ECT303 DIGITAL SIGNAL
PROCESSING
     MODULE 4 - PART II
 REALIZATION OF IIR FILTERS
  Ms. Neethu Radha Gopan, Asst. Prof., Dept. of ECE, RSET.
    Structures for IIR Filters
2
    ➢    There are mainly 5 different structures for representing IIR Filters :
    1.    Direct Form I
    2.    Direct Form II
    3.    Transposed Form
    4.    Cascade Form
    5.    Parallel Form
    1. Direct Form I
3
    The difference equation for an IIR filter is given by
               𝑁                𝑀
    𝑦 𝑛 = −  𝑎𝑘 𝑦 𝑛 − 𝑘 +  𝑏𝑘 𝑥(𝑛 − 𝑘)
              𝑘=1              𝑘=0
    𝑦 𝑛 = − 𝑎1 𝑦 𝑛 − 1 + 𝑎2 𝑦 𝑛 − 2 + ⋯ . . +𝑎𝑁 𝑦 𝑛 − 𝑁     + 𝑏0 𝑥 𝑛 + 𝑏1 𝑥 𝑛 − 1 + ⋯
                                                              +𝑏𝑀 𝑥 𝑛 − 𝑀
    𝑦 𝑛 = −𝑎1 𝑦 𝑛 − 1 − 𝑎2 𝑦 𝑛 − 2 − ⋯ . . −𝑎𝑁 𝑦 𝑛 − 𝑁 + 𝑏0 𝑥 𝑛 + 𝑏1 𝑥 𝑛 − 1 + ⋯
                                                              +𝑏𝑀 𝑥 𝑛 − 𝑀
    This structure requires M+N+1 multipliers, M+N adders & M+N delay elements.
        x(n)          𝑏0
                                                                             y(n)
                      𝑏1
                                                            −𝑎1
                      𝑏2
                                                            −𝑎2
                      𝑏𝑀−1
                                                            −𝑎𝑁−1
                       𝑏𝑀                                  −𝑎𝑁
4
                                                           0.5+2𝑧 −1 +3𝑧 −2
    Q) Realize the IIR Filter using direct form I. 𝐻 𝑧 =
                                                            1−2𝑧 −1 −3𝑧 −2
      𝑦 𝑛 = 2𝑦 𝑛 − 1 + 3𝑦 𝑛 − 2 + 0.5𝑥 𝑛 + 2𝑥 𝑛 − 1 + 3𝑥(𝑛 − 2)
                       0.5                                                    y(n)
        x(n)
                         2                                            2
                         3                                            3
5
    Q) Realize the IIR Filter using direct form I.
       y 𝑛 = 0.5 𝑦 𝑛 − 1 − 0.25 𝑦 𝑛 − 2 + 𝑥 𝑛 + 0.4 𝑥 𝑛 − 1
6
    2. Direct Form II
7
    The difference equation for an IIR filter is given by
               𝑁                𝑀
    𝑦 𝑛 = −  𝑎𝑘 𝑦 𝑛 − 𝑘 +  𝑏𝑘 𝑥(𝑛 − 𝑘)
              𝑘=1               𝑘=0
                                          Y z     σ𝑀𝑘=0 𝑏𝑘 𝑧
                                                             −𝑘
    The system function is given by 𝐻 𝑧 =     =
                                          𝑋 𝑧   1 + σ𝑁𝑘=1 𝑎 𝑘 𝑧 −𝑘
           Y z   Y z W z
    Let        =     .
           𝑋 𝑧   𝑊 𝑧 𝑋 𝑧
                         𝑀
               Y z                                W z          1
     where         =  𝑏𝑘 𝑧 −𝑘            &           =
               𝑊 𝑧
                        𝑘=0
                                                  𝑋 𝑧   1 + σ𝑁
                                                             𝑘=1 𝑎𝑘 𝑧
                                                                      −𝑘
             W z          1                             1
    Consider     =      𝑁          =
             𝑋 𝑧      σ
                   1 + 𝑘=1 𝑎𝑘 𝑧 −𝑘   1 + (𝑎1 𝑧 −1 + 𝑎2 𝑧 −2 + ⋯ +𝑎𝑁 𝑧 −𝑁 )
    W z + 𝑎1 𝑧 −1 W z + 𝑎2 𝑧 −2 W z + ⋯ +𝑎𝑁 𝑧 −𝑁 W z = 𝑋 𝑧
    W z = 𝑋 𝑧 − 𝑎1 𝑧 −1 W z − 𝑎2 𝑧 −2 W z − ⋯ − 𝑎𝑁 𝑧 −𝑁 W z
    Taking Inverse, we get 𝑤(𝑛) = 𝑥(𝑛) − 𝑎1 𝑤(𝑛 − 1) − 𝑎2 𝑤(𝑛 − 2) − ⋯ − 𝑎𝑁 𝑤(𝑛 − 𝑁) ---- (1)
                         𝑀
                Y z
    Similarly       =  𝑏𝑘 𝑧 −𝑘 = 𝑏0 + 𝑏1 𝑧 −1 + 𝑏2 𝑧 −2 + ⋯ +𝑏𝑀 𝑧 −𝑀
                𝑊 𝑧
                        𝑘=0
    𝑌 𝑧 = 𝑏0 𝑊 𝑧 + 𝑏1 𝑧 −1 𝑊 𝑧 + 𝑏2 𝑧 −2 𝑊 𝑧 + ⋯ +𝑏𝑀 𝑧 −𝑀 𝑊 𝑧
    Taking Inverse, we get    𝑦 𝑛 = 𝑏0 𝑤 𝑛 + 𝑏1 𝑤 𝑛 − 1 + 𝑏2 𝑤 𝑛 − 2 + ⋯ . .
                                                       +𝑏𝑀 𝑤 𝑛 − 𝑀 −− −(2)
8
    Here equation (1) and (2) contain the same terms w(n) , w(n-1) , w(n-2)… Hence
    they can be used common to implement both equations. (less number of delay
    elements required)
                     x(n)                       w(n)     𝑏0            y(n)
    𝑤 𝑛 =𝑥 𝑛                                              𝑏1
                                     −𝑎1
    −𝑎1 𝑤 𝑛 − 1                                  w(n-1)
    −𝑎2 𝑤 𝑛 − 2 − ⋯ … .
    −𝑎𝑁 𝑤(𝑛 − 𝑁)                      −𝑎2                  𝑏2
                                                  w(n-2)
                                                                            𝑦 𝑛 = 𝑏0 𝑤 𝑛 +
                                                       𝑏𝑀−1                 𝑏1 𝑤 𝑛 − 1 +
                                     −𝑎𝑁−1
                                                                            𝑏2 𝑤 𝑛 − 2 + ⋯ . .
                                                                             +𝑏𝑀 𝑤 𝑛 − 𝑀
                                      −𝑎𝑁                 𝑏𝑀
9
     Q. Obtain the direct form II for the given IIR filter
      𝑦 𝑛 = −0.1 𝑦 𝑛 − 1 + 0.2 𝑦 𝑛 − 2 + 3𝑥 𝑛 + 3.6 𝑥 𝑛 − 1 + 0. 6𝑥(𝑛 − 2)
10
      Soln: Taking Z transform on both sides
      𝑌 𝑧 = −0.1 𝑧 −1 𝑌 𝑧 + 0.2 𝑧 −2 𝑌 𝑧 + 3𝑋 𝑧 + 3.6 𝑧 −1 𝑋 𝑧 + 0. 6 𝑧 −2 𝑋(𝑧)
      𝑌 𝑧 + 0.1 𝑧 −1 𝑌 𝑧 − 0.2 𝑧 −2 𝑌 𝑧 = 3 𝑋 𝑧 + 3.6 𝑧 −1 𝑋 𝑧 + 0. 6 𝑧 −2 𝑋(𝑧)
       𝑌 𝑧 (1 + 0.1 𝑧 −1 − 0.2 𝑧 −2 ) = 𝑋 𝑧 (3 + 3.6 𝑧 −1 + 0. 6 𝑧 −2 )
 𝑌 𝑧   𝑌 𝑧 𝑊 𝑧   3 + 3.6 𝑧 −1 + 0. 6 𝑧 −2             −1       −2
                                                                               1
     =     .   =                          = (3 + 3.6 𝑧 + 0. 6 𝑧 ) ×
 𝑋 𝑧   𝑊 𝑧 𝑋 𝑧   1 + 0.1 𝑧 −1 − 0.2 𝑧 −2                            1 + 0.1 𝑧 −1 − 0.2 𝑧 −2
       𝑌 𝑧                                        𝑊 𝑧              1
           = 3 + 3.6 𝑧 −1 + 0. 6 𝑧 −2                 =
       𝑊 𝑧                                        𝑋 𝑧   1 + 0.1 𝑧 −1 − 0.2 𝑧 −2
     𝑌 𝑧
         = 3 + 3.6 𝑧 −1 + 0. 6 𝑧 −2
     𝑊 𝑧
     𝑌 𝑧 = 3 𝑊 𝑧 + 3.6 𝑧 −1 𝑊 𝑧 + 0. 6 𝑧 −2 𝑊 𝑧
     Taking inverse Z transform on both sides
     𝑦 𝑛 = 3 𝑤 𝑛 + 3.6 𝑤 𝑛 − 1 + 0. 6 𝑤 𝑛 − 2 −−−−− −(1)
     Similarly,
     𝑊 𝑧                 1
           =                                    𝑋 𝑧 = 𝑊 𝑧 + 0.1 𝑧 −1 𝑊 𝑧 − 0.2 𝑧 −2 𝑊 𝑧
     𝑋 𝑧      1 + 0.1 𝑧 −1 − 0.2 𝑧 −2
     𝑊 𝑧 = 𝑋 𝑧 − 0.1 𝑧 −1 𝑊 𝑧 + 0.2 𝑧 −2 𝑊 𝑧
     Taking inverse Z transform on both sides
     𝑤 𝑛 = 𝑥 𝑛 − 0.1 𝑤 𝑛 − 1 + 0.2 𝑤 𝑛 − 2 −−−− −(2)
11
     𝑦 𝑛 = 3 𝑤 𝑛 + 3.6 𝑤 𝑛 − 1 + 0. 6 𝑤 𝑛 − 2 −−−−− −(1)
                x(n)                  w(n)    3            y(n)
                              −0.1           3.6
                              0.2             0.6
        𝑤 𝑛 = 𝑥 𝑛 − 0.1 𝑤 𝑛 − 1 + 0.2 𝑤 𝑛 − 2 −−−− −(2)
12
     3. Transposition Theorem & Transposed Form
13
     Transpose of a structure is obtained by the following steps:
        ➢ Reverse the directions of all branches in the signal flow graph
        ➢ Interchange the inputs and the outputs
        ➢ Reverse the roles of all nodes in the flow graph
        ➢ Summing points become branching points
        ➢ Branching points become summing points
        ➢ According to transposition theorem, the system transfer function remains unchanged
          by transposition
     Signal Flow Graph:
14
     ❑   Graphical representation of relationship between variables
     ❑   Basic elements are branches and nodes
     ❑   Contains set of directed branches that connect at nodes
     ❑   Node – system variable
         ➢ Source nodes – no entering branches
         ➢ Sink nodes – have only entering branches
     ❑   Delay – indicated by 𝑧 −1
     Example of signal flow graph
           Direct Form II           Corresponding Signal Flow Graph
15
     Q. Determine direct form II and transposed direct form II for the given system
               1             1
        y 𝑛 = 𝑦 𝑛 − 1 − 𝑦 𝑛 − 2 + 𝑥 𝑛 + 𝑥(𝑛 − 1)
                2             4
16
     Soln: Taking z transform,
            1 −1         1 −2
     Y 𝑧 = 𝑧 𝑌 𝑧 − 𝑧 𝑌 𝑧 + 𝑋 𝑧 + 𝑧 −1 𝑋 𝑧
            2            4
            1 −1        1 −2
     Y 𝑧 − 𝑧 𝑌 𝑧 + 𝑧 𝑌 𝑧 = 𝑋 𝑧 + 𝑧 −1 𝑋 𝑧
            2           4
              1 −1 1 −2
     Y 𝑧 (1 − 𝑧 + 𝑧 ) = 𝑋 𝑧 (1 + 𝑧 −1 )
              2      4
             Y 𝑧        1 + 𝑧 −1    Y 𝑧 W 𝑧
     𝐻 𝑧 =       =                =     .
             𝑋 𝑧       1 −1 1 −2 𝑊 𝑧 𝑋 𝑧
                   1− 𝑧 + 𝑧
                       2        4
      W 𝑧            1                                   Y 𝑧
           =                                                 = 1 + 𝑧 −1
      𝑋 𝑧        1       1                               𝑊 𝑧
              1 − 𝑧 −1 + 𝑧 −2
                 2       4
     W 𝑧          1                       1 −1    1 −2
         =                           W 𝑧 − 𝑧 W 𝑧 + 𝑧 W 𝑧 =𝑋 𝑧
     𝑋 𝑧      1      1                    2       4
           1 − 𝑧 −1 + 𝑧 −2
              2      4
               1 −1    1 −2
     W 𝑧 =𝑋 𝑧 + 𝑧 W 𝑧 − 𝑧 W 𝑧
               2       4
                1         1
     𝑤 𝑛 = 𝑥 𝑛 + 𝑤 𝑛 − 1 − 𝑤 𝑛 − 2 −−−− −(1)
                2         4
               Y 𝑧
     Similarly       = 1 + 𝑧 −1        Y 𝑧 = 𝑊 𝑧 + 𝑧 −1 𝑊(𝑧)
               𝑊 𝑧
     y 𝑛 = 𝑤 𝑛 + 𝑤 𝑛 − 1 −−−− −(2)
17
                1         1
     𝑤 𝑛 = 𝑥 𝑛 + 𝑤 𝑛 − 1 − 𝑤 𝑛 − 2 −−−− −(1)
                2         4
      x(n)               w(n)   1       y(n)
                  0.5           1
                −0.25
     y 𝑛 = 𝑤 𝑛 + 𝑤 𝑛 − 1 −−−− −(2)
                                               Corresponding Signal Flow Graph
18
     ➢   Reverse the directions of all branches in the signal flow graph
     ➢   Interchange the inputs and the outputs
     ➢   Reverse the roles of all nodes in the flow graph (Summing points become
         branching points & branching points become summing points).
19
                  Branching points
                 Summing points
     Signal Flow Graph for transposed structure
20
     Transposed Direct form II
21
                                                                         1 + 2𝑧 −1 + 𝑧 −2
Q. Obtain the transposed direct form II for the given IIR filter 𝐻(𝑧) =
                                                                            3       1
                                                                        1 − 𝑧 −1 + 𝑧 −2
                                                                            4       8
     Soln: First draw direct form II, & then find the transposed structure.
        x(n)                 w(n)      1             y(n)
                    3/4                2
                   −1/8                1
                  Direct form II                             Signal flow graph for Direct form II
22
                 Branching points
                                      Summing
                                      points
     Signal Flow Graph for transposed structure   Transposed Direct form II
23
4. Cascade Form
❑   Consider the IIR system with system function expressed as:
    𝐻 𝑧 = 𝐻1 𝑧 . 𝐻2 𝑧 . 𝐻3 𝑧 … 𝐻𝑘 𝑧
❑   Realize each 𝐻𝑘 𝑧 in Direct Form II structure and then cascade.
                                                       3             1
Q) Realize the system with difference equation 𝑦 𝑛 =       𝑦 𝑛−1 −       𝑦 𝑛−2 +
                                                       4             8
          1
  𝑥 𝑛   +     𝑥(𝑛 − 1) in cascade form.
          3
Soln: Taking Z Transform on both sides,
        3 −1     1                1
𝑌 𝑧 =     𝑧 𝑌 𝑧 − 𝑧 −2 𝑌 𝑧 + 𝑋 𝑧 + 𝑧 −1 𝑋 𝑧
        4        8                3                                    1
        3 −1 1 −2                  1 −1                             1 + 𝑧 −1
                                                           ∴ 𝐻1 𝑧 =    3
𝑌 𝑧 1− 𝑧 + 𝑧           =𝑋 𝑧 1+ 𝑧                                       1
        4       8                  3                                1 − 𝑧 −1
                       1 −1                                            2
                   1 +   𝑧                                             1
      𝑌(𝑧)             3                                     𝐻2 𝑧 =
𝐻 𝑧 =      =                                                           1
      𝑋(𝑧)         3 −1 1 −2                                        1 − 𝑧 −1
               1− 𝑧 + 𝑧                                                4
                   4       8
                 1
             1 + 𝑧 −1
                 3
𝐻 𝑧 =                        = 𝐻1 𝑧 . 𝐻2 𝑧
           1 −1        1 −1
       1− 𝑧        1− 𝑧
           2           4
              𝑌1 𝑧    𝑌1 𝑧 𝑊1 𝑧       1 −1    1
     𝐻1 𝑧 =         =      .       =1+ 𝑧 .
              𝑋1 (𝑧) 𝑊1 (𝑧) 𝑋1 (𝑧)    3       1
                                           1 − 𝑧 −1
                                              2
      𝑊1 𝑧          1
              =                                         𝑌2 𝑧      𝑌2 𝑧 𝑊2 𝑧           1
       𝑋1 (𝑧) 1 − 1 𝑧 −1                        𝐻2 𝑧 =         =        .     = 1.
                                                                                      1
                    2                                   𝑋2 (𝑧) 𝑊2 (𝑧) 𝑋2 (𝑧)       1 − 𝑧 −1
                                                                                      4
                1 −1                            𝑊2 𝑧         1
       𝑊1 𝑧 − 𝑧 𝑊1 𝑧 = 𝑋1 (𝑧)                         =
                2                               𝑋2 (𝑧) 1 − 1 𝑧 −1
                        1                                    4
       𝑤1 𝑛 = 𝑥1 𝑛 + 𝑤1 𝑛 − 1 −− −(1)                  1
                        2                       𝑊2 𝑧 − 𝑧 −1 𝑊2 𝑧 = 𝑋2 (𝑧)
                                                       4
       𝑌1 𝑧         1 −1
              =1+ 𝑧                                              1
       𝑊1 (𝑧)       3                          𝑤2 𝑛 = 𝑥2 𝑛 + 𝑤2 𝑛 − 1 −− −(3)
                                                                 4
                        1                       𝑌2 𝑧
       𝑌1 𝑧 = 𝑊1 𝑧 + 𝑧 −1 . 𝑊1 (𝑧)                    =1              𝑌2 𝑧 = 𝑊2 𝑧
                        3                      𝑊2 (𝑧)
                        1
       𝑦1 𝑛 = 𝑤1 𝑛 + . 𝑤1 𝑛 − 1 −−− −(2)        𝑦2 𝑛 = 𝑤2 𝑛 −−− −(4)
                        3
26
                  1                                       1
     𝑤1 𝑛 = 𝑥1 𝑛 + 𝑤1 𝑛 − 1                  𝑤2 𝑛 = 𝑥2 𝑛 + 𝑤2 𝑛 − 1
                  2                                       4
27
             Direct II form of 𝑯𝟏 𝒛              Direct II form of 𝑯𝟐 𝒛
     𝒙 𝒏 = 𝒙𝟏 𝒏          𝒘𝟏 𝒏         𝒚𝟏 𝒏       𝒙𝟐 𝒏              𝒘𝟐 𝒏   𝒚 𝒏 = 𝒚𝟐 𝒏
                                  𝟏
                   𝟏/2          𝟏/3                             𝟏/4
                  1
     𝑦1 𝑛 = 𝑤1 𝑛 + . 𝑤1 (𝑛 − 1)                          𝑦2 𝑛 = 𝑤2 𝑛
                  3
Q) Obtain the cascade realization for the following system:
          3       1           3
      1 + 𝑧 −1 + 𝑧 −2 1 − 𝑧 −1 + 𝑧 −2
          2       2           2
𝐻 𝑧 =
                 1          1      1
      (1 + 𝑧 −1 + 𝑧 −2 ) 1 + 𝑧 −1 + 𝑧 −2
                 4          4      2
