0% found this document useful (0 votes)
422 views3 pages

1 Test

The document contains a series of mathematical problems and equations, including topics such as geometry, calculus, and algebra. It presents various questions with multiple-choice answers, focusing on finding values, solving equations, and determining properties of functions. The problems are structured to challenge the reader's understanding of mathematical concepts and their applications.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
422 views3 pages

1 Test

The document contains a series of mathematical problems and equations, including topics such as geometry, calculus, and algebra. It presents various questions with multiple-choice answers, focusing on finding values, solving equations, and determining properties of functions. The problems are structured to challenge the reader's understanding of mathematical concepts and their applications.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

1

10. 𝑎 ning qanday qiymatida (𝑎; 𝑎 − 1)


𝑼𝒁𝑴𝑰𝑨𝒕𝒆𝒔𝒕 nuqtaning 3𝑥 + 𝑦 = 6𝑎 chiziqga nisbatan
1. Uchburchakning balantliklar kesishgan nuqtