0% found this document useful (0 votes)
41 views5 pages

MCP S7 Sol

The document contains solutions to various mathematical inequalities and problems, providing step-by-step reasoning for each answer. It includes exercises and their solutions, demonstrating the application of mathematical concepts. The solutions cover a range of topics, including inequalities, algebraic expressions, and graph interpretations.

Uploaded by

lineareu.o
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
41 views5 pages

MCP S7 Sol

The document contains solutions to various mathematical inequalities and problems, providing step-by-step reasoning for each answer. It includes exercises and their solutions, demonstrating the application of mathematical concepts. The solutions cover a range of topics, including inequalities, algebraic expressions, and graph interpretations.

Uploaded by

lineareu.o
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Unit S7 Solutions 1

Unit S7 Ine qualities in One a − c = 0 and b − d = 1 − 2 = −1


Unkno wn ∴ a−c>b−d
∴ II may not be true.
Exercise (P. S7-4)
For III: Let a = −2, b = −1, c = 0 and d = 1.
Then a < b and c < d.
1. B
ac = 0 and bd = −1
For I: Let x = 1 and y = −2, then x > 0 > y.
∴ ac > bd
x2 = 1, y2 = (−2)2 = 4
∴ III may not be true.
∴ x2 < y2
∴ The answer is A.
∴ I may not be true.
For II: ∵ x>0>y
1 1 4. D
∴ >0>
x y Let a = 1 and b = −2.
∴ II must be true. b
For A: =−2<0
For III: Let x = 1 and y = −1, then x > 0 > y. a
x y −1
1 1 1 1 ∴ It may not be true.
  = ,   =  =3
3 
3 3 3
    For B: a + b = −1 < 0
x y
1 1 ∴ It may not be true.
∴   < 
3 3 For C: a2b3 = −8 < 0
∴ III may not be true. ∴ It may not be true.
∴ The answer is B.
For D: b – a = b + (−a)
∵ a>0
2. B ∴ −a < 0
For I and II: ∵ xy < 0 and b < 0
i.e. (x > 0 and y < 0) or (x < 0 and y > 0) ∴ b + (−a) < 0
x i.e. b − a < 0
∴ <0
y
∴ It must be true.
∴ I and II must be true.
∴ The answer is D.
For III: Let x = 2 and y = −1, then xy < 0.
x + y = 2 + (−1) = 1 > 0
∴ III may not be true. 5. D
4
∴ The answer is B. 3( x − 2)  ( x + 1)
3
9( x − 2)  4( x + 1)
3. A 9 x − 18  4 x + 4
For I: ∵ a < b and c<d 5 x  22
22
∴ a – b < 0 and c – d < 0 x
5
(a + c) − (b + d) = (a − b) + (c – d) < 0
i.e. a + c < b + d
∴ I is true.
For II: Let a = 0, b = 1, c = 0 and d = 2. ∴ The answer is D.

Then a < b and c < d.


2 Mathematics Today for HKDSE – Multiple Choice Practice

6. 12. A
A
3x + 1 > 2(2x + 1) x−2
x− >4 or 5 > 3 − x
3x + 1 > 4x + 2 3
3x − x + 2 > 12 or x > −2
−x > 1
2x > 10 or x > −2
x < −1
x>5 or x > −2
∴ −2 is a solution of the inequality.
∴ x > −2
7. D
1
x −1  2( x − 3)
2 13. D
x−2 4( x − 3)
x−2 4 x − 12
−3x  −10
10
x
3
7
∴ is not a solution of the inequality.
2

8. A
A From the graph,
2x − 4 < 6 < −3x the required solution is x  a or x  b.
2x − 4 < 6 and 6 < −3x
2x < 10 and 3x < −6
14. A
x < 5 and x < −2 Since the coefficient of x2 is −1(< 0), the parabola
∴ x < −2
opens downward.
Sketch:
9. B

24 − 3x > −6x and 5x + 15 > 0


3x > −24 and 5x > −15
x > −8 and x > −3
∴ x > −3
From the graph,
the required solution is x = −5.
10. C
1 15. D
− x2 or −x + 2  1
2
x2  9
x  −4 or −x  −1
x2 − 9  0
∴ x  −4 or x 1
(x + 3)(x − 3)  0
∴ x  −3 or x  3
11. A
2x + 3  1 or 8 − 7x  29
16. C
2x  −2 or −7x  21
x(x − 4)  0
x  −1 or x  −3
∴ x0 or x  4
∴ x  −1
Unit S7 Solutions 3

17. C 23. B
(x − 1) > 0
2 2x + 1 4x − 1
>5>
3 7
∴ The required solution is all real values of x
except 1. 2x + 1 > 15 and 35 > 4x – 1
i.e. x < 1 or x > 1 2x > 14 and 36 > 4x
x>7 and x<9
18. C ∴ 7<x<9

2 + 3x − 2x2 > 0 As x is an integer, x = 8

2x2 − 3x − 2 < 0
(2x + 1)(x − 2) < 0 24. C
1 x > 0, y < 0, i.e. x is positive and y is negative.
∴ − <x<2
2
For I, (+)(−) = (−)

19. D For II, let x = 2 and y = −1.

(3x + 2)2  (3x + 2)(2x − 1) x + y = 2 + (−1) = 1 > 0


(+)
(3x + 2)(3x + 2 − 2x + 1)  0 For III, = ( −)
( −)
(3x + 2)(x + 3)  0
∴ Only I and III must be negative.
2
−3  x  −
3
2 25. D
∴ The maximum value of x is − .
3
An obtuse angle is greater than 90° but less than 180°.

20. B ∴ 90° < (2x − 10)° < 180°


100 < 2x < 190
3x2 – x − 4  0
50 < x < 95
(3x − 4)(x + 1)  0
4
−1  x 
3 26. A
The positive integer satisfying the inequality is 1. BC is the longest side.
∴ There is only 1 positive integer. ∴ x > 8 ………………………………..(i)
By Triangle Inequality Theorem,
21. D
x<6+8
x − 4 > 5 − 2x or 4 > 3x + 10
x < 14 …………………………………..(ii)
3x > 9 or −6 > 3x
Combining (i) with (ii), 8 < x < 14
x>3 or x < −2
∴ x < −2 or x > 3
27. C
22. C ∵ x2 + 6x + k > 0 is true for all real values of x.
2x − 4 ∴ x2 + 6x + k = 0 has no real roots.
−x < 3 or > −2
4 i.e. ∆<0
x > −3 or 2x − 4 > −8
6 − 4(1)(k) < 0
2
x > −3 or 2x > −4
36 < 4k
x > −3 or x > −2
∴ k>9
∴ x > −3
4 Mathematics Today for HKDSE – Multiple Choice Practice

28. 3. B
B
x log 0.01 < log 10 2x − 5  5 − 2x

x(−2) < 1 4x  10
5
∴ x > −0.5 x
2
x can be 1 or 2 , so the least value of x is 1.
29. D
Substituting x = −1 into x2 − 4x + c = 0,
4. D
(−1)2 − 4(−1) + c = 0
0 < 3x − 1 < 2x + 7
1+4+c=0
0 < 3x − 1 and 3x − 1 < 2x + 7
c = −5
1 < 3x and x<8
x2 + 4x − 5 < 0 1
∴ <x<8
(x + 5)(x − 1) < 0 3
∴ −5 < x < 1 S does not satisfy the inequality, since it is a point
greater than 8.

Test (P. S7-7)


5. B
1. C −7x < 18 − 4x and 5x − 6 > −x

For I: Let a = −2 and b = 1. −3x < 18 and 6x > 6


a2 = 4 > 1 = b2 x > −6 and x>1
∴ I may not be true. ∴ x>1
For II: a<b
a−k<b−k
6. C
∴ II must be true.
2x
For III: ∵ k2 > 0 and a < b − < 4 < 5x − 1
3
∴ ak2 < bk2 2x
− < 4 and 4 < 5x − 1
∴ III must be true. 3
∴ The answer is C. −2x < 12 and 5 < 5x
x > −6 and x>1
2. C ∴ x>1
For A: As x > 3, −x < −3.
∴ It is true.
7. D
For B: 2x > 6
x>3 7 − 2x > 3x − 8 or 9 − 4x < 1
∴ It is true. 15 > 5x or 8 < 4x
For C: Let x = 4 > 3, then x<3 or x>2
(x − 3)(x − 5) = (4 − 3)(4 − 5) = −1 < 0 ∴ The solution is all real numbers.
∴ It may not be true.
8. B
1 1
For D: < 5 1
x 3 −2x + 1 > 5 or 2x + < x− 2
2 2
x>3 3 9
−2x > 4 or x<−
∴ It is true. 2 2
∴ The answer is C. x < −2 or x < −3
Unit S7 Solutions 5

∴ x < −2 14. A
9. A x < −5 or x>a
ax > 2( x − a ) x+5<0 or x − a > 0
ax > 2 x − 2 a
(x + 5)(x − a) > 0
( a − 2) x > − 2 a
x2 + 5x – ax – 5a > 0
− 2a
x< (As a < 2, a − 2 < 0.) x2 + (5 − a)x − 5a > 0
a−2
2a i.e. 5a = 5 and 5 − a = b
∴ x<
2−a ∴ a = 1 and b=4

10. B
15. C
(1 − 2x)(x + 1)  1 − 2x x2 + 2x − k2 = −2
(1 − 2x)(x + 1 − 1)  0 x2 + 2x − (k2 − 2) = 0
x(1 − 2x)  0 Since the equation has no real roots, ∆ < 0.
x(2x − 1)  0 i.e. 22 − 4(1)[−(k2 − 2)] < 0
1
∴ 0 x  4 + 4(k2 − 2) < 0
2
k2 < 1
11. C ∴ −1 < k < 1
(2x + 1)2 – 4(2x + 1) – 5 > 0
(2x + 1 − 5)(2x + 1 + 1) > 0
(2x − 4)(2x + 2) > 0
∴ x < −1 or x > 2

12. C
(x − 4)2 < 4
(x − 4)2 − 22 < 0
(x − 4 + 2)(x − 4 − 2) < 0
(x − 2)(x − 6) < 0
2<x<6
∴ The smallest integer satisfying the inequality is 3.

13. C
x2 − kx + 1 = x
x2 − (k + 1)x + 1 = 0
Since the equation has real roots, ∆  0.
i.e. [−(k + 1)]2 − 4(1)(1)  0
(k + 1)2 – 22  0
(k + 1 + 2)(k + 1 − 2)  0
(k + 3)(k − 1)  0
∴ k  −3 or k  1

You might also like