                          3       1           3
                      1 + 𝑧 −1 + 𝑧 −2 1 − 𝑧 −1 + 𝑧 −2
                          2       2           2
Soln: Given     𝐻 𝑧 =                                    = 𝐻1 𝑧 . 𝐻2 (𝑧)
                                 1          1      1
                      (1 + 𝑧 −1 + 𝑧 −2 ) 1 + 𝑧 −1 + 𝑧 −2
                                 4          4      2
                     3       1                              3 −1
                 1 + 𝑧 −1 + 𝑧 −2                          1 − 𝑧 + 𝑧 −2
Where                2       2                              2
          𝐻1 𝑧 =                          &     𝐻2 𝑧 =
                            1                             1      1
                 (1 + 𝑧 −1 + 𝑧 −2 )                    1 + 𝑧 −1 + 𝑧 −2
                            4                             4      2
                     3       1                            3 −1
                 1 + 𝑧 −1 + 𝑧 −2                      1 −   𝑧 + 𝑧 −2
                     2       2                            2
          𝐻1 𝑧 =                        &     𝐻2 𝑧 =
                            1                           1      1
                 (1 + 𝑧 −1 + 𝑧 −2 )                  1 + 𝑧 −1 + 𝑧 −2
                            4                           4      2
     𝑥1 (n)             𝑤1 (n)   1          𝑦1 (n)
                  -1              3/2
                 −1/4            1/2
29
Parallel form
❑   The parallel form realization of an IIR system can be obtained by performing a partial
    fraction expansion of:
                𝑁
                  𝑐𝑘
    𝐻 𝑧 =𝑐+ 
              1 − 𝑝𝑘 𝑧 −1
               𝑘=1
    where 𝑝𝑘 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑜𝑙𝑒𝑠.
                𝑐1          𝑐2             𝑐𝑁
    𝐻 𝑧 =𝑐+            +            +⋯
            1 − 𝑝1 𝑧 −1 1 − 𝑝2 𝑧 −1    1 − 𝑝𝑁 𝑧 −1
            𝑌(𝑧)
    𝐻 𝑧 =          = 𝑐 + 𝐻1 𝑧 + 𝐻2 𝑧 + . . . 𝐻𝑁 𝑧
            𝑋(𝑧)
Parallel Form Realization
                             c
         x(n)               𝑯𝟏 (𝒛)
                            𝑯𝟐 (𝒛)
                            𝑯𝟑 (𝒛)
                            𝑯𝑵 (𝒛)   y(n)
Q) Realize the system with difference equation 𝑦 𝑛 = −0.1 𝑦 𝑛 − 1 +
   0.72 𝑦 𝑛 − 2 + 0.7𝑥 𝑛 − 0.252 𝑥(𝑛 − 2) in parallel form.
Soln: Taking Z Transform on both sides,
𝑌 𝑧 = −0.1𝑧 −1 𝑌 𝑧 + 0.72𝑧 −2 𝑌 𝑧 + 0.7𝑋 𝑧 − 0.252𝑧 −2 𝑋 𝑧
𝑌 𝑧 1 + 0.1𝑧 −1 − 0.72𝑧 −2 = 𝑋 𝑧 0.7 − 0.252𝑧 −2
          𝑌(𝑧)         0.7−0.252𝑧 −2                             0.35 − 0.035𝑧 −1
𝐻 𝑧 =            =                         Slide 34   = 0.35 +
                                                               1 + 0.1𝑧 −1 − 0.72𝑧 −2
          𝑋(𝑧)       1+0.1𝑧 −1 −0.72𝑧 −2
                          0.35 − 0.035𝑧 −1
             = 0.35 +
                      (1 + 0.9𝑧 −1 )(1 − 0.8𝑧 −1 )
Solving partial fraction,
    0.35 − 0.035𝑧 −1              𝐴              𝐵
                            =              +
(1 + 0.9𝑧 −1 )(1 − 0.8𝑧 −1 ) (1 + 0.9𝑧 −1 ) (1 − 0.8𝑧 −1 )
     Solving for A and B, A=0.206, B=0.144
                     0.206       0.144         𝒙 𝒏   0.35   𝒚𝟏 𝒏
     𝐻 𝑧 = 0.35 +             +
                  (1 + 0.9𝑧 ) (1 − 0.8𝑧 −1 )
                           −1
     𝐻1 𝑧 = 0.35                               𝒙 𝒏          0.206
              0.206                  𝒙 𝒏                       𝒚𝟐 𝒏
     𝐻2 𝑧 =
            1 + 0.9𝑧 −1
              0.144                                  −0.9
     𝐻3 𝑧 =
            1 − 0.8𝑧 −1                        𝒙 𝒏           0.144    y 𝒏
     Now 𝐻1 𝑧 , 𝐻2 𝑧 & 𝐻3 𝑧 can be                            𝒚𝟑 𝒏
     realized using direct form II and the
     outputs can be added.
