & γ chain ↑ : HbF (Compensatory).
m
• After birth :
o
l.c
ai
- HbF ↓.
- HbA ↑. gm
5@
00
u2
Haemoglobinopathies 00:14:04
m
k
ic
• Phenotypical manifestation :
ro
ar
Changes in :
M
a. Physical properties.
©
b. Chemical properties.
c. Function.
CLASSIFICATION
Molecular Defect :
Occurs at 6th codon of β globin gene.
Normal Sickle cell disease
DNA coding strand : GAG GTG
m
Mutations :
o
l.c
ai
• Point mutation (Missense).
• Base substitution. gm
5@
• Non-conservative mutation.
00
u2
Deoxygenated state
ro
ar
Hb polymerization
M
©
m
o
l.c
ai
Vasoocclusive crisis/Sickle cell crisis :
• Bone : M/c (Hand/foot pain) gm • Brain
5@
• Lung • Spleen
00
u2
• Liver
m
k
hic
DIAGNOSIS
rt
ka
Hemoglobin Electrophoresis :
|
w
ro
Condition Finding
ar
M
Normal
©
m
PEDIGREE ANALYSIS
o
l.c
Sickle Cell Trait & Sickle Cell Disease (AS x SS) :
ai
Normal (AA) & Sickle Cell Trait (AS) :
gm
5@
AA AS AS SS
00
u2
m
k
ic
AS AS SS SS
h
AA AS AS AA
rt
ka
• 50% SC disease.
ro
• 50% normal.
ar
M
TREATMENT
©
Unstable Hb :
Hb Zurich :↑ tendency to denature and form molecular aggregates
↑ hemolysis.
m
o
l.c
Hb Variants with Decreased O2 Affinity :
ai
gm
Hemoglobin M : 5@
• Substitution of proximal (5th coordinate)/distal (6th coordinate) histidine of
00
u2
• Types :
hic
rt
• ↓ Oxygen binding
ro
Cyanosis.
ar
M
©
Thalassemia 00:00:18
m
o
l.c
Synthesis 8-10 weeks of gestation ~ 38 weeks (Near birth)
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Hemoglobin chains
Classification :
Based on type of chain affected
Based on zygosity
Variants :
Defect Clinical features
Silent carrier Only 1 α gene deleted Asymptomatic
α thalassemia trait 2 α genes deleted Asymptomatic - mild symptoms
• 3 α genes deleted
Hb H disease (β4) Moderate - severe symptoms
• β chains form tetramers
α Thalassemia major/ • All 4 α genes deleted Hypoxia : D/t ↑ O2 affinity of g chains
Hydrops fetalis • g chains form tetramer (No a)
m
o
Death in utero
l.c
(Hb Bartz γ4) (No normal Hb)
ai
gm
5@
β Thalassemia 00:16:04
00
u2
• ↓/Absence of β chains
ic
Molecular Defects :
|
w
ro
β˚ : No β chain synthesis.
ar
M
β+ : ↓ β chain synthesis.
©
Genetic Mutation :
m
o
• Splenomegaly.
l.c
Skeletal deformities
ai
gm
5@
00
Clinical Features :
• Age of onset : 1st year of life.
• Anemia : ↓ Hb causing tissue hypoxia.
- Fatigue.
- Dyspnea.
• Cyanosis (Tissue hypoxia).
• Compensatory bone marrow expansion :
- Stunted growth. Chipmunk facies
- facies.
• Extramedullary erythropoiesis : ,
.
Diagnosis :
Peripheral smear : anemia.
• ↓ HbA band
β thalassemia trait • Marked ↑HbA2 band
• ↑ HbF
• No HbA band
β thalassemia major
• Markedly ↑HbA2 and HbF
m
o
l.c
Treatment :
ai
gm
• Blood transfusion (Repeated transfusion Iron toxicity).
5@
• Desferrioxamine (Iron chelating) : Subcutaneous infusion.
00
• Splenectomy.
k
hic
rt
Formation :
• Combination of various ligands with heme OR
• Change in oxidation state of iron.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Hemoglobin : Part 2 231
Carboxy Hb :
• Hb combined with carbon monoxide.
• CO : High affinity to Hb
m
( x 200 times that of O2).
o
l.c
ai
• Unsuitable for oxygen transport.
• Fire accidents in closed spaces gm
5@
00
↑CO present
u2
Carboxy Hb
m
CO poisoning (Lethal)
k
hic
rt
Met Hb :
ka
|
Met Hb reductase enzyme system : Reduce met Hb in RBCs back to ferrous state.
M
©
Proteins
Globular Fibrous
(Functional) (Structural)
Collagen 00:01:31
m
Most abundant protein in humans & in Extracellular matrix.
o
l.c
ai
STRUCTURE
gm
5@
Polyproline α chain : Triple helix (2° structure) :
00
• Glycine X - Y repeats.
m
first layer
©
I. Intracellular Synthesis :
Site : Fibroblast, Rough endoplasmic reticulum.
In ribosome : Procollagen formed.
1. Formation of pre-pro alpha chains with signal sequence.
2. Hydroxylation of Proline, Lysine in presence of Vitamin C.
3. Glycosylation : Addition of carbohydrate residue to hydroxylysine residues.
4. Formation of disulphide bond.
5. Formation of triple helix.
Procollagen packed into the secretory vesicles of golgi apparatus. ----- Active space -----
m
Enzyme formation Prolyl & Lysyl hydroxylase Lysyl oxidase
o
l.c
ai
Oxidative deamination of lysyl
gm
Reaction Hydroxylation
residues Aldol condensation
5@
00
Types :
k
hic
rt
Disorders :
Type of collagen Disease
• Osteogenesis imperfecta
Type I • Osteoporosis
• Ehlers-Danlos syndrome type VII
• Severe chondrodysplasia
Type II
• Osteoarthritis
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
234 Extracellular Matrix
ELASTIN
Lysine Desmosine Crosslink formation.
m
Absence of :
o
l.c
• Triple helix formation.
ai
gm
• Glycine x-y repeats. 5@
• Hydroxylation & Glycosylation.
00
u2
Associated disorders :
m
k
ic
• Williams-Beuren syndrome.
h
rt
KERATIN :
ro
ar
Associated disorders :
Epidermolysis bullosa :
• Classical type.
• Defect in keratin 5.
FIBRILLIN :
• Glycoprotein.
• Component of myofibrils.
• Function : Scaffolding of elastin.
Insulin Secretion :
Begins to rise : At blood glucose >70 mg/dL or >3.9 mmol/L.
m
o
GLUT-2 :
l.c
ai
• High Km : Low affinity for glucose.
• Only transport glucose when in high levels. gm
5@
00
Insulin :
u2
m
Glucose
ro
β cell of pancreas
ar
GLUT-2
M
©
Glucokinase
Glucose Glucose-6-phosphate
ATP
Pyruvate
ATP/ADP ratio↑
Membrane depolarization
Ca influx
↑Enzyme activity :
• Phosphodiesterase.
Dephosphorylates regulatory enzymes.
• Phosphatase.
m
o
↑Glucose
l.c
ai
gm
GLUT-2 5@
Glucokinase/Hexokinase
00
Glucose G-6-P
u2
m
Glycolysis
h
rt
ka
PDH
ro
ar
Acetyl CoA
M
©
ATP FA synthesis
Lipogenesis TAG carried
TCA FA TAG
Glycerol by VLDL
GLUT-4
Glucose G-6-P
Pyruvate
PDH
Acetyl CoA FA Glycerol
ATP
TAG Stored in adipose tissue
o m
l.c
d/t inhibition of hormone-
ai
gm
5@ sensitive lipase by insulin
Skeletal Muscle :
00
Glucose
u2
m
k
ic
GLUT-4
h
rt
ka
Glucokinase/Hexokinase
|
Glucose G-6-P
w
ro
Glycogen synthesis
ar
M
©
Glycolysis
Pyruvate
PDH
Amino acid Protein synthesis↑
Transamination ATP FA synthesis
Oxidative deamination
Lipogenesis
Note :
Transamination & oxidative deamination :
Removal of amino group Carbon skeleton Anabolic functions.
GLUT-1 GLUT-3
Aerobic glycolysis
m
o
l.c
ai
PDH
gm
5@
00
FA synthesis
u2
m
k
hic
(Structural component)
rt
ka
|
w
ro
Organ Fuel
• Brain
Glucose
• RBC
• Liver
• Adipose tissue Glucose >> FFA (Free fatty acid)
• Skeletal muscle
• Heart FFA > Glucose (D/t low glycolytic capacity)
Early Fasting :
• without food.
• Glycogen stores : Depleted in 16-18 hrs.
m
Source of glucose : Hepatic glycogenolysis.
o
l.c
ai
Hepatic glycogenolysis
Glycogen G6P G6 Phosphatase Glucose
gm
5@
Note :
00
u2
Fasting :
h
rt
ka
• without food.
|
ATP
TCA cycle
Note :
β oxidation Oxaloacetic acid (OAA) depleted d/t
↑gluconeogenesis in fasting stage.
↓OAA
m
o
synthesis↑
l.c
ai
(Liver)
gm
5@
00
u2
Prolonged Starvation :
m
k
ic
Catabolism
ka
|
Amino acids
w
ro
ar
M
Carbon skeleton
©
Glycogen
Glucose G6P
m
Glycerol
o
l.c
ai
gm
+ 5@
00
u2
( + Glucagon)
m
k
Adipose Tissue :
|
w
ro
Glucose
M
©
TAG
Lipolysis HSL ( + Glucagon) Liver
Gluconeogenesis
β-oxidation Excess FA Ketone body synthesis
TCA cycle
Energy for
adipose tissue
Glycogenolysis
Glycogen G-6-P Pyruvate Alanine
(Glucogenic amino acid) Liver
Proteolysis
Protein Amino acid
m
2. Ketone bodies from liver.
o
l.c
ai
gm
Brain :
Available glucose
5@
00
KB
u2
m
Ketone bodies
k
ic
Glucose
h
Lysis
rt
ka
|
Pyruvate
m
o
l.c
TCA cycle
ai
gm
5@
Electron transport chain
00
u2
m
ATP
k
hic
rt
TCA cycle
ka
00:03:35
|
w
ro
Organelle : Mitochondria.
©
Oxaloacetate:
• Important intermediate of TCA cycle.
• Has catalytic function.
• Lyase Aconitase
• 2-step reaction : +Fe2+
- Dehydration
m
o
Fumarase
l.c
- Rehydration
ai
Lyase
gm
5@
00
u2
• Regulatory enzyme
ic
Isocitrate
h
rt
decarboxylation
|
w
ro
Succinate dehydrogenase
ar
• 2nd oxidative
M
©
decarboxylation.
NAD+
• Regulatory enzyme.
• Multi-enzyme complex (like NADH
FADH2
FAD pyruvate dehydrogenase) CO2
Succinate α-ketoglutarate (KG)
Substrate level phosphorylation α-KG (5C)
Succinate thiokinase dehydrogenase
NAD+
ATP/GTP Succinyl CoA
ADP/GDP NADH
CO2
Note :
FAD → FADH2 takes place in:
• Succinate dehydrogenase
• Acyl CoA of β-oxidation.
Energetics
(2.5 x 3 NADH) + (1.5 X 1 FADH2) + 1 ATP = 10 ATP
Significance
• Metabolic traffic circle.
• Final common oxidative cycle.
m
o
• Amphibolic cycle Catabolic : Acetyl CoA 2CO2
l.c
ai
Anabolic Citrate (6C) Fatty acid
α-KG (5C) gm
5@
Glutamate GABA
00
• Anaplerotic role :
m
k
ic
- Filling up reaction
h
rt
Eg:
ro
ar
2. Glutamine Glutamate
Arginine α-KG
Proline
3. Methionine
Threonine
Succinyl Co-A
Isoleucine
Valine
4. Phenylalanine
Fumarate
Tyrosine
5. Alanine Pyruvate Acetyl CoA
Alter epigenomes
Cancer :
• Cholangiocarcinoma
m
• AML
o
l.c
• Sarcoma
ai
gm
5@
00
Causes:
ka
• Familial glioblastoma.
|
w
ro
• Familial pheochromocytoma.
ar
M
©
REGULATION
• No hormonal regulation (both in fed & fasting stages)
Decreased Increased
Regulatory enzymes
• Citrate synthase
• Isocitrate dehydrogenase
• α-KG dehydrogenase
• Pyruvate dehydrogenase (Glycolysis links to TCA cycle)
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Free energy
m
o
Series of redox couples arranged in ascending order of redox potential.
l.c
ai
Site : Inner mitochondrial membrane (IMM).
gm
5@
00
Complexes 00:05:01
u2
m
k
Succinate
ic
complex
h
rt
II Fumarate Intermembrane
NADH 4H NAD
+ +
2H+
ka
e- 4H+ space(IMS)
|
(Final e-
w
e - e- complex Fo
ro
complex I e -
complex III IV O2 acceptor) complex
ar
CoQ e -
1mm
e-
M
Cyt c H2O V
©
F1
4H+ 4H+ 2H+
Matrix
Complex I : CoQ : Complex II :
• Portal of entry of • Mobile electron carrier. • portal of entry of
electrons from a • AKA ubiquinone. electrons from a
reducing equivalent. reducing equivalent.
• AKA NADH • AKA succinate Q
dehydrogenase, NADH oxidoreductase.
CoQ oxidoreductase. • Pumps no H+ ions.
• Pumps 4 H+ ions into
Components :
Intermembrane space.
1. FAD/FADH2.
Components : 2. Fe-S complex.
1. FMN/FMNH2.
2. Fe-S complex.
m
o
l.c
ai
gm
5@
Proton channel
00
u2
• Rotatory
k
ic
(only
h
rt
mobile
ka
subunit) (9 subunits)
|
• Connects
w
ro
F0 to F1
ar
Pathway 00:21:46
Complex I III IV
Complex II III IV
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
250 Integration of Metabolism and Biological Oxidation
m
o
l.c
Inhibitors of respiratory chain
ai
gm
5@
Inhibitors of electron chain Inhibitors of oxidative Uncouplers
00
u2
phosphorylation (Complex V)
m
No O2 No H+ gradient
w
(initial)
ro
consumption No H+ gradient
ar
• No ATP synthesis
• ↑ O2 consumption (initial)
No O2 consumption (later)
Inhibitors of electron chain :
At Complex I : At Complex II : At Complex III : At Complex IV :
(B/w NADH and CoQ) : 1. Malonate. (B/w Cyt b and (Cyt c oxidase) :
1. Rotenone. 2. Thenoyl trifluoro Cyt c) : 1. Carbon monoxide.
2. Amobarbital. acetone. 1. Antimycin A. 2. Cyanide.
3. Piericidin A. 3. Carboxin. 2. British Anti Lewisite 3. H2S.
(Dimercaprol). 4. Sodium azide.
Note :
• Thermogenin is found in brown fat of :
- Hibernating animals.
- Neonates.
• Protective against hypothermia :
Transfer of electrons in ETC Release of energy
m
o
l.c
Thermogenin Inhibits Blocks ATP Energy released
ai
gm
phosphorylation production 5@ as heat
00
Non-shivering
u2
m
thermogenesis
k
h ic
rt
1. ADP + Pi.
ar
3 2. Succinate.
M
3. Cyanide
©
1. Succinate.
4 2. ADP + Pi.
3
3. Oligomycin/Venturicidin
O2 ATP synthesis (inhibits Fo).
4. Dinitrophenol (uncoupler).
consumption
2
1
Sources :
Supplemented in diet.
Exceptions :
Endogenously synthesised vitamins
m
o
l.c
ai
gm
By body 5@ In body by intestinal flora
• Niacin : From Tryptophan. • Vitamin K.
00
• Biotin.
k
hic
Classification :
rt
ka
|
1. Absorption
(Lipoprotein) (Absorbed directly to plasma)
©
FORMS
Pro vitamin A Preformed Vit A
Dietary
Plant Sources Animal Sources
Source :
Retinoids
(All compounds related to retinol)
Retinal Retinoic acid Retinol
• All trans retinal. • All trans retinoic
β − carotene • 11 - Cis retinal : acid.
Examples
(Carotenoids) Present in • 13-cis retinoic
m
Rhodopsin acid.
o
l.c
• 9-cis retinoic
ai
gm
11 - Cis retinal +
5@ acid.
Opsin
00
u2
CHO COOH
ka
|
w
ro
• Regulation of
©
gene expression
(Act at nuclear
receptors)
Later converted to Control
Function Vision Reproduction
active Vit A. Growth,
Morphogenesis & Cell
differentiation
• Steroid hormone
like function.
Note : Non Pro Vitamin A Carotenoids
m
Tri molecular Complex
Intestinal cell
o
l.c
Target
ai
gm
Transthyretin Retinol Retinol binding
site 5@
(Also transports protein (RBP)
00
thyroxine)
u2
Transported in blood
m
k
hic
rt
Rhodopsin Rhodopsin
Multistep Multiple isomers
Opsin process formed Bathorhodopsin
Opsin Opsin
Photoisomerisation
Liberates
m
o
l.c
ai
gm
5@
Active G protein :
00
u2
Transducin
m
k
hic
rt
ka
Combines with
|
w
ro
ar
Converted to
Phosphodiesterase
©
(PDE)
FUNCTIONS
1. Vision.
2. Regulation of gene expression : By retinoic acid.
3. Normal reproduction : By Retinol.
4. Maintenance of Normal skin & mucosa.
5. Antioxidant properties.
Eye Manifestations :
Symptoms :
• Nyctalopia (Night blindness) : First symptom.
• Loss of vision to green light.
Signs :
1. Conjunctival Xerosis 2. Bitot’s spot :
Progresses to
• Triangular raised lesions in bulbar conjunctiva.
• Characteristic feature of Vit A deficiency.
Corneal Xerosis
m
o
l.c
ai
gm
5@
Bitot’s
00
u2
spot
m
k
hic
rt
ka
|
w
ro
ar
M
Keratomalacia
Follicular hyperkeratosis/
Toad skin/Phrynoderma.
WHO Classification :
m
o
l.c
Stage Clinical Manifestations
ai
gm
5@
XN Night blindness
00
u2
X2 Corneal Xerosis
|
w
XS Corneal scarring
XF Fundal xerophthalmicus
THERAPEUTIC USES :
Treatment of Form used
β-carotene Prevents cutaneous
Cutaneous Porphyria
(Good antioxidant) photosensitivity
Promyelocytic
All trans-retinoic acid Differentiation therapy
leukemia
• Cystic acne
13 - cis retinoic acid S/E : Teratogenicity in
• Childhood
(Isotretinoin) reproductive age group.
Neuroblastoma
m
(Resembles tumor) Non-specific :
o
l.c
- Dizziness - Weight loss.
ai
gm
- Vomiting 5@ - Anorexia.
- Headache
00
Liver : Hepatomegaly.
k
ic
Note :
• 1 IU of Vit A : 0.3 µg of retinol.
• Assay of Vit A :
a. Dark adaptation time ↑ (Assessment of Nyctalopia)
b. Carr-Price reaction.
SOURCES
• Food Limited source unless fortified.
- Exception : Fish.
• Sunshine : Richest source (aka Sunshine vitamin).
• Endogenously synthesised vitamin.
Forms
m
o
l.c
b. Fungal ( Ergot ) For commercial purposes.
ai
METABOLISM gm
5@
Site of Synthesis : Stratum corneum of skin
00
u2
Stratum Corneum
h
rt
ka
7 - dehydrocholesterol
|
w
ro
ar
• Fat soluble.
• Insoluble in blood.
Cholecalciferol
Hydroxylation
25 - OH - CC 25 - OH - Cholecalciferol
Hydroxylation (25 - OH - CC)
1,25 - OH - CC
Biologically most potent Liver
and active form
If sufficient 24
stores of hydroxylase
Vit D
Calcitroic acid Excreted in urine
(Inactive)
Kidney
25 α Hydroxylase 1 α Hydroxylase
Enzyme 24 α Hydroxylase activity
activity activity
FUNCTION
m
o
l.c
Calcium and Phosphorus Regulation :
ai
gm
Performed by Vit D and parathyroid. 5@
00
↑ Blood P
m
k
ic
↓ Blood P
|
w
ro
ar
Effect on Intestine :
M
©
PTH
+
25 (OH) D 1,25 (OH)2 D
Hydroxylation
in Kidney
Acts on Intestine
+
a. 1,25 (OH)2 D ↑ PO43- Reabsorption ↑ Serum PO43-
from DCT
↑ Serum Ca2+
m
+
Ca2+ Reabsorption
o
b. PTH
l.c
ai
gm
-
PO43- Reabsorption ↑ Excretion of PO43-
5@
(Phosphaturic)
00
u2
Effect on Bones :
m
k
ic
+
RANK
ka
Pro Mature
w
↑ Bone resorption
ro
Demineralization
(Ca shifts out of bone)
2+
Effect on Bone :
Normal : Bone components
Vitamin D
m
o
l.c
ai
gm
Before closure 5@ After closure
of epiphyses of epiphyses
00
u2
m
Rickets Osteomalacia
k
h ic
rt
ka
↓ Serum Ca2+
2° Hyperparathyroidism
PTH is
+
↓ S. phosphate
phosphaturic
1 - α hydroxylation
↑ FGF-23 activity
X linked Hypophosphatemic Rickets
m
Phosphaturia
o
l.c
ai
gm
Hypophosphatemia (↓ S. phosphate)
5@
Mutation in proteases which degrade FGF 23
00
u2
Autosomal Dominant
m
↑ FGF-23
k
Hypophosphatemic Rickets
hic
rt
ka
↓ S. phosphate
|
w
Autosomal Recessive
©
↑ FGF-23
Hypophosphatemic Rickets
↓ S. phosphate
Note :
FGF-23 (Fibroblast growth factor-23) : Phosphatonin
↑ P excretion.
• PHEX gene -
FGF-23.
m
o
l.c
Normal Genu valgum Genu varum
ai
• Cupping
gm
5@ Concavity at metaphysis end
• Splaying
00
Knee
m
• Fraying
k
Medial
ic
5-7 deviation of
rt
of metaphyses
ka
o
of tibia • White line of Frankel
|
valgus
w
ro
m
o
l.c
Cell integrity not maintained.
ai
gm
• Ophthalmic features : 5@
- Pigmentary retinopathy.
00
- Ophthalmoplegia.
u2
m
- Nystagmus.
k
hic
Uses :
rt
ka
Treatment of :
|
w
• Retrolental fibroplasia.
ro
ar
• Intermittent claudication.
M
• Bronchopulmonary dysplasia.
©
• Intraventricular haemorrhage.
• Slowing of aging.
RDA :
Male : 10 mg/day.
Female : 8 mg/day.
Pregnancy : 10 mg/day.
Lactation : 12 mg/day.
Toxicity :
Interferes with Platelet aggregation
Vitamin K
Naphthoquinol derivative.
Forms
Function :
Post Translational Gamma Carboxylation (Maturation) of :
a. Clotting factors : c. Protein S.
• Factor II (Prothrombin) d. Osteocalcin (Protein in bone).
• Factor VII e. Nephrocalcin (Protein in kidney).
m
• Factor IX
o
f. Product of gene gas-6.
l.c
ai
• Factor X g. Matrix Glutamic acid (Gla) protein.
gm
b. Protein C
5@
00
Vitamin K Cycle
u2
m
k
hic
rt
ka
|
w
ro
(Active) (Inactive)
©
g
clin
Vitamin K Warfarin,
cy
epoxidase Dicoumarol
Re
Oxidised
Note :
vitamin K
Orlistat : Affects function of Vitamin K.
Deficiency :
• Clotting affected Bleeding :↑ Prothrombin time (PT)
↑ Clotting time (CT)
• Common in premature babies d/t
- Low fat reserves
- Liver immature Supplementation with
- Gut sterile Vitamin K needed
- Breast milk : Poor source of Vit. K
m
o
• Formyl (-CHO). • Methenyl (-CH=).
l.c
ai
• Methyl (-CH3). • Formimino (-CH=NH).
gm
5@
• Methylene (-CH2-).
00
u2
Methionine
THFA
ar
Methyl
©
Features :
Megaloblastic anemia
Pathogensis :
B12 deficiency THFA deficiency Folate Trap ↓TMP synthesis
Megaloblasts in Hypersegmented
m
different stages of neutrophil
o
l.c
maturation (Erythroid Macro-ovalocytes
ai
gm
precursor) 5@
Bone Marrow Peripheral smear
00
• Homocysteinemia
h
rt
ka
- Normal pathway :
|
w
Principle CH3
ar
methionine
M
Methyl donor
©
Transmethylation reactions
Investigations : affected
• S. Folate (or red cell Folate) : ↓
• Histidine load Test : Histidine
m
00:23:40
o
l.c
ai
Source : Animal Sources. Pyrrole
gm ring
5@
ABSORPTION AND TRANSPORT
00
N N
u2
4.35%
m
Protein Cobalt
k
present
ic
N N
rt
Cobalophilins/R- Secrete
ka
Pepsin
Secrets pepsin and IF
©
Digests
Cobalophilin
bound Vit B12
Intrinsic
Factor (IF)
Duodenum : Digests
Pancreatic enzymes
Intrinsic factor
bound cobalamin
Jejunum :
Intrinsic factor
Receptor Cubulin
Transporter : Transcobalamin
Ileum : II (TC-II) > I
TC-II Reaches target organ
Site of Absorption Portal vein Transcobalamin receptor :
Megalin
m
Causes :
o
l.c
1. Nutritional : Strict Vegans Can use Curd Lactobacillus synthesizes B12.
ai
Supplementations
2. Gastric Causes : gm
5@
00
• Crohn’s Disease.
|
w
Consumes B12
megaloblastic Anemia
• Proximal cause of megaloblastic anemia : Folic acid decifiency (Even if B12
deficiency present).
Myelin breakdown
Investigations :
• Serum Cobalamin.
m
o
l.c
• Serum Homocysteine (also for B9 deficiency).
ai
gm
• Urine Homocystine. 5@
• Serum Methyl Malonate : Exclusive B12 deficiency.
00
• Schilling test.
u2
m
Mx of Megaloblastic anemia :
ka
• 1st rule out Vitamin B12 deficiency before supplementing Folic acid.
|
w
ro
Folic acid (+) Methyl THFA Converted to THFA Further depletes B12 stores
©
Source :
Aleurone layer of cereal : Required for carbohydrate metabolism.
Lost by Preserved in
Polishing rice • Parboiled rice.
• Brown rice.
Coenzyme role :
m
Multienzyme complex for oxidative decarboxylation
o
l.c
Active form : Thiamine • Pyruvate DH Carbohydrate
ai
gm
Co enzyme • α ketoglutarate DH metabolism
pyrophosphate 5@
for
• Branched chain keto DH
00
u2
Note :
hic
DEFICIENCY
w
ro
ar
Risk factors :
M
OVERVIEW
Introduction :
AKA Warburg Yellow Enzyme.
• ↑ intake via supplements Can cause yellow urine.
• Heat stable.
• Redox vitamin Function Oxidative decarboxylation.
Active forms and functions :
m
Acyl coA DH (In β oxidation)
o
l.c
Succinate DH (In TCA cycle)
ai
a. FAD (Flavoproteins) Co enzyme
gm
for Glycerol 3-PO4 DH (Mitochondrial)
5@
3 multienzyme complexes :
00
u2
• Pyruvate DH.
m
• α-ketoglutarate DH.
k
hic
DEFICIENCY
M
©
Features :
Corneal
Vascularisation
OVERVIEW
Source :
Endogenously synthesized by tryptophan :
• 60 mg Tryptophan 1 mg Niacin.
Active forms :
1. NAD+ cofactor for All dehydrogenases except :
• Acyl coA DH.
• Succinate DH.
cofactor for • HMP Shunt Pathway oxidative phase
2. NADP+
(NADPH generating - G6PDH
reactions)
m
- 6 PGDH
o
l.c
NADP+ NADPH • Malic enzyme
ai
gm
• Cytoplasmic isocitrate dehydrogenase
5@
00
cofactor for
u2
3. NADPH Reductases
m
(NADPH utilising
Eg :
k
ic
reactions)
h
• Enoyl reductase.
rt
ka
• Dihydrofolate reductase.
ro
ar
Features :
4D’s
• Dermatitis Photosensitive dermatitis Symmetrical erythematous
exposed areas. rash in sun
• Diarrhea.
• Dementia.
• Death (rare).
• Depressive psychosis (rare).
Conditions causing pellagra like symptoms :
Hartnup’s disease : ↓absorption of Tryptophan (Trp) ↓ blood Trp ↓ B3.
Carcinoid Syndrome : Tryptophan Enters argentaffin cells Converted to
serotonin Less Trp available for B3 Synthesis.
Staple diet Maize/ Corn : Niacin in bound form.
Jowar/Sorghum : ↑ leucine content (-) QPRTase ↓ Synthesis
of B3.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Energy Releasing Vitamins 275
m
o
THERAPEUTIC USE
l.c
ai
Lipid modifying drugs :
• ↓ Triacylglycerol. • ↓ LDL. gm
5@
00
• ↑ HDL.
u2
m
k
ic
VITAMIN B5 /PANTOTHENATE
|
w
ro
Sources :
©
• Coenzyme A :
- Acetyl CoA.
- Acyl CoA.
- HMG CoA.
• Acyl carrier protein in fatty acid synthase complex.
Deficiency : Nutritional Melalgia / Gopalan’s burning foot syndrome
VITAMIN B7/ VITAMIN H/ BIOTIN
Active form :
Carboxybiocytin
Co enzyme role :
Carboxylation
• Pyruvate carboxylase ABC enzymes
• Propionyl coA carboxylase ATP, B7,
• Acetyl coA carboxylase CO2
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
276 Vitamins and Nutrition
m
o
l.c
a. Early morning exercise :
ai
gm
↓ Biotin ↓ Pyruvate carboxylase activity
5@ ↓ Synthesis of
oxaloacetate (Enzyme in gluconeogenesis) Impaired gluconeogenesis
00
Investigation :
ar
Source :
Pyridoxine
Pyridine ring Pyridoxal Pyridine derivatives
Pyridoxamine
Active form :
Pyridoxal phosphate (PLP).
m
o
l.c
Functions :
ai
gm
Coenzyme role : 5@
1. Transamination : 3. Transulfuration :
00
u2
Eg : Eg :
m
k
2. Decarboxylation :
|
Eg : CO2
ro
• Histidine Histamine.
M
CO2
• DOPA Dopamine. Note : 80% of PLP in the body- Muscle.
CO2
• 5-OH Tryptophan 5-OH Tryptamine (Serotonin)
Deficiency manifestations :
m
o
l.c
• Ca breast.
ai
gm
5@
5. Personality changes :
00
• Depression.
u2
• Confusion.
m
k
hic
Xanthurenic acid
w
ro
ar
Kynureninase
M
©
(Tryptophan metabolism)
B6 deficiency
Glyoxalate alanine Cystathianione
aminotransferase β synthase
Oxaluria Homocystinuria
Biochemical assay :
Enzyme activity : Erythrocyte transaminase.
Load test : Tryptophan load test (Excretion of xanthurenic acid).
Direct measurement : Estimation of Vitamin B6 levels in blood.
Toxicity :
Sensory neuropathy.
Vitamin C 00:12:50
Source :
Uronic acid pathway
Glucose Vitamin C
m
o
l.c
ai
Functions :
1. Collagen synthesis : Triple helix gm
3. Tyrosine metabolism : PHPPhydroxylase.
5@
formation through prolyl and lysyl 4. Tryptophan metabolism :Hydroxylation reaction.
00
u2
Cofactor function
w
Fe+3 Fe+2
ro
ar
M
Intestinal absorption
©
Deficiency manifestations :
A. Scurvy :
m
o
l.c
Miscellaneous
ai
00:19:05
gm
5@
1. Urinary metabolites in vitamin deficiencies :
00
u2
1. Vitamin B12
rt
b. Homocystine
ka
|
a. Homocystine
w
ro
TYPES OF PEM
• Marasmus
• Kwashiorkor
Marasmus
• Severe deficiency of both dietary energy and protein.
m
o
• Primary calorie deficiency Secondary protein deficiency.
l.c
ai
gm
Clinical features : 5@
• Age : <1 year.
00
Marasmus
• Loss of subcutaneous fat : Baggy pant appearance
k
hic
Biochemical features :
ar
M
• Hypoglycemia.
©
• No hypoalbuminemia : No edema.
(Hepatic synthesis of plasma proteins : Normal) Baggy pant appearance
Kwashiorkor
Deficiency of protein with adequate calorie intake (M/c : At the onset of weaning).
• ↓Protein intake.
↓Protein synthesis
• Essential amino acid deficiency
Clinical features :
• Age : 1-5 years of age.
• ‘Fat sugar baby appearance’ : Pot belly (Protruding abdomen)
- Gross edema.
- Muscle wasting + : Unnoticed due to edema.
• Crazy pavement dermatitis
(Peeling, cracking, denudation of skin). Pot belly appearance
m
o
l.c
Edema -
ai
Skin gm
Dry
5@
appearance
00
u2
Obesity
ka
00:10:40
|
w
OBESITY INDICATORS
Based on Body Weight :
Body Mass Index (BMI)/Quetelet index :
• Normal : 18.5-24.99
BMI = Weight (kg)2 • Overweight : ≥25
[Height (m)]
• Obesity : ≥30
Brocas index : Height (in cm) - 100.
m
o
Musculoskeletal system : Psychologic :
l.c
ai
• ↑Risk of hyperuricemia & gout • Depression
gm
Obesity
• Low backache • Social stigma
5@
00
Gastrointestinal : Neurologic :
ka
(MASLD/NAFLD)
M
©
• ↑Risk of cholelithiasis
Note :
• MASLD : Metabolic dysfunction Associated Steatotic Liver Disease.
• NAFLD : Non Alcoholic Fatty Liver Disease.
m
o
l.c
5. Fasting blood glucose : >100 mg/dL.
ai
TREATMENT OF OBESITY gm
5@
• Lifestyle modifications :
00
u2
- Diet.
m
k
- Exercise.
hic
rt
- Yoga.
ka
• Drugs.
|
w
ro
Classification :
Macrominerals Microminerals
Requirement > 100 mg/day < 100 mg/day
• Iron (Fe)
• Calcium (Ca)
• Iodine (I)
• Sodium (Na)
• Copper (Cu)
• Magnesium (Mg)
• Manganese (Mn)
Examples • Potassium (K)
• Zinc (Zn)
• Phosphorus (P)
m
• Molybdenum (Mo)
•
o
Chlorine (Cl)
l.c
• Selenium (Se)
ai
• Sulphur (S)
gm
5@ • Fluorine (F)
00
u2
Body composition :
ka
|
1% : Body fluids.
ar
M
©
Distribution :
• Total plasma Ca : 8.5-10.5 mg/dL.
• Free/Ionized Ca :
- 5 mg/dL.
- Metabolically active form.
Sources :
• Milk (Richest source) > Egg, meat, fish, vegetables.
• Cereals : Poor source.
Sources of calcium
Affecting factors :
↑Absorption : ↓Absorption :
• ↑Vitamin D : ↑Calbindin (Ca transporter). • Phytates & oxalates
• Acidity. (Green leafy vegetables).
• Parathyroid hormone (PTH): ↑1α-hydroxylase activity. • ↑Phosphorus.
m
+ • Malabsorption.
o
l.c
25-hydroxy cholecalciferol 1,25 dihydroxy cholecalciferol/
ai
gm
calcitriol (Active form). 5@
FUNCTIONS
00
u2
Activation of Enzymes :
m
k
ic
Direct activation
rt
• Pancreatic lipase
w
• Glycogen phosphorylase
ro
• Adenyl cyclase
M
protein)
©
• Pyruvate kinase
• Factors of coagulation cascade
Actions in Muscles & Nerves :
Hormonal Secretion :
Hormones Role of calcium
Insulin Opening of voltage-gated Ca2+ channels
PTH ↓Serum Ca ↑PTH
Calcitonin -
Coagulation Pathway :
Roles of Ca :
• Factor IV (Ca itself).
IX IXa
• Conversions X Xa
III IIIa
• Stable fibrin clot formation.
Actions on Myocardium :
Prolongation of systole :
m
Ca interacts with troponin C Contraction.
o
l.c
ai
gm
Note : Hypercalcemia Heart arrests in systole. 5@ IP3-DAG pathway
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Calpains :
Calcium-dependent proteolytic enzyme (Cysteine proteases).
Function :
Cellular functions :
• Cell cycle progression. • Cell fusion.
Factors :
VITAMIN D
Active form : 1, 25 dihydroxycholecalciferol/Calcitriol.
Effects : ↑Serum Ca & P.
m
o
Actions :
l.c
ai
Intestine : ↑Transcription of calcium transporters.
• ↑Calbindin gm
5@
↑Ca absorption.
00
Kidneys :
↑Transcription of calcium transporters ↑Reabsorption of Ca & P.
Bones :
↑Osteoclast activity Bone demineralization ↑Serum Ca.
m
PARATHYROID HORMONE (PTH)
o
l.c
Source : Chief cells of parathyroid gland.
ai
gm
Effects : 5@
• ↑Serum Ca.
00
u2
• ↓Serum P.
m
k
Mechanism of Action :
w
ro
ar
↓Blood Ca
M
Sensed by
©
PTH released
• ↑Ca absorption
• ↑P absorption
Mechanism of Action :
Thyroid gland
Secretes
Calcitonin
Acts on
m
o
l.c
ai
CALCIUM HOMEOSTASIS
gm
5@ Acts on
Calcitonin
Releases
00
u2
m
Bone : Kidney :
k
Thyroid gland
ic
Mineralization • Ca reabsorption
h
rt
ka
• Ca excretion
|
w
Stimulates
ro
High
ar
ases
M
Decre
©
ases Blood Ca
Incre
Sensed by
Low
Bones : Kidneys : Intestine :
Stimulates • Ca Ca absorption (In parathyroid glands)
reabsorption
• Vitamin D
activation
Acts on Releases
PTH
Blood pH :
Serum albumin binds H+ & Ca2+.
Acidosis : ↑H+ binding ↓Ca binding sites ↑Free/ionized Ca Hypercalcemia.
Alkalosis : ↓H+
↑Ca binding to albumin ↓Free/ionized Ca Hypocalcemia.
Blood Phosphate :
Inverse relationship b/w Ca & P.
m
Ionic product of serum Ca & P : Constant.
o
l.c
ai
Normal adult : Children :
gm
• Ca : 10 mg/dL, P : 4 mg/dL. • Ca levels are high.
5@
• Ionic product : (Ca) x (P) = 40. • Ionic product : 50.
00
u2
m
k
Clinical Significance
ic
00:45:54
h
rt
ka
|
HYPERCALCEMIA
w
ro
Causes :
ar
M
Secondary causes :
• Ectopic PTH secreting tumor.
• Multiple myeloma.
D/t ↑bone lytic activity.
• Metastatic carcinoma of bones.
• Prolonged immobilization.
Clinical Features :
Non-specific : Fatigue, confusion, depression.
Heart : Cardiac arrest at systole.
Bones Osteoporosis.
Pathological fracture.
Pancreas : Ectopic calcification.
Kidneys Polyuria, polydipsia.
Renal calculi.
Blood results :
• Ca & alkaline phosphatase (ALP) : ↑ Hypercalcemia :
Short QT interval
• Phosphate level : ↓
Treatment :
• Hydration.
• IV furosemide : ↑Ca excretion.
• Rx of underlying cause.
m
o
l.c
HYPOCALCEMIA
ai
gm
Serum Ca <8.5 mg/dL : Mild tremors. 5@
<7.5 mg/dL : Tetany.
00
u2
Causes :
m
k
• Vitamin D deficiency.
hic
rt
• Malabsorption.
ar
M
• Alkalosis.
Clinical Features :
• Peripheral neuropathy.
• Tremors & tetany.
D/t neuromuscular excitability.
• Muscular spasm.
• Cardiac arrest.
Signs of tetany :
• Carpopedal spasm : D/t involuntary muscle contractions of hands & feet.
• Trousseau’s sign : BP cuff tied around forearm Inflation Spasm of hands.
• Chvostek’s sign : Tapping of area over facial nerve Causes Facial muscle
twitching.
Investigations :
ECG findings : Long QT interval.
Blood results :
m
• ↓Serum Ca.
o
l.c
ai
• ↑Serum P.
gm
Hypocalcemia : Long QT interval
5@
Treatment :
00
• Avoid hypomagnesemia.
h
rt
ka
|
w
ro
ar
M
©
m
o
• Pregnant/lactating : 40 mg/day.
l.c
ai
gm
Iron containing : 5@
00
u2
Proteins : Enzymes :
m
k
ic
• Cytochromes. • Cytochromes.
w
ro
• Catalase :
ar
M
Sources :
• Green leafy vegetables & animal products :
Meat (Mainly liver) > cereals & pulses.
• Cooking in iron utensils (Jaggery).
Note :
Very poor source of iron Milk.
• Unweaned infants : May develop iron deficiency anemia.
Affecting factors :
m
o
l.c
↑Absorption : ↓Absorption :
ai
gm
• Ascorbic acid (↑Ferrireductase, vit C). • Phytates & oxalates.
5@
• Acidity. • Excess Ca, Cu, Zn, Pb
00
↓ Fe2+ absorption.
k
hic
rt
ka
IRON ABSORPTION
Site : Enterocytes of duodenum & proximal jejunum.
Phases :
• Luminal.
• Mucosal (Cellular phase).
• Basolateral phase.
Dietary iron
Intestinal lumen
Fe2+
Transported to blood
DMT-1 via ferroportin
Enters 2+ Hephaestin
Fe Fe
3+
m
o
Enterocyte +
l.c
ai
Heme & Fe2+ Apotransferrin
gm
converts to 5@
00
Fe3+ Transferrin
u2
(Transport form)
m
+ Apoferritin
k
ic
Combines with
h
transferrin receptor
ka
Target site
w
ro
ar
M
©
Utilisation
by tissues
Note :
Hephaestin : Copper containing enxyme.
Iron absorption : Basolateral phase
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Minerals : Part 2 297
Sites of regulation :
Iron absorption at enterocyte
Hepcidin :
• Small peptide (25 amino acids).
• Acute-phase reactant.
m
o
Hepcidin levels
l.c
ai
gm
5@
Increases : Decreases :
00
Reciprocal relationship.
w
ro
ar
M
©
(Storage)
Excess
iron
----- Active space ----- Proteins Associated with Iron Metabolism 00:31:30
Transferrin :
Structure :
• Glycoprotein.
• Beta 1 globulin.
Synthesized : In liver.
m
Target sites :
o
l.c
• Reticuloendothelial system.
ai
gm
• Erythroid precursors in bone marrow. 5@
00
Transferrin saturation :
|
Serum iron
w
• in %.
ro
TIBC
ar
M
Ferritin :
Role in iron metabolism :
• Storage form of iron : Apoferritin + Fe3+.
• One ferritin contains ≥4000 Fe3+.
Present in :
Ferritin
Liver, bone marrow, spleen, mucosal cells & macrophages.
Significance :
• Index of iron stores.
• Early iron deficiency anemia : ↓Serum ferritin.
Clinical significance :
• Acute phase reactant.
• Ferritin levels :
- Increased : Iron overload (Hemochromatosis).
- Decreased : Iron deficiency anemia.
IRON EXCRETION
• Iron : One way element.
• Never excreted in urine.
Modes of excretion :
m
o
• Through faeces : Unabsorbed iron.
l.c
ai
• Denudation of mucosal cells.
• Blood loss. gm
5@
00
• Desquamation.
u2
m
IRON CONSERVATION
k
hic
rt
RBC lysis
ka
|
w
Globin removed
Effects :
Children : Learning ability impairment (Irreversible).
Adults : Work capacity impairment.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
300 Minerals and Acid Base Balance
Repeated pregnancy.
Gastric mucosa atrophy : ↓HCl ↓Iron absorption.
Blood loss : Menorrhagia.
Hookworm infestation.
Clinical Manifestations :
• Gastric mucosa atrophy.
• Plummer-Vinson syndrome (Precancerous condition) :
Atrophy of oral cavity + esophagus Dysphagia.
m
• Improper functioning of iron-requiring enzymes (Electron transport chain).
o
l.c
ai
• Apathy, irritability.
• Poor scholastic performance. gm
5@
00
Signs :
u2
m
• Brittle nails.
|
w
Brittle nails
ro
ar
M
Laboratory Findings :
Peripheral smear : Microcytic hypochromic anemia.
↓ ↑
• Hb
• TIBC
• Serum ferritin
• Soluble transferrin
• Serum iron
receptor levels
• Transferrin saturation
Peripheral smear :
Microcytic hypochromic anemia
IRON OVERLOAD
Hemochromatosis :
Etiology :
• Hereditary : HFE gene mutation.
• Thalassemia : Ineffective erythropoiesis.
m
• Parenteral iron therapy
o
l.c
• Dietary : Bantu siderosis
ai
gm
- Consumption of alcohol made in iron utensils. 5@
- Bantu tribe in Africa.
00
u2
Hemosiderosis :
m
k
ic
Hemosiderin :
h
rt
• Features :
©
Clinical Triad :
Cirrhosis
Bronze
diabetes Diabetes mellitus
Skin pigmentation
Management :
• Phlebotomy.
• Desferrioxamine : Iron chelation.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
302 Minerals and Acid Base Balance
Copper 00:01:00
FUNCTIONS
Cytochrome C oxidase : ETC complex IV.
m
o
l.c
Superoxide dismutase (Cytoplasmic) : Antioxidant.
ai
Constituent of proteins gm
Cerruloplasmin Transport of copper.
5@
00
Sources :
w
ro
• Meat.
ar
M
• Vegetables.
©
• Nuts.
• Cereals.
ABSORPTION
Normal blood level : 75-150 μg/dL.
Transporters :
Site : Intestine Mucosal cell Blood
7A Cu2+
Ctr
Cu2+ Cu2+ 7B Albumin
Pathophysiology :
↑ Cu2+ ATP 7B
↑Cu in free form
+
Liver Cu2+ + Apo ceruloplasmin
Deposits in other sites
Ceruloplasmin.
m
• C/f similar to around cornea.
o
l.c
• Pathognomonic : Seen in 99%.
ai
Parkinson’s disease.
gm
5@
Diagnosis : Treatment :
00
u2
• ↑S. Cu .2+
• Zinc.
m
k
• ↑Urinary Cu .2+
ka
Detect :
©
Zinc 00:19:56
m
o
RDA : 10 - 15 mg/day.
l.c
ai
Sources :
• Shellfish. gm
5@
00
• Meat.
u2
• Nuts.
m
k
ic
• Cereals.
h
rt
ka
FUNCTIONS
|
w
Zn containing enzymes :
ro
ar
• Carboxy peptidase.
M
©
• Carbonic anhydrase.
• ALA dehydralase.
• ALP.
• Alcohol dehydrogenase.
Sperm : Motility.
Clinical features :
• Rashes around mouth &
perineal region.
• Diarrhea.
• Alopecia. Rashes around mouth Rashes around perineal region
m
Hypogeusia :
o
l.c
ai
↓Gusten : ↓Taste sensation.
gm
5@
Zinc Toxicity :
00
Flourine 00:25:12
w
ro
ar
Flourosis (Toxicity) :
Flourine levels > 2 ppm.
Teeth mottling
Signs & symptoms :
Fluorine levels Systemic effects
>2 ppm Intestinal discomfort
>5 ppm Teeth mottling
>20ppm Osteoporosis, Brittle bone, genu valgum
Genu valgum
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
306 Minerals and Acid Base Balance
DEFICIENCY DISORDERS
Disorder Features
• Prevalent in China (Soil deficient in selenium)
m
Keshan disease
o
• Endemic cardiomyopathy : Cardiomegaly, arrhythmia
l.c
ai
• D/t selenium/iron deficiency
gm
Kashinbeck disease 5@
• Chronic degenerative disorder of joints
00
Magnesium
rt
00:32:28
ka
|
CLINICAL SIGNIFICANCE
Hypomagnesemia Hypermagnesemia
• ↑Aldosterone
• ↑Loss through intestine : • ↑Intake of antacid
Cause Malabsorption/diarrhea • Rectal enema
• Nasogastric suction/vomiting • Renal failure : ↓Excretion
(Hospitalized patients)
Clinical • Neuromuscular irritability • Neuromuscular depression
features • Cardiac arrhythmias • Respiratory depression
m
o
• Ribonucleotide reductase • Upper body rash
l.c
ai
gm
Nickel
Cofactor for urease -
5@
(Absorption : Lungs)
00
u2
Core component of
Cobalt Macrocytic anemia
m
adenosyl cobalamin
k
hic
rt
Cofactor for :
©
• Severe neurologic
• Xanthine oxidase :
abnormalities
Molybdenum Xanthine Uric acid
• Xanthinuria :
• Sulfite oxidase
No conversion to uric acid
• Aldehyde oxidase
SUMMARY
Mineral Feature Deficiency
• Constituent of
Zinc Impaired
• insulin
Chromium insulin action Impaired
Selenosis breath • (Chronic joint disease)
Selenium
(D/t dimethyl selenide) • (Endemic cardiomyopathy)
Constants :
m
o
l.c
Dissociation/Equilibrium constant (Ka) :
ai
gm
HA Vf H+ + A-
5@
Vr Vf : Velocity of forward reaction
00
• Vr ∝ [H+][A-] Vr = Kr [H+][A-]
k
ic
Kf [HA] = Kr [H+][A-]
ro
ar
M
Kf = [H+][A-] = Ka
©
Kr [HA]
Henderson-Hasselbalch Equation :
Relation b/w pH, pKa of weak acid & concentrations of acid & base of a buffer
solution is given by :
pH = pKa + log [Salt] .
[Acid]
Applications :
• Calculation of one parameter when the other two are known.
• Assess acid-base status of a patient.
• Assess limits of compensation in a patient with acid-base imbalance.
pH scale : Neutral
0 7 14
Acidic Alkaline
pH measurement :
1. pH paper/disc : Color of paper dipped in solution measured against the color
gradient.
o m
l.c
ai
gm
5@
00
pH paper pH disc
u2
pH meter
Examples :
• Bicarbonate buffer : H2CO3 (Carbonic acid) + NaHCO3.
• Acetate buffer : CH3COOH (Acetic acid) + CH3COONa.
• Phosphate buffer : NaH2PO4 (Acidic phosphate) + Na2HPO4 (Basic phosphate).
Buffering range :
B
A : [Unionized form] > [Ionised form]
m
B : [Ionised form] > [Unionised form]
o
l.c
[OH-] added
ai
Buffering
gm
range pKa (Partially ionised solution)
5@
00
u2
m
k
ic
A
h
rt
pH
ka
acid/alkali is added.
• Buffering range :
- Range of pH at which there is maximum buffering capacity.
- Formula : pKa ± 1.
Regulation of body pH :
Body buffers Respiratory regulation Renal regulation
1st line 2nd line 3rd line
Prerequisites :
• Acid load not too high. • Alkali reserve is maintained.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Acid Base Balance 311
m
pH = 6.1+1.3 Log 20 = 1.3
o
l.c
pH = 7.4
ai
gm
5@
• pH of blood is maintained when [HCO-3] = 20 [H2CO3].
00
1. Acidosis (↑H+) :
ar
Carbonic
M
©
H+ + HCO-3 H2CO3 Anhydrase (CA) H2O + CO2 Expelled through lungs via
hyperventilation
Protein Buffer :
Protein Main site of action
Albumin ECF
Hemoglobin (Hb) Erythrocyte
Buffering ability : D/t ionisable side chain (Imidazole of histidine pKa = 6.1).
m
o
Hb buffer :
l.c
ai
• 2/3rd of total protein buffering capacity.
gm
• Needs buffering action to transport CO2 as HCO-3 (Isohydric transport of CO2).
5@
00
u2
52% 6% 40% 1% 1%
ar
Significance
M
Mechanism :
1. Acidosis (↓pH ; ↑[H+]) :
↓pH Respiratory centre Hyperventilation CO2 (from H2CO3) ↑pH
stimulated d/t pH (↑RR) expelled
sensitive chemoreceptors
2. Alkalosis (↑pH ; ↓[H+]) :
↑pH Hypoventilation (↓RR) CO2 retention ↑ H2CO3
H+ + HCO-3
↑pH Excreted via kidneys
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Acid Base Balance 313
Acidosis Alkalosis
Effect on H+ ↓ ↑
CO2 Expelled through lungs Retained
RR ↑ ↓
Significance :
1. Excretion of acid.
2. Maintains alkali reserve by effective reabsorption of HCO-3.
m
Mechanism :
o
l.c
1. Excretion of H+
ai
Bicarbonate buffer.
gm
2. Reabsorption of filtered bicarbonate 5@
3. Excretion of titratable acid Phosphate buffer (Urinary buffer).
00
u2
Excretion of H+ :
h
rt
ka
Trigger :
|
Steps :
Plasma PCT cell Tubular lumen
Na+ Na+ reabsorbed Na+
3. 2. Na H exchanger
+ +
HCO-3 reabsorbed
HCO-3 H+ H+ Excreted
Alkali reserve
maintained. H2CO3
Carbonic
Anhydrase (CA)
1. C02 + H20
Steps :
Plasma PCT cell Tubular lumen
NaHCO3 (Filtered HCO-3)
Na+ Na+ Na+ HCO-3
HCO-3 reabsorbed HCO-3 H+ H+
H2CO3
Alkali reserve H2CO3
CA
maintained. CA C02 + H20
1. C02 + H20
m
o
l.c
ai
gm
Excretion of Titratable Acid : 5@
Basic phosphate Converted to Acid phosphate.
00
u2
Significance :
k m
Steps:
ar
M
Titrable acid :
• Amount of strong alkali (Eg : N/10 NaOH) required to titrate 1 litre of urine to pH
7.4.
• Inhibited by : Acetazolamide (Carbonic anhydrase inhibitor).
Steps :
Plasma PCT cell Tubular lumen
Glutamine Glutaminase Glutamate
NH3 NH3
Na+ Na+ Na +
HCO-3 reabsorbed H+
HCO-3 H+
NH+4
Alkali reserve
H2CO3
maintained. Excreted along with H+
CA
m
C02 + H20
o
l.c
ai
gm
Miscellaneous 5@ 01:13:00
00
2. pH & Ca2+
ka
Hypocalcemia.
M
NORMAL PARAMETERS
Euphemia :
• State in which normal pH is maintained.
• Maintained by metabolic and respiratory components.
m
o
l.c
ai
Henderson Hasselbalch equation :
gm
5@
[HCO3-]
pH = pKa + log
00
[HCO3 ]
-
k
= 20 pH = 7.4
hic
[H2CO3]
rt
ka
pH
w
ro
ar
M
CLASSIFICATION
Acid base disorders
Acidosis : Alkalosis :
pH <7.38 pH >7.42
Algorithm to Identify Primary Acid Base Disturbance : ----- Active space -----
↓ ↑ ↑ ↓ ↓ ↑
<7.38 : >7.42 : >45 : <35 : <22 : >28 :
Acidosis. Alkalosis. Respiratory Respiratory Metabolic Metabolic
acidosis. alkalosis. acidosis. alkalosis.
COMPENSATORY MECHANISM
Done to normalize HCO3-/H2CO3 ratio.
Respiratory compensation Metabolic compensation
m
o
l.c
Cause Metabolic/renal disorder Respiratory disorder
ai
gm
Response Immediate + partial 5@ Slow + complete
Result Partial correction Almost complete
00
u2
m
Note :
k
ic
Metabolic Acidosis
w
00:12:40
ro
ar
M
CLASSIFICATION
Based on anion gap
Measurable : Measurable :
Na and K
+ +
Cl- and HCO3-
(95% of cations). (86% of anions only).
• Unmeasured anions constitute the anion gap.
----- Active space ----- Calculation : Difference b/w measured cations and anions.
A.G = [Na+ + K+] - [HCO3- + Cl-]
K+ Anion gap Misc Organic acids
Normal value : 12 ± 2 mmol (10-14 mmol/L).
Contribution
Unmeasurable anions : HCO3- from the
anionic charge
• Organic acids : Major constituent. Na+ of albumin
- Ketone bodies.
Cl-
- Lactic acid.
- Propionic acid.
• Albumin. Cations Anions
Calculation example :
(Na+ + K+) - (HCO3- + Cl-)
• Na+ : 136
om
l.c
• K+ : 4
ai
(136 + 4) - (24 + 104)
gm
• HCO3- : 24
Anion gap : 12 mmol/L
5@
• Cl- : 104
00
u2
m
High anion gap metabolic acidosis Normal anion gap metabolic acidosis
h
rt
↑Anion gap d/t ↓HCO3- Normal anion gap d/t ↑Cl- reabsorption
Hyperchloremic acidosis.
COMPENSATION
Respiratory Compensation :
[HCO3-] (↓)
Acidosis (↓HCO3-) log
[H2CO3]
m
o
l.c
Stimulation of respiratory centre
ai
gm
5@
• ↑Respiratory rate : Hyperventilation Kussmaul’s
00
CO2 washout
h
rt
ka
[HCO3-] (↓)
|
[H2CO3] (↓)
ro
ar
M
©
Renal Compensation :
Ammonia mechanism :
• ↑H+ excretion.
NH3 + H+ NH4
• ↑HCO3- generation
Phosphate buffer mechanism :
NaHPO4 + H+ NaH2PO4
LAB FINDINGS
• pH :↓
• S. HCO3- : ↓
• pCO2 : N Compensation
↓
• S. H2CO3 : N
Hypercalcemia in acidosis :
• Albumin has binding sites for H+ and Ca2+.
• H+ ↑ Ca binding ↓ Free Ca2+ ↑
Hyperkalemia in acidosis :
H+ enters cell K+ exits outside.
m
TREATMENT
o
l.c
• Symptomatic Rx.
ai
gm
• IV bicarbonate. 5@
• Correct electrolyte imbalance.
00
u2
Respiratory Acidosis
rt
00:41:16
ka
|
Causes :
M
©
[HCO3-] (↑)
↓H+, ↑HCO3- log Balanced
[H2CO3] (↑)
CLINICAL FEATURES
• H/o COPD/bronchial asthma/bronchopneumonia/morphine overdose/chest injury.
• ↓Respiratory rate.
m
o
• Hypotension, coma.
l.c
ai
• Hypercapnia (Retention of CO2) : Peripheral vasodilatation, tachycardia,
gm
5@
tremors.
00
u2
LAB FINDINGS
km
• pH :↓
hic
• S. HCO3 : N Compensation ↑
rt
-
ka
• pCO2 :↑
|
w
• S. H2CO3 : ↑
ro
ar
M
TREATMENT
©
Contraction of ECF
↑Na+ reabsorption
m
o
l.c
+
ai
gm
↑ H excretion, K+ excretion
+
5@
00
↑HCO3- reabsorption.
u2
m
k
COMPENSATION
hic
rt
ka
Respiratory Compensation :
|
[HCO3-] (↑)
w
[H2CO3]
ar
M
CO2 retention
[HCO3-] (↑)
↑H2CO3 log Balanced
[H2CO3] (↑)
Renal Compensation :
↑Excretion of excess HCO3-.
CLINICAL FEATURES
• H/o vomiting/pyloric stenosis/Conns syndrome/Cushings syndrome.
• Hypoventilation.
• Hypocalcemia :
- ↓H+ ↑Binding sites available for Ca2+ in albumin.
- Hyperexcitability (Tetany : Carpopedal spasm).
• pCO2 : N Compensation
↑
• S. H2CO3 : N
TREATMENT
• Correct electrolyte imbalance.
- IV NaCl (Chloride responsive).
- IV KCl : To correct hypokalemia.
• Treat underlying cause.
m
Primary deficit of carbonic acid d/t ↓pCO2 as a result of hyperventilation.
o
l.c
ai
gm
Causes : 5@
• Psychogenic : M/c cause.
↑RR, CO2 washout
00
• Anxiety.
u2
m
• Salicylate poisoning.
rt
ka
|
COMPENSATION
w
R. alkalosis
©
Renal Compensation :
[HCO3-]
Acidosis (↓H2CO3) log
[H2CO3] (↓)
• ↓Reabsorption of HCO3-
• ↓Excretion of H+
[HCO3-] (↓)
↑H , ↓HCO
+ -
log Balanced
3
[H2CO3] (↓)
CLINICAL FEATURES
• ↑Respiratory rate : Hyperventilation.
• Hypocalcemia : Tetany.
• pCO2 :↓
• S. H2CO3 : ↓
TREATMENT
• Symptomatic treatment.
• Correct electrolyte imbalance.
• Treat underlying cause.
Summary 01:08:04
m
NORMAL VALUES
o
l.c
ai
Parameter Value
gm
5@
pH
00
Bicarbonate
u2
m
pCO2 40 mmHg
M
©
Anion gap
Causes : Causes :
HAGMA NAGMA •
• • •
• • Hyperchloremic • Drug
• Organic aciduria acidosis • Respiratory muscle paralysis
• Methanol poisoning
Compensation : Compensation :
Respiratory : Respiratory Renal :
acidosis • reabsorption
(Kussmaul’s breathing) • excretion
m
HCO3-↓ pCO2↑
o
l.c
ai
C/f : C/f :
• gm ↓ •
5@
00
• Hypercalcemia • Hypercapnia
u2
pH
m
k
hic
Diagnosis Diagnosis
rt
ka
& Rx ↑ & Rx
|
w
ro
ar
• Hypoventilation • Hyperventilation
• Metabolic •
alkalosis
Compensation : Compensation :
• HCO3- reabsorption
• H+ excretion
Cause : Cause :
• Chloride resistant : Hyperventilation :
•
• Chloride responsive : •
• Hypoxia : High altitude
• Salicylate poisoning
Nucleosides :
Nucleotides : Bond : β N-glycosidic bond.
Monomers of nucleic acids (DNA and RNA). Structure : Nitrogenous base +
Bond : 3’-5’ phosphodiester bond. Pentose sugar.
Structure : Nitrogenous base Purines
Pyrimidines
+
Ribose
Pentose sugar
Deoxyribose
+
m
Phosphate group
o
l.c
ai
gm
Nitrogenous base : 5@
00
Purines :
u2
m
NH2 O
rt
N N N
ka
N1 6 7 N1 6 7
|
6 7
N1
w
5 5 5
ro
8 8 8
ar
2 4 2 4 2 4
NH2
M
9 3 9 3 9
3
N N N N
©
N N
Purine (Two heterocyclic rings) Adenine (6-aminopurine) : Guanine (2-Amino-6-oxo purine)
Nitrogenous base with the
least oxygen
Pyrimidines :
Cytosine, Uracil and Thymine (Mnemonic: CUT)
NH2 O O
N3 4 5 N3 4 5 N 4 CH3
Deamination Methylation 3 5
2 6 2 6 2 6
O 1 O 1 O 1
N N N
Cytosine : Uracil : Thymine :
2-oxo,4-amino pyrimidine • 2,4-dioxo pyrimidine 2,4-dioxo,5 methyl pyrimidine
• Only in RNA, not DNA
Vit B1
Note : Thiamine
Pyrimidine ring +
mo
l.c
ai
Acid anhydride bond :
Energy rich Releases energy when broken gm
5@
00
u2
NH2
|
N
w
N1
ro
N
ar
M
©
N N NH2
o N
N2
P-O-CH2 5
’
N
(5’ end of N1)
3’ N N NH2 N
OH o N3
P-O-CH2 5’ N
3’ N N
OH o
P-O-CH2 5’
3’ → 5’ phosphodiester
bond formed by DNA 3’
polymerase (3’ end of N3) OH
m
o
l.c
Base sequence : 5’ 3’
ai
Examples : gm
5@
00
Deoxyribose
u2
monophosphate
k
hic
Adenosine monophosphate
rt
(AMP)
|
w
m
o
Steps of synthesis : Purine ring
l.c
ai
gm
Phosphoribosyl
Ribose 5 phosphate PRPP synthetase
5@
pyrophosphate (PRPP)
00
ATP AMP
u2
Glutamine H2O
m
k
Phosphoribosyl amine
w
ro
Regulatory
M
SALVAGE PATHWAY
• Purine nucleosides. Recycled to form
Purine nucleotides
• Purine bases.
+ PO4 Donates
Phosphoribosylation + Ribose PRPP
Recycled
m
nucleoside
o
l.c
ai
Recycled
gm
Uric acid
5@ Phosphorylation (PO4)
00
Phosphoribosylation of purines :
u2
m
APRTase
k
1. Adenine AMP
ic
APRTase :
h
rt
HGPRTase :
ro
ar
3. Guanine GMP
©
HGPRTase
Use :
• Effective recycling of nucleotides.
• Conservation of energy.
• ln organs without de novo purine synthesis.
PURINE CATABOLISM
Site :
• Liver : Blood purines catabolised.
• Intestine : Dietary purines catabolised.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Metabolism Of Nucleotides 331
Xanthine NH3
m
Xanthine
o
l.c
oxidase (3)
ai
gm
Uric acid 5@
Defects :
00
u2
Immunodeficiency
• Only T cells affected.
• B cells normal.
3. Xanthine Oxidase defect
m
o
l.c
ai
Kelley Seegmiller Syndrome :
gm
5@
Biochemical defect : Partial HGRTase deficiency.
00
u2
Gout
m
00:25:10
k
hic
rt
Hyperuricemia
ka
|
ETIOLOGY
©
Primary Secondary
• Enzyme defects ↑ Production of uric
↓Excretion of uric
- ↑PRPP synthetase activity. acid (D/t ↑ cell turn
acid
- ↑PRPP glutamyl amidotransferase over)
activity
Glucose
With alcohol
↑ alcohol ↑ NADH accumulation (-) Pyruvate Lactate Acidify urine
intake ( ↑ NADH : NAD+ ratio) NAD +
Pyruvate dehydrogenase
NADH ↑ uric acid
m
crstallisation
o
Acetyl CoA
l.c
ai
gm
5@
Gout
00
CLINICAL FEATURES
k
hic
1. Acute gout :
rt
ka
Tophi
m
Pyrimidine Metabolism
o
00:35:45
l.c
ai
gm
BIOSYNTHESIS 5@
Site : Liver.
00
mitochondria.
k
hic
rt
ka
C From aspartic
From
|
4
N3 C
w
glutamine acid
ro
5
ar
M
Respiratory CO2 C2 6C
©
1
N
Sources of Pyrimidine Ring
m
Orotic acid
o
l.c
Ribose PRPP
ai
Phopshate Orotate phosphoribosyl transferase
gm
PPi
5@
00
OMP
u2
m
OMP decarboxyase
k
ic
CO2
h
rt
UMP
ka
|
Ribonucleotide reductase
w
dUDP
ro
UDP
ar
M
©
UTP dUMP
Thymidylate N5N10 methyleneTFHA
CTP synthetase
synthase (methyl donor)
CTP dTMP
Applied aspects :
5 Fluorouracil : Inhibits duMP dTMP
Anticaner drugs
Methotrexate inhibits DHFR (dihydrofolate reductase)
Note :
• Purine Nucleotide synthesised first.
• Pyrimidine Ring synthesised first Ribose + PO4 added
Nucleotides formed.
m
o
Types
l.c
ai
gm
5@
Type 1 Type 11
00
Bifunctional enzyme
m
k
hic
rt
ka
transferase decarboxylase
w
ro
ar
M
©
Features :
• ↓ DNA synthesis Macrocytic hypochromic anemia : Does not respond to
B12 /iron/ folate therapy.
• Bone marrow Megaloblasts.
• Failure to thrive.
Hyperammonemia Type 11 :
(Urea cycle disorder)
Defect in ornithine transcarbamylase (OTC)
↑ pyrimidine synthesis
↑ orotic acid
Orotic aciduria
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Structure & Organisation of DNA 337
Salient features :
• Two polydeoxyribonucleotide strands (formed by base pairs).
- Antiparallel arrangement (one strand 3’ 5’, another 5’ 3’).
• Right handed spiral. 5’
3’
• Primary structure : 3’ 5’ phosphodiesterase bond.
Watson Crick base pairing rule :
Thickness :
• Base pairs linked by hydrogen bonds. /3.4 Å
m
o
• Adenine always pairs with thymine : 2 hydrogen
l.c
ai
: Deep
bonds (A=T)
gm
Pitch :
• Cytosine always pairs with guanine : 3 hydrogen 34 Å / 3.4nm
5@
00
bonds (G--C)
u2
: Shallow
m
Chargaff’s rule :
k
3’
ic
5’
rt
ka
Base stacking :
ro
ar
• Van der waal’s force, hydrophobic interaction. (D/t non polar, aromatic nature
M
of bases)
©
6 types : A, B, C, D, E, Z
Right handed
A form B form (most abundant) Z form
Handedness Right Right Left
Base pair 11 bp / turn 10.5 bp /turn 12 bp / turn
• Broad and short. • Longer and thinner
• Elongated & thin
• Form of DNA preferred in • Most stable
Characteristic • Backbone of DNA is
solution devoid of water. • High degree of hydration &
zigzag in Z form.
• High salt concentration. low salt concentration
Z DNA : Predominantly contains pyrimidines alternating with purines, E.g. : CGCG
m
DENATURATION & MELTING OF DNA
o
l.c
ai
Two strands separating into component strands.
gm
5@
Features :
00
• No alteration of 1˚ structure.
|
w
• Decreased viscosity.
M
m
d No introns.
o
l.c
- Non mendellian cytoplasmic/Maternal/Matrilinear
ai
gm
inheritance : 5@
- Unique genetic code.
00
u2
m
k
hic
rt
Histone octamer
2nd level : 10 nm chromatin made up of nucleosomes +
DNA double helix
3rd level : 30 nm chromatin condensed & non condensed
metaphase chromosomes.
SECOND LEVEL ORGANISATION
Histones :
• Most abundant chromatin.
• DNA + histones (proteins) organised chromatin.
• Basic (+ve charge) proteins.
----- Active space ----- • conserved among species (Amino acid sequence in all species).
• 5 classes :
Type Classes Location
Core histones H2A, H2B, H3, H4 Histone octamer
Linker histones H1 Linker DNA
H2A H2B
• Abundant in arginine and lysine. H3 H4
• Histone protein
dimerises to form
H2A H2B
Ionic Histone octamer (+ve charge)
+ H3 H4
bond DNA double helix wind (-ve charge)
Histone octamer
• Nucleosome :
m
o
- 10 nm chromatin fibrin 3o nm chromatin further metaphase chromosome
l.c
coiling
ai
- Beads on a string appearance.
gm
5@
Histone octamer :
00
u2
• Left handed.
m
k
• ~ 146 bp.
ka
|
EUCHROMATIN VS HETEROCHROMATIN
w
ro
ar
Euchromatin Heterochromatin
M
©
Salient features :
• S phase of cell cycle.
• Both strands of parent strands act as template.
• DNA synthesis : 5I 3I.
• DNA replication is bidirectional.
• DNA polymerase requires primer for DNA synthesis in replication.
• Semidiscontinuous :
- Leading strand : Continuous.
- Lagging strand : Discontinuous.
m
o
l.c
5I 3I
ai
Discontinuous
gm
3I 5I
Continuous
5@
5I 3I
00
u2
3I 5I
m
k
ic
• Semiconservative :
h
rt
Daughter strand :
ar
M
Parent strand
Steps 00:08:10
Process :
Ori
Ori binding Unwinding of
AT rich
protein AT rich region
region/DUE
m
o
l.c
DUE : DNA unwinding element.
ai
gm
SSB : Single stranded binding protein. 5@
00
u2
m
Topoisomerase :
|
w
Types :
Type I Type II
- Nick in one strand of DNA. - Nick in both strands.
- No ATP required. - ATP required.
- Eg : DNA gyrase (In bacteria).
Replication bubble
5I 3I
3I 5I
o m
l.c
5I
ai
3I
gm
5@
Leading Lagging
00
strand strand
u2
mk
3I Replication fork 5I
h ic
rt
ka
DNA Polymerase
H
©
DNA strand.
Leading strand
- In prokaryotes : DNA polymerase III. Primase
- Same direction as helicase H . 3 RNA primer
I
5I
Lagging strand synthesis :
• Discontinuous.
• Direction opposite to helicase.
1. Synthesis of RNA primer by primase.
2. Synthesis of Okazaki fragments by DNA polymerase 111.
3. Removal of RNA primer & gap filling by DNAP I (In prokaryotes).
- Okazaki fragments act as primer to fill.
4. DNA ligase seals the nicks.
Okazaki fragment
5I
3I DNA Polymerase
5I 3I
H Lagging strand
Nick
Okazaki 5I
3I
fragment
m
o
l.c
ai
Enzymes 00:32:20
gm
5@
Helicase : Unwinding DNA, requires ATP.
00
• Filling of gaps.
w
ro
PROKARYOTIC DNAP
Enzyme Function
• Removal of primer I & gap filling.
DNAP I
• Major DNA repair.
DNAP II • DNA repair.
• Synthesis of leading strand.
DNAP III
• Synthesis of Okazaki fragments in lagging strand.
Additional points :
• Most processive : DNA polymerase III.
- Synthesis of maximum number of nucleotides.
m
o
l.c
• Kornberg’s enzyme : DNA polymerase I.
ai
gm
- Discovered in E. coli by Arthur Kornberg. 5@
• Klenow fragment :
00
m
Base mismatch
o
l.c
(MMR) cancer (HNPCC) / Lynch Syndrome
ai
gm
5@
Note :
00
m
Enzymes involved in DSB repair :
o
l.c
Non-homologous end joining :
ai
ku protein
gm
5@
00
u2
m
k
Telomere :
M
©
• Site : Stem cells, germ line cells, hematopoietic cells, lymphocytes, cancer cells.
- Has immense replicating potential.
- No aging / No Hayflick limit.
• Absent in somatic cells.
- Shortening of DNA d/t absent replicating potential.
↑ Cancer
• Telomerase
↓ Progeria : Premature aging.
• Chemotherapeutic agents : Drugs inhibiting telomerase.
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
RNA POLYMERASE
m
o
l.c
In Prokaryotes :
ai
Sigma subunit
gm
• Single type of RNA polymerase (RNAP).
+ Holoenzyme
5@
• Does not require primer.
00
β subunit :
hic
rt
σ subunit :
M
In Eukaryotes :
Types : RNAP I, RNAP II, RNAP III.
PROMOTERS :
• Short conserved sequence in the coding strand.
• Specifies the start site of transcription.
Promoter
5’ 3’ Coding strand
Upstream
Upstream
elements +1 Downstream elements
-3 -2 -1 +2 +3 +4 +5
3’ 5’ Template strand
Start site
Prokaryotic promoters :
-35 Sequence Pribnow box
5’ TGTTGACA TATAAT 3’ -10bp refers to
m
-35 bp -10 bp 10 bp away from
o
3’ 5’
l.c
start site
ai
gm
Eukaryotic promoters : 5@
Tata box/Goldberg
00
hogness box
u2
CAAT box
5’ 3’
m
-70/-80 bp -25 bp
h
rt
+1 site
ka
3’ 5’
|
w
ro
ENHANCERS :
ar
M
• DNA elements.
©
• Enhance transcription.
• Orientation : Either direction (5’ 3’/3’ 5’).
• May be embedded within target promoter.
3. Chain initiation :
• RNA polymerase remains fixed to promoter.
• β subunit reaches +1 site Synthesis of RNA in 5’ 3’.
• Addition of ribonucleotides until 11 to 20 nm.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Transcription 351
5. Chain elongation :
Addition of ribonucleotides RNA elongation.
ρ dependent
6. Chain termination
ρ independent
ρ dependent termination : 5’ 3’
ρ factor : 3’ 5’
5’ ρ 3’
• ATPase activity.
• Unwinding enzyme. Rut Site :
• Binds with newly synthesized RNA at “rut site”.
m
ρ utilisation site
o
l.c
• Function : Destabilize the newly synthesized RNA from ρ-Dependent termination
ai
gm
DNA. 5@
00
ρ independent termination : 5’ 3’
u2
3’ 5’
k
termination :
ka
Intrastrand
|
sequence. G C
ar
M
Forms hairpin G C
structure Destabilizes RNA. Hairpin structure
ρ-Independent termination
3’ POLY A TAILING
5’ Cap
5’ 3’
AAUAAA-20 +
1. Cut by Endonuclease
2. Addition of 40 -200 adenosine
m
o
l.c
Functions of 5’ capping & 3’ poly A tailing :
ai
gm
• Prevent the attack by 5’ to 3’ exonucleases. 5@
• Stabilise mRNA.
00
Exon-intron Adenosine :
©
Exon-1 Exon-2
3’ OH '2'-5' phosphodiester bond
m
Nucleophilic attack on 3'splice site by 3’ OH
o
l.c
ai
Intron : Lariat
gm
Exon-1 Exon-2 5@
Structure
00
Selective splicing :
ar
A B C D
©
Selective splicing
Alternate 5’ splice site :
5’ splice site
A B C D
Absence of this region
m
48% translated
o
l.c
ai
Truncated (Protein)
gm
5@
00
u2
mRNA
M
Additional Points :
Self splicing introns : hn RNA with no intron : Disorder associated with
• Group II introns. Histone gene. snurps :
• Ribozyme Systemic lupus
• Undergoes RNA erythematosus
Splicing. (Autoimmune disorder).
The relationship between a sequence of DNA and a sequence of amino acid in the
corresponding polypeptide.
Representation of amino acids :
Sequence of 3 nucleotides (Triplet)
m
o
l.c
ai
(4)3 64 codons 20 amino acids
gm
5@
Codon :
00
u2
Stop/Terminator codons :
h
rt
ka
a. UAA (Ochre).
w
ro
Note :
1. Amino acids represented by a single codon :
• Methionine (AUG). • Tryptophan (UGG).
2. Amino acids represented by maximum number of codons : Serine, Leucine,
Arginine (6 codons).
Phenylalanine
2. Unambiguous : No two amino acids are represented by the same codon.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
356 Molecular Biology
5. Universal :
• An amino acid is represented by the same codon across species.
• Exception : Mitochondrial DNA.
6. Initiator codon :
AUG
Methionine (Eukaryotes).
N-formyl Methionine (Prokaryotes).
m
Ribosome
o
00:15:37
l.c
ai
• Cellular machinery for protein synthesis.
gm
5@
• rRNA + Specific proteins.
00
u2
Structure : Note :
m
k
• Ribozyme.
ka
Features :
• tRNA AKA soluble RNA (sRNA).
• 1 tRNA contains 74-95 nucleotides.
• RNA with largest number of unusual bases.
• Only RNA containing thymine (Ribothymidine : Pseudouridine arm).
Shape :
2° structure : Clover leaf shaped.
3° structure : Inverted L shaped.
Acceptor arm :
• 3 unpaired nucleotides CCA at
3’ end.
• Accepts amino acids.
m
+ tRNA
o
l.c
Amino acid
ai
gm
Anticodon arm :
• Nucleotide sequence complimentary to codon.
5@
• Binds to the codon.
00
u2
Note :
m
k
Wobbling
ka
|
Phe tRNA
w
Wobbling : Phe
ro
ar
to UUU or
©
UUC
Degeneracy.
1. Charging of tRNA.
2. Initiation : Needs initiation factors (IF in prokaryotes, eIF in eukaryotes).
3. Elongation : Needs elongation factors (EF).
4. Termination : Needs releasing factors (RF).
m
• First AUG after marker sequence is
o
l.c
start codon.
ai
GTP Binds with gm
5@
eIF-2
00
u2
Binary complex
m
k
eIF-2
hic
GTP
rt
Initiator methionine
ka
|
tRNA mRNA
w
Ternary complex
ro
Free site
ar
Vacant
©
Elongation :
Catalyzed by elongation factors (EF).
Binds with
(+) Peptidyl transferase : Present in 28s rRNA Present in 60s subunit
On Asite
On P site
complex.
m
o
l.c
• Elongation factor 2.
ai
gm
• Hydrolysis of I GTP. 5@
• Ribosome moves by 1 codon length on mRNA.
00
• A site becomes free again Can accept new aminoacid & tRNA.
u2
m
to A site
M
©
Step 4 : Termination
Complexed with :
a. RF-3.
b. GTP (For hydrolysis Energy release).
c. Peptidyl transferase.
Energetics :
Charging of tRNA (tRNA tRNAaa) : 2Pi +
EF1 (Binding of tRNAaa to A site) : 1 GTP +
EF2 (Translocation) : 1 GTP.
1 Peptide bond synthesis = 4 high energy PO4.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
360 Molecular Biology
m
o
Inducible gene :
l.c
ai
• Genes expressed under special circumstances.
gm
5@
• Response Increases d/t an activator/inducer.
00
u2
Lac Operon
h
00:06:25
rt
ka
|
Components :
w
ro
ar
Function :
Metabolism of lactose in E.coli.
Pathway : Structural gene
Regulator/Inhibitor gene Promoter gene Operator gene Lac Z Lac y Lac A
Role of CAP :
↑ Glucose availability (-) Lac operon
Catabolic repressor
(Irrespective of presence of lactose)
Fasting stage : Glucagon ↑ cAMP Binds with CRP/CAP activated
Binds with
Lac operon active ↑ Expression of structural gene Promoter site
m
o
l.c
ai
Fed state : ↓ cAMP CAP inactive Lac operon inactive.
gm
5@
Glucose
00
u2
m
k
Present Absent
hic
rt
ka
↑ cAMP
ar
↓ cAMP
M
©
GENE AMPLIFICATION :
Process of increasing number of genes available for transcription.
m
Eg :
o
l.c
ai
• Dihydrofolate Tetrahydrofolate.
gm
Dihydrofolate reductase 5@
00
Methotrexate
u2
methotrexate.
hic
rt
ka
GENE SWITCHING :
|
w
One gene is switched off and a closely related gene takes up its function.
ro
ar
M
Eg :
©
GENE SILENCING :
The process of switching off genes.
Mechanisms :
• Epigenetic mechanisms.
• RNA interference by miRNA and siRNA.
m
o
• Small non-coding single stranded RNA.
l.c
Features
ai
• 21 to 25 nucleotide length
Endogenously from pri-micro gm
5@
Source Exogenous(Or endogenous)
00
RNA gene
u2
Epigenetics :
ro
ar
Types :
1. DNA methylation : Modification in DNA.
2. Histone modification in histone.
Mechanism :
S-adenosyl methionine (Methyl donor)
Methyl transferase
Genes silenced
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
364 Molecular Biology
m
o
l.c
Removal of acetyl group Prevents binding
ai
↑ +ve charge ↑ Chromatin Condensation :
gm
by histone deacetylase of transcription
of histone Heterochromatin
5@
factors
00
u2
m
00:40:55
hic
rt
Generation of miRNA :
ka
|
w
Endonuclease
Cuts the ends
DROSHA, DGCR8
Pre-miRNA
ds RNA
TRBP- dicer
Cuts ends of RNA
m
o
l.c
miRNA : Binds to
ai
gm
5@
3’ seeding sequence in
3’ UTR of mRNA
00
u2
Poly A tail
m
mRNA
k
5’
ic
3’ untranslated
h
5’ untranslated
rt
7 methyl region
ka
Perfect Imperfect
mRNA Protein
RNAi
m
o
mRNA of tumor suppressor genes
l.c
ai
Degraded
gm
Suppression of tumor suppressor gene 5@
00
Causes cancer
u2
m
k
• Genomic imprinting.
©
• Aging process.
Diseases :
• Cancer.
• Fragile X syndrome.
• Genomic imprinting disorder.
Investigation :
• Methylation specific PCR.
• DNA chromatin immunoprecipitation (ChIP).
• Bisulphite Sequencing in DNA sequencing.
• Methylation sensitive restrictive endonuclease digestion.
SOUTHERN BLOT
Technique :
DNA Isolation from Fragmented DNA Separated DNA
blood sample clumped together strands
Treated with DNA electrophoresis :
m
restriction enzyme -Agarose Gel, or
o
l.c
-Polyacrylamide gel
ai
(PAGE)
Probe finds gm
5@
complementary DNA
00
u2
fluorescence/ Denatured
k
ic
radioactivity
h
rt
ka
nylon membrane
©
* *
Uses :
• Detect specific viral/bacterial DNA.
• Screening of inborn errors of metabolism.
- Base substitutions.
- Indels (Insertions, deletions).
- Trinucleotide expansion.
• As a part of DNA fingerprinting /RFLP to detect DNA after PCR.
Technique :
RNA Isolation
from sample Separated by Blot to nitrocellulose
electrophoresis membrane
(Agarose/PAGE)
m
Probe binds if
o
*
l.c
complementary • Adding of labelled cDNA probe (radio/
ai
RNA present
gm
5@ fluorescence labelled)
* • cDNA : complementary DNA to the RNA
00
sequence.
u2
km
Uses :
hic
rt
Technique :
Protein on membrane
Protein isolated from sample
and separated using agarose Blot to nitrocellulose/
gel/ PAGE electrophoresis. nylon membrane.
Detects specific
DNA-protein
m
interaction.
o
l.c
Treated with
*
ai
gm
DNA probe.
*
5@
00
u2
m
k
SLOT-BLOT/DOT-BLOT
hic
rt
Fluorescence
Reports about Loaded to
detected in a
the unknown DNA computer
particular well
m
Advantage :
o
l.c
Multiple unknown DNAs can be added to the same chip
ai
gm
MUltiple samples studied together
5@
00
Uses :
u2
• Detection of mutations.
m
k
ic
• Genome sequencing.
h
rt
ka
cDNA MICROARRAY
M
©
Technique
Binds to complementary
oligonucleotide if found
*
Adding fluorescently
labelled unknown RNA Hybridisation occurs
*
Known cDNA in different wells
Fluorescence
Reports about Loaded to
detected in a
the unknown RNA computer
particular well
Use :
Studying of gene expression in cancer patients (via harvesting tissue RNA).
Fluorescence
Reports about Loaded to
detected in a
unknown antigen computer
m
particular well
o
l.c
Uses :
ai
gm
• Detection of unknown antigens and antibodies. 5@
• Study of proteomics (entire set of proteins expressed in an organism).
00
u2
Prerequisites :
©
m
o
100nt
l.c
ai
gm
b) Gene deletion : 5@
00
u2
50nt 25nt
rt
ka
B
|
B
w
ro
•
M
100nt
c) Gene amplification :
200nt 75nt
C C
100nt
Karyotyping 00:34:18
Karyotyping
m
o
l.c
ai
gm
Conventional Molecular FISH
5@
00
Definition :
ro
ar
Technique :
• 23 distinct mixtures of 5 flourophores.
• Each chromosome labelled with unique colours.
• Dividing cell needed Performed at metaphase Spreading out
of chromosomes on slide (Metaphase arrest).
Findings :
a) Normal sample :
• Each chromosome painted with a unique colour.
m
o
l.c
ai
gm
Types : 5@
00
Timing
h
Sister chromatids
ro
ar
M
View Centromere
©
• Rapid results.
Time consuming • Use :
Time for results
(Culture & wait for metaphase) - Cancer detection.
- Prenatal screening.
m
o
l.c
Types :
ai
Type 1 gmType 2
5@
00
Type 2 :
w
ro
ar
M
Sticky/staggered/cohesive end
5’ G A A T T C 3’ Overhang present
5’ G A A T T C 3’ Internal
cleavage
3’ C T T A A G 5’ 3’ C T T A A G 5’
Nomenclature :
Eco : Name of bacterial source
E.g. : EcoR 1 R : Strain of bacteria
1 : Unique number
m
o
l.c
RECOMBINASES
ai
gm
Alternative/adjunct to restriction enzyme 5@
Examples :
00
u2
m
Technique :
©
Target DNA
Bacterial
host cell Recombinase identifies particular site : Recombinase enables
Site specific recombination incorporation of target DNA
into host genome
Bacterial genome
Host cell
Recombinant DNA
RESTRICTION MAP
Unique DNA band pattern obtained by treating an individual’s DNA with a specific
restriction enzyme.
Technique :
Restriction
enzymes
om
l.c
On electrophoresis
ai
gm
Unique band
5@
pattern for
00
each individual
u2
m
k
hic
rt
Uses :
----- Active space ----- • sickle cell allele 1 restriction site abolished by mutation On cleavage by
Mst II
5’↑ ↑ 3’
R1, R2 : Restriction sites R1 R2
P1, P2 : Parents
m
O1, O2, O3 : Offsprings
o
l.c
ai
gm
5@
O1 : Heterozygous O2 : Normal O3 : Homozygous
00
u2
On cleavage by Mst II :
m
k
hic
P1 O1 O2 O3 P2
rt
ka
1.15 kb - - - -
ro
0.2 kb - - - -
M
©
DNA FINGERPRINTING
Procedure :
Visible fragments
Compared with
m
o
l.c
DNA FOOTPRINTING
Protein
ai
to
gm
d
Use : Detects DNA-protein binding. de
ad
5@
Radiolabelling
00
Procedure :
u2
k m
hic
rt
Fragmented and
ka
divided into 2
|
w
halves
ro
ar
M
©
Genomic DNA -A -B
DNase DNase
Cleaving of DNA Cleaving of DNA except for
protein bounded fragments
(undergo lysis)
DNA electrophoresis
-A -B
TYPES
Sources :
Origin Source Example
• Plasmid
Bacterial
Natural plasmids • Cosmid
Phage Phage DNA
Bacterial based genome BAC (Bacterial artificial chromosome)
Artificial plasmids Based on E. coli bacteriophage PAC (P1 phage artificial chromosome)
Based on yeast YAC (Yeast artificial chromosome)
m
Plasmid :
o
l.c
• Small double stranded circular DNA outside the genome.
ai
gm
• A.k.a. episome, epigenome. 5@
00
• Linear DNA
ar
M
Cosmids :
Plasmids containing cohesive end site/cos site.
Cos site Packs phage DNA into Enables phage cycle
phage particles
Cosmid
m
o
l.c
ai
Synthesis of chimeric DNA (recombinant DNA)
gm
5@
Introduction into host cell
00
u2
Bacterial DNA
k
ic
Plasmid
|
w
ro
ar
Target gene
m
o
l.c
Cloned
ai
gm
Formation 5@
00
u2
Cloned
m
k
hic
rt
ka
|
w
ro
c DNA
M
• Used only for small genomes (e.g. : Bacterial). • No introns more meaningful.
©
Features
• Human genome too large. • Insert size : low.
CRISPR CAS 9
Clustered regularly interspersed short palindromic sequence associated gene 9
Origin :
Bacterial defence system : Acquired/adaptive immunity. encodes for
Cas endonuclease (Cas 9)
Use :
Novel genome editing technology
• Therapeutic : First FDA approved CRISPR Cas 9 Casgevy (By Vertex
Pharmaceuticals) for treatment of sickle cell anemia.
• Targeted mutagenesis (Create a mutation).
• Gene knock out (Removing a specific gene from genome).
• Modulating gene expression :
- via CRISPR Cas 9.
Cas 9 endonuclease
Mutation
m
o
l.c
ai
gm
5@
00
u2
Defective DNA
ar
M
©
Step III : DNA repaired by endogenous mechanism (Non-homologous end joining >
homologous recombination) Most crucial step.
m
o
l.c
ai
>90°C temperature
gm
Forward Reverse 5@
primer primer
00
u2
Step 2 : Annealing
m
k
ic
• 54°C temperature.
h
Taq polymerase
ar
M
Step 3 : Extension
©
• 72°C Temperatur
(68-75°C).
• Taq polymerase
required. I cycle of PCR : produces 2 target DNAs.
• Mgcl2, KCl added.
Technique :
RNA Index :
m
Reverse transcriptase cDNA-complimentary DNA.
o
l.c
RNA
ai
gm
cDNA 5@
RNAse H (Removes RNA)
00
CDNA
u2
m
k
ic
Methods of quantification :
1) Intercalating dyes : Only bind to double stranded DNA.
Eg :
• Ethidium bromide (Mutagenic).
• SYBR green (More popular).
Less hazardous
2) Sequence specific probes.
Eg :
• Taqman probe.
• Molecular beacon.
• Fluorescence resonance evergy transfer (FRET) probe.
m
o
l.c
dsDNA with bound SYBR green : Extension (No fluorescence)
ai
gm
• Emits fluorescence 5@
exponentially
00
u2
Fluorophore and
mk
Easily detected
ic
(Emits fluorescence)
ka
|
Ct value :
w
ro
ar
M
©
Fluorescence curve
RFU
(Relative
fluorescence
unit)
Ct
Threshold value
2 4 6 8 10 12 14 16 18 20 22
PCR cycle number
Using Ct values to determine relative initial sample DNA : ----- Active space -----
• Sample 1 : Ct1 = 8 • Initial DNA in Sample 2 = N1 = 256 = 32
No. of amplified products Initial DNA in Sample 1 N2 8
(N1) = 2Ct1 = 28 • Interpretation : Sample 2 has 32 times
N1 = 256 mole initial DNA than Sample 1 Early
• Sample 2 : Ct2 = 3 detection of flourescence in Sample 2.
No. of amplified produces
(N2) = 2Ct2 = 23
N2 = 8
1
• Initial DNA ∝
Ct
Applications of PCR :
1. Detect and quantify infectious agent : Even if it is latent.
m
2. Accurate diagnosis of mutation : Produces DNA fragment for subsequent
o
l.c
analysis by other molecular technique.
ai
gm
3. Detect allelic polymorphism : 5@
• Single base pair changes.
00
Mechanism :
Sample
Advantage:
Accurate detection and quantification of low abundant targets.
(↑ amplification & ↑ sensitivity).
Positive droplets.
(With DNA)
Negative droplets
(Without DNA)
Single DNA
drop from Sample partitioned Multiple PCR reactions
sample into many reactants
m
Multiple read outs
o
l.c
ai
gm
5@
Absolute Negative
00
possible
m
k
Positive read
hic
outs
rt
ka
|
w
ro
ar
M
4. Multiplex PCR :
©
Denatured DNA
Simultaneous
amplification of
multiple targets using
random primers
Advantage : Time saving.
Disadvantage : Not Specific.
o m
l.c
ai
1st set of PCR g
5@
2nd set of
amplification
00
Amplification
u2
1st set of
m
product
k
hic
rt
ka
|
w
ro
Mechanism of specificity :
ar
M
©
1) Based on temperature :
PCR NASBA
bDNA technique
LCR Qβ replicase
Multiplex ligation probe amplification (MLPA) :
Annealing of 2 adjacent oligonucleotide probes (MLPA probes) to a segment of
genomic DNA followed by quantitative PCR
Reverse
primer
m
Forward Probe sequence Sizing
o
l.c
primer (Complimentary to target DNA) sequence
ai
Fluorophore
gm
5@
00
Can be ligated
k
hic
Uses :
rt
ka
Step I : Denaturation
Step II : Hybridisation
(Binding) of both probes
Types :
m
o
l.c
1) Maxam Gilbert sequencing : 3) Pyrosequencing :
ai
gm
• Chemical cleavage. • Chain addition techinque.
5@
• Only for small DNA fragments. • More sensitive than Sanger’s
00
sequencing.
u2
m
results. time.
w
ro
ar
M
SANGER’S SEQUENCING
©
No OH group at 3’ :
Cannot form 3’-5’ phosphodiester bond
Interpretation of results :
om
l.c
Position can be determined
ai
1
gm
2 5@ by corresponding dideoxy
3 nucleotides and their
00
4
fluorescences.
u2
5
m
6 Eg :
k
7
h ic
8 Position of G : 1, 6, 10 (Yellow
rt
9
ka
10 fluorescence of ddCTP).
|
11
w
ro
12
ar
M
Simultaneous sequencing
©
Position T A C G
Lane ddA ddT ddG ddc
DNA Ladder :
Contains all the 12 fragments
Capillary electrophoresis :
• Automated sequencing.
• Yields quick results.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Amplification & Sequencing Techniques 393
m
o
A G C T G C T
l.c
A
ai
T C G A
gm
5@ PPi
DNA primer Does not (Pyrophosphate)
00
+ ATP
m
Luciferase
ic
dATP dATP
h
dATP phosphosulphate
rt
dATP
ka
Light
|
w
dATP Detected by
M
©
Applications :
1) Clinical genetics :
a. Identifies more mutations than simple Sanger’s sequencing.
Eg :
• Substitution • Translocation
• Inversion • Indels
b. Used in population based studies.
c. Study of heterogenous DNA.
2) Microbiology :
Identification of pathogens by genomic definition rather than conventional
characterisation.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
394 Molecular Biology
m
o
l.c
specific to antigen • HGPRTase negative (Depends on
ai
gm
Isolation of B-cells other cells for salvage pathway).
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
m
o
Types of mutations 00:02:28
l.c
ai
gm
Mutations : 5@
Class Group Type
00
u2
Synonymous
m
Missense
|
Base
w
substitution
ar
acid Valine).
• Change in encoded amino acid.
Nonsense
• Stop codon coded.
• E.g. UGA, UAG, UAA.
TYPES OF MISSENSE MUTATIONS
A. Based on functionality of protein coded :
1. Acceptable missense mutation :
• No clinical symptoms
β chainExample :
Codon Amino acid Protein
Normal AAA or AAG 61 position : Lysine
st
Normal Hb
Hb Hikari
Altered AAU or AAC Aspartic acid
• No clinical symptoms.
• Altered electrophoretic mobility.
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
396 Molecular Biology
m
Loss of function of protein coded
o
l.c
Example :
ai
α chain Codon gm
5@
Amino acid Protein
00
E7 Histidine
u2
Note :
Base substitutions
Transition Transversion
• 1 purine another purine • Purine Pyrimidine
• 1 pyramidine another pyramidine e.g. GAG GUG
Adenine Uracil
(Purine) (Pyrimidine)
Missense mutations
Replaced by Replaced by
m
o
Branched chain amino acid
l.c
Valine
ai
Non polar
gm
5@
00
00:16:40
m
k
ic
Insertion Deletion
M
©
Non Non
Frameshift Frameshift
frameshift frameshift
Number Multiples Multiples
of bases of 3 (Entire of 3 (Entire
Non multiples of 3 Non multiples of 3
added/ codon codon
removed added) removed)
Normal mRNA : Normal mRNA :
AUG CAA UGG UUA GCA UUU AUG CAA UGG UAA CCA UUU
Normal protein : Normal protein :
Met-Gln-Trp-Leu-Ala-Phe Met-Gln-Trp-Leu-Ala-Phe
Examples
Mutant mRNA : Mutant mRNA :
AUG -CAA-UGG-UCU-AGC-AUU AUG-CAA-UGG-UAG-CAU
Mutant protein : Mutated protein :
Met-Gln-Trp-Serine-Serine-Ile Met-Gln-Trp-Stop
Methods :
m
Detects
o
1. Cytogenetic analysis Numerical (aneuploidy) or
l.c
ai
structural abnormality in
gm chromosome
5@
Karyotyping Fluorescent in situ
00
u2
hydridisation (FISH)
m
k
Methods Remarks
|
w
Expensive
M
m
Fragment
o
l.c
Length
ai
Pyrosequencing Sanger’s
gm
polymorphism
sequencing
5@
(RFLP)
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
FUNCTIONS OF LIVER
m
o
• Lipoprotein (VLDL, HDL).
l.c
ai
gm
Liver
5@
00
Storage : (Excretion) :
k
ic
CLASSIFICATION OF LFT
SERUM BILIRUBIN
Normal levels :
• Total : 0.2-0.8 mg/dL.
• Conjugated : 0-0.2 mg/dL.
• Unconjugated : 0.2-0.6 mg/dL.
m
o
Reactions :
l.c
ai
gm Diazotized sulfanilic acid
5@
00
+ Sample
u2
m
k
hic
rt
ka
|
Colour
w
ro
change
ar
M
Immediate color change Color on adding alcohol Color deepens on adding alcohol
©
Interpretation :
Bilirubin
Jaundice Cause/Reaction
Total Direct Indirect
↑Hemolysis
Pre-hepatic • Sickle cell anemia ↑ N ↑
• Hereditary spherocytosis
Hepatic Biphasic reaction ↑ ↑ ↑
Post hepatic/ Obstruction : Conjugated
↑ ↑ N
obstructive bilirubin accumulation and spill
SERUM ALBUMIN
Significance :
• Assess synthetic function :
- All plasma proteins are synthesized by liver.
- Exception : Immunoglobulin (Synthesized by B lymphocytes).
• Most abundant plasma protein.
• Long half life : 20 days.
- Chronic liver disease ↓Albumin level.
- Differentiate b/w acute & chronic condition.
m
o
l.c
ai
A/G Ratio :
• Normal albumin : 3.5-5 g/dL gm
5@
Normal Albumin Globulin ratio : 1.5-2.5.
• Normal globulin : 2-3.5 g/dL
00
u2
m
m
o
l.c
• α 1 ALP : Specific marker of
ai
gm
obstruction 5@ • Very high level : Cholestasis
s. ALP • α2 heat labile ALP : Specific - Intrahepatic
00
- γ ALP : Intestine
ro
ar
Alcohol intake
M
©
Released to blood
• Enzyme in plasma • Highly ↑ : Obstructive liver
2-10
s. 5’ Nucleotidase membrane disease
IU/L
• More specific than ALP • Moderately ↑ : Hepatitis
• ALT ↑↑ • ALT N
• AST ↑ • AST N
• ALP N • ALP ↑↑
>2 <2
Alcoholic liver disease Hepatocellular injury
m
o
l.c
ai
s. Albumin
gm
5@
00
N
u2
↓
m
RBC lysis
Obstruction Hemolysis :
↑↑Bilirubin
Portosystemic
Bile salt pigments spill shunt :
to systemic circulation ↑Conjugated ↑↑Urobilinogen
bilirubin in liver in circulation
Enterohepatic
circulation Excreted
by
kidney
↑↑Urobilinogen UB
in intestine
m
↑Urobilinogen
o
l.c
Excreted in urine in urine
ai
gm
5@
00
Note :
u2
m
SUMMARY
Jaundice :
INTERPRETATION OF RESULTS
Jaundice
m
Test Parameter
o
Prehepatic Hepatic Posthepatic
l.c
ai
Total bilirubin ↑ ↑ ↑
gm
5@
Direct bilirubin Biphasic ↑↑
00
s. Albumin
k
ic
Prothrombin time
h
rt
ka
Liver s. ALT N N
|
w
enzyme s. AST N N
ro
ar
Functions of Kidney :
Excretion : Hormone :
• Water • Erythropoctin
• Salt • Activation of Vit D :
• Metabolic waste 25-HydroxyCholecalciferol
1α hydroxylase
Homeostasis : 1,25-Dihydroxy cholecalciferol
m
o
l.c
• Acid base balance Metabolic :
ai
gm
• Electrolyte balance 5@ • Gluconeogenesis
00
Physical Characteristics :
Character Normal Abnormal
• Polyuria: >3000 mL/d.
Volume 1.5 L/d • Oliguria: <400 mL/d.
• Anuria : <100 mL/d.
• Yellow : Jaundice.
• Red : Blood in urine.
Color Amber
• Reddishbrown : Hemoglobin in urine.
• Black : Alkaptonuria.
Odor Aromatic -
Specific gravity 1.015 - 1.025 (Measure of solutes) -
PH 5.5 - 7.5 -
SERUM CREATININE
Creatinine Phosphate Creatinine
(Muscle) (Excreted in urine).
m
o
l.c
ai
Normal level : 0.7 - 1.4 mg/dL
Method of Estimation : gm
5@
00
u2
Increased Creatinine :
• Glomerulonephritis.
• Pyelonephritis.
• Renal failure.
• Obstruction to urinary tract.
BLOOD UREA
• End product of protein catabolism : Disposes toxic NH3.
• Synthesized in liver Excreted in urine.
Normal level : 20 - 40 mg/dL.
Method of estimation :
• Chemical method : M/c (Diacetyl Monoxime method).
• Enzymatic method.
Abnormal Urea :
↑ Urea : ↓ Urea :
• ↓Protein intake.
Pre-renal : Renal : Post-renal : • Hepatic failure
m
(↓Synthesis of urea).
o
• Dehydration • Acute glomerulo Obstruction d/t
l.c
• Overhydration.
ai
• ↑Protein intake nephritis. • Stones.
• ↑Protein breakdown • Pyelonephritis. gm
• Strictures.