                                                     0.8
34
Q) Obtain the parallel form Realization of the system with difference equation
𝑦 𝑛 = −0.1 𝑦 𝑛 − 1 + 0.2 𝑦 𝑛 − 2 + 3𝑥 𝑛 + 3.6 𝑥 𝑛 − 1 + 0. 6𝑥(𝑛 − 2)
Soln: Taking Z Transform on both sides,
𝑌 𝑧 = −0.1𝑧 −1 𝑌 𝑧 + 0. 2𝑧 −2 𝑌 𝑧 + 3𝑋 𝑧 + 3. 6𝑧 −1 𝑋 𝑧 + 0.6𝑧 −2 𝑋 𝑧
𝑌 𝑧 1 + 0.1𝑧 −1 − 0. 2𝑧 −2 = 𝑋 𝑧 3 + 3.6 𝑧 −1 + 0.6 𝑧 −2
      𝑌(𝑧)   3 + 3.6𝑧 −1 + 0.6𝑧 −2
𝐻 𝑧 =      =
      𝑋(𝑧)   1 + 0.1𝑧 −1 − 0. 2𝑧 −2
                 6 + 3.9𝑧 −1                     6 + 3.9𝑧 −1
      = −3 +                       = −3 +
             1 + 0.1𝑧 −1 − 0.2𝑧 −2        (1 + 0.5𝑧 −1 )(1 − 0.4𝑧 −1 )
               𝐴           𝐵
H z = −3 +            +
           1 + 0.5𝑧 −1 1 − 0.4𝑧 −1
     Solving for A and B, A = 7, B = -1
                    7           −1
     H z = −3 +            +                    𝒙 𝒏   −3      𝒚𝟏 𝒏
                1 − 0.4𝑧 −1 1 + 0.5𝑧 −1
     𝐻1 𝑧 = −3                                  𝒙 𝒏           7
                7                         𝒙 𝒏                     𝒚𝟐 𝒏
     𝐻2 𝑧 =
            1 − 0.4𝑧 −1
                −1                                    0.4
     𝐻3 𝑧 =
            1 + 0.5𝑧 −1                         𝒙 𝒏            −1        y 𝒏
                                                                  𝒚𝟑 𝒏
                                                       −0.5
36
     FIR Filter Vs IIR Filter
37
     FIR Filter                                    IIR Filter
     Finite Impulse Response                       Infinite Impulse Response
     Non Recursive                                 Recursive
     Present output depends on present input and   Present output depends on present input, past
     past input.                                   input and past outputs.
                        𝑁−1                                      𝑁               𝑀
               𝑦 𝑛 =  𝑏𝑘 𝑥(𝑛 − 𝑘)                 𝑦 𝑛 = −  𝑎𝑘 𝑦 𝑛 − 𝑘 +  𝑏𝑘 𝑥(𝑛 − 𝑘)
                        𝑘=0                                     𝑘=1             𝑘=0
                          𝑁−1
                                                                    σ𝑀𝑘=0 𝑏𝑘    𝑧 −𝑘
                   𝐻(𝑧) =  𝑏𝑘 𝑧 −𝑘                         𝐻 𝑧 =
                                                                  1 + σ𝑁𝑘=1 𝑎𝑘 𝑧
                                                                                 −𝑘
                          𝑘=0
     Transfer function consists of only zeros      Transfer function consists of both poles &
                                                   zeros.
     More Stable                                   Less Stable
     References
38
     1. Proakis J. G. and Manolakis D. G., Digital Signal Processing, 4/e, Pearson Education,
        2007.
     2. P. Ramesh Babu, Digital Signal Processing, Scitech Publications (India) Pvt Ltd.
39   END of PART -II
            THANK YOU!