5@
00
- Enlargement.
m
k
ic
- Tumor.
h
rt
ka
Calculation :
©
Markers of
m
capillaries capsule
o
l.c
ai
GFR : 125 mL/min = 170-180 L/day
2 Reabsorption : Tubules Blood gm
5@
00
Process of filtration
Calculation :
Cs : Clearance of substance ‘s’
UXV U : Concentration of substance in urine
Cs =
P P : Concentration of substance in blood
V : Urine flow rate (Volume in mL/min)
m
• Constant blood levels
o
Exogenous :
l.c
ai
• Inulin (Gold standard) : Ideal.
gm
5@
00
Creatinine Clearance :
u2
m
Method :
k
ic
• U, V, P measured.
Calculation :
Uncorrected : Corrected :
UXV U X V X 1.73
Cc = Cc =
P PXA
• Corrected to body surface area.
• Used for children, tall/short people.
• A : Body surface area.
• 1.73 : Average body surface area of an adult.
Normal value :
• Males : 95 - 115 mL/min
10% secreted (Slightly lower than GFR).
• Females : 85 - 110 mL/min
m
• Females : 15 - 21 mg/dL.
o
l.c
ai
gm
5@
Estimated GFR/eGFR :
00
eGFR (mL/min) = 140 - Age (yrs) X weight (kg) X 0.85 (If female)
w
ro
72 x s. Creatinine (mg/dL)
ar
M
MDRD :
©
Cystatin C :
• Cysteine protease inhibitor.
• Newer marker for GFR.
Less preferred :
• Clearance affected by pre-renal factors.
• Urea is reabsorbed (Curea< GFR).
Calculation :
• Maximum urea clearance :
Curea =
- Normal 75 mL/min
• Standard urea clearance :
m
- When urine flow rate <2 mL/min.
o
l.c
ai
U X √V
gm
Curea =
P 5@
00
- Normal : 54 mL/min.
u2
• Inulin :
m
k
ic
- Gold standard.
h
rt
- Polymer of fructose.
ka
|
w
Advantage : Disadvantage :
ro
ar
• ↑Vascular permeability
Glomerular Hypoalbuminemia Proteinuria >3g/day
• Damaged glomerulus
• Acute glomerular nephritis
• Nephropathy :
- Diabetes mellitus
- Hypertension
↓Tubular reabsorption
m
o
• Fanconi syndrome
l.c
Tubular
ai
Low molecular weight protein • Nephrotoxic drugs
gm
5@
present in urine.
00
• Hemoglobinuria : ↑Hb
u2
proteinuria
ic
Microalbuminuria :
ro
ar
ALBUMIN-CREATININE RATIO :
Concentration of albumin (mg/dL)
A : C (mg/g) = x 1000
Concentration of creatinine (g/dL)
Normal value :
• Males : <23 mg/g of creatinine.
• Females : <32 mg/g of creatinine.
Advantage : Spot urine collection (24 hr urine collection not required).
Biochemistry • v1.0 • Marrow 8.0 MBBS - First Year • 2024
Renal Function Tests 415
m
o
l.c
• Dipstick test.
ai
Tubular Function Tests gm
5@
01:06:00
00
u2
m
Instrument : Urinometer.
Normal value : 1.015 - 1.025.
Interpretation :
Increased Decreased
• Overhydration
• Diabetes insipidus
• Severe dehydration
• Chronic renal conditions :
• Diabetes Mellitus
- Chronic glomerulonephritis
- Chronic renal failure
Isosthenuria :
Plasma osmolarity = Urine osmolarity (Fixed urine specific gravity : 1.008 - 1.014)
m
↑Water intake After emptying bladder, 1200 mL water is given
o
l.c
ai
gm
Dilution test ↓Tubular reabsorption of water 5@ Collect 4 hourly urine separately
00
u2
Principle :
w
ro
• ↑Excretion of H+.
ar
M
• ↑Reabsorption of HCO3..
©
Procedure :
• Give NH4C1 capsule orally.
• Collect urine hourly for 8 hours.
• Detect pH.
NH4CL NH4+ + Cl-
Detoxified by liver H+ HCl
Urea (↓Urinary pH : <5.5)
C/I : Hepatic failure.
m
o
l.c
Acute renal failure :
ai
gm
• Edema (Puffiness of face). 5@
• Oliguria or anuria.
00
• Sudden onset :
u2
m
• Nausea/Vomiting.
ro
ar
M
Screening for renal disease : Glomerular function tests : Tubular function tests :
• Complete : Clearance test : •
- Physical characteristics. • clearance. • Urine
- Chemical characteristics. • clearance. • Urine
• s. • Urine
• s.
Thyroid Gland :
Butterfly-shaped gland located in the front of the neck.
m
o
l.c
ai
Contains tyrosine residues Iodination Thyroid hormone.
gm
5@
Blood Epithelial cells of thyroid follicle Thyroid follicle
00
u2
mk
Na+ I- transporter
h ic
rt
1 I TPO I
|
I-
I- 3
w
I-
ro
ar
I-
M
I-
©
TPO
4 Organification : I + Tyrosine TPO MIT
2I + Tyrosine 3,5 DIT/DIT
Formation of T3 & T4 :
m
Organification :
o
l.c
Addition of I- to the phenol ring of tyrosine in thyroglobulin.
ai
gm
5@
OH OH OH
00
I I I
u2
k m
h ic
rt
ka
|
Coupling :
©
OH OH
I I
I I
O
I I
DIT
+
OH
I I
3,5,3’,5’ Tetraiodothyronine (T4) :
• Prohormone.
• 80% of thyroid hormone produced.
DIT
MIT
O
I I
+
OH
I H
3,5,3’ Tri-iodo thyronine (T3) :
• Active hormone.
• 20% of thyroid hormone produced.
DIT
m
o
l.c
ai
gm
Peripheral deiodination : 5@
T4 Deiodinase T3
00
+ Selenium
u2
m
Thyroid hormone :
• S. total T3, T4.
• S. free T3, T4(FT3, FT4).
Antithyroid antibodies :
• Anti TPO (Thyroid peroxidase).
• Anti thyroglobulin.
• TRAb (TSH receptor stimulating antibody).
Others :
• Radioactive iodine uptake.
• TRH response.
• S. thyroglobulin.
• S. thyroid binding globulin.
• S. cholesterol (Non-specific).
m
THYROID HORMONES
o
l.c
ai
gm
Characteristics 5@ Normal range
Total T4 • Total molar concentration of T4 = 100 x T3 4.6 - 10.5 µg/dL
00
u2
Free T4 • Correlates with the clinical status of the 0.8 - 2.7 ng/dL
hic
rt
patient
ka
|
• 0.3% of total T3
Free T3 210 - 440 pg/dL
• Unbound & bioactive form
ANTI-THYROID ANTIBODIES
Anti TPO
Anti Tg Autoimmune thyroiditis (Hashimoto’s).
Procedure :
TRH administration
TSH N No response
m
o
l.c
Iodine uptake by thyroid gland
ai
gm
5@
↑ ↓ Elsewhere
00
u2
m
Ectopic or hemithyroid
h
rt
ka
Cholesterol :
• Hypothyroidism :
↑Cholesterol levels (D/t ↓degradation of cholesterol carrying lipoprotein).
• Not diagnostic.
Hyperthyroidism Hypothyroidism
m
o
l.c
ai
gm
Primary Central 5@ Subclinical
(Secondary/tertiary)
00
u2
HYPOTHYROIDISM
m
k
ic
Central
h
rt
Primary Subclinical
ka
Secondary Tertiary
|
w
Disorders affecting
ro
ar
thyroid gland :
M
©
• Autoimmune thyroiditis
Autoimmune
(Hashimoto’s) Hypothalamic cause
Causes Pituitary cause thyroiditis :
• Thyroidectomy (Rare)
Minimal symptoms
• Radiation exposure
• Iodine deficiency
• Drugs
T4, fT4 ↓ ↓ ↓
Low normal
T3 ↓ - -
Features of Myxedema :
m
o
l.c
ai
Periorbital edema
gm
5@
Puffy face due to edema
00
u2
m
k
hic
Myxoedema
rt
ka
HYPERTHYROIDISM
|
w
Central
ro
Primary Subclinical
ar
Secondary Tertiary
M
©
Clinical Features :
• Weight loss. • Tremor.
• Sweating. • Variable gland enlargement.
• Heat intolerance. • Tachycardia.
• Restlessness • Diarrhea.
• Menstrual irregularities :
Oligomenorrhea.
Eye Features :
m
• Proptosis : Bulging of eyeball.
o
l.c
ai
• Red eye.
• Infection of cornea/sclera gm Proptosis
5@
00
u2
TSH
rt
ka
|
w
↓ N ↑
ro
ar
M
T3, T4 No further
©
T3, T4
Primary evaluation Primary (Overt)
↑ ↓
hyperthyroidism hypothyroidism
Normal thyroid gland
Subclinical Subclinical
High N Low N
hyperthyroidism hypothyroidism
Central Central (2˚)
↓ ↑
hypothyroidism hyperthyroidism
Antibodies
Biotransformation 00:00:55
Types of Biotransformation :
Bioactivation/Toxication : Detoxification :
Parent compound Parent compound
m
Toxic compound. Less toxic compound.
o
l.c
ai
Xenobiotic Reactions :
• Biotransformation of xenobiotics. gm
5@
• M/c : Detoxification.
00
u2
m
Xenobiotics :
k
hic
• Eg :
|
w
- Drugs.
M
PHASE I REACTION
Compound rendered more reactive by introducing groups that can be conjugated
with a conjugating agent (Eg : Glucuronic acid, glutathione).
Eg :
Mnemonic : RHODE
• Reduction.
• Hydroxylation/Hydrolysis.
• Oxidation.
• Desulfuration.
• Epoxidation.
Enzyme Characteristics
i) Hydroxylase • Requires Cytochrome P450
(Monooxygenase/ • Eg : Toluene Benzyl alcohol
Mixed function oxidase) NADPH NADP+
Oxidase • Eg :
Aldehyde DH
- Alcohol Alcohol DH Acetaldehyde Acetate
ii) Dehydrogenase (DH)
- Methanol Formaldehyde
Toxication
- Ethylene glycol Oxalic acid
• Requires Cytochrome P450
• Eg :
m
Reduction Reductase - Nitrobenzene Aniline
o
l.c
- Picric acid Picramic acid
ai
gm
- Paranitrophenol
5@ Para aminophenol
• Hydrolytic cleavage by covalent bond breakage
00
u2
Hydrolysis Hydrolase • Eg :
ic
h
rt
- Acetanilide Aniline
|
w
ro
ar
M
PHASE II REACTION
©
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©
Oncogenesis 00:00:50
CANCER
Definition (UICC : International Union Against Cancer) :
Disturbance in growth characterised by excessive proliferation of cells without
apparent relation to physiological demands of the organs involved.
Causes :
Multifactorial disorder :
• Genetic.
m
o
l.c
• Hormonal.
ai
gm
• Environmental. 5@
• Metabolic.
00
• Physical.
u2
m
• Chemical.
k
hic
rt
Mutagens :
ka
Eg :
©
Compounds Examples
Benzopyrene (Cigarette smoke),
Chemical Aromatic hydrocarbons
chloranthrenes
mutagens
Nitroso compounds Dimethyl nitrosamine
Natural compound - Aflatoxin
Antimutagens :
• AKA antioxidants.
• ↓ progression of carcinogenesis.
Eg :
• Vit A. • Curcumin.
• Vit E. • Flavonoids.
• Vit C. • Phenolic compounds (Fruits).
Eg :
• Growth factor : FGF (Fibroblast growth factor), EGF ( Epidermal growth factor).
• Growth factor receptors.
• Signal transduction.
Oncogene :
Protooncogene
Mutation or overexpression
Oncogene
m
o
l.c
Eg. :
ai
gm
Oncogene Virus 5@ Product
abl Abelson leukemia virus Tyrosine kinase
00
u2
Oncosuppressor Gene :
©
Tumour Markers :
• Biomarkers. released from the tumour.
• Use : Dx, prognosis, monitoring of cancer.
Markers Cancer
Alpha feto protein (AFP) Hepatocellular carcinoma, germ cell tumours
Carcinoembryonic antigen GIT tumours
Beta hCG Choriocarcinoma
CA-125 Ovarian cancer of epithelial origin
CA 19.9 Ca pancreas
PSA (Prostate specific antigen) Ca prostate
Estrogen receptor Breast cancer
Progesterone receptor Uterine cancer
mo
l.c
Enzymes Cancers
ai
gm
ALP 5@ Bone tumours
PSA
00
Prostate cancer
u2
Alcohol 00:11:50
w
ro
ar
METABOLISM
M
©
Sites :
Cytoplasm : Predominant site.
Alcohol Acetaldehyde
dehydrogenase dehydrogenase
Alcohol (Ethanol) Acetaldehyde Acetate.
NAD+ NADH NAD+ NADH
Microsome :
Alcohol (Ethanol) CYP2E1 (MEOS) Acetaldehyde.
NAD+ NADPH
MEOS (Microsomal Ethanol Oxidation System) :
Protective factor against alcohol toxicity in certain populations.
Peroxisome :
Alcohol (Ethanol) Acetaldehyde.
H20 H202 Free radical handled by Catalase
m
o
2. ↑Gluconeogenesis.
l.c
ai
gm
3. ↓ TCA cycle : 5@
- Isocitrate dehydrogenase (ICDH) NAD+
00
↑ NADH
m
↑ Acetate
w
ro
ar
M
↑ Acetyl CoA
©
↑ Fatty acid
FREE RADICALS
• Molecule or molecular fragment that contains one 0r more unpaired electron in
its outer orbit.
• Represented as R°.
Sources :
• Electron leakage from electron transport chain (ETC).
• Oxidation reactions :
m
o
- Xanthine oxidase
l.c
ai
- α-oxidation in peroxisome Produces H202.
- L aminoacid oxidase gm
5@
00
• Respiratory burst :
u2
m
NADPH oxidase
|
w
ro
ANTIOXIDANTS
Antioxidants/Free radical scavenging
Catalase :
In peroxisome : 2H2O2 Catalase 2H2O + 02.
m
Cytosol Mitochondria
o
l.c
+ +
ai
gm
Cofactor : Copper. 5@ Manganese.
00
u2
m
Lipophilic Hydrophilic
w
ro
ar
Site of
M
• Vit E/α-tocopherol :
- Most potent, natural antioxidant
• Ascorbate/Vit C
Eg - Potentiator : Selenium
• Uric acid
• Beta carotene
• Ubiquinone
Hemolysis.
• Lipid peroxidation (In biomembrane).
• Loss of protein function.
Site Disease
Eye Retinopathy Macular degeneration, cataract
RS Bronchial asthma, respiratory disorders
Liver Fatty liver
GIT Gastric ulcer, colitis
Brain Dementia, degenerative diseases (Alzheimer’s ds, Parkinson’s ds)
Heart Cardiac failure, arrhythmia
Kidney Kidney failure
Skin Accelerated aging, Wrinkle, pigmentation, sagging
m
o
l.c
ai
gm
5@
00
u2
m
k
hic
rt
ka
|
w
ro
ar
M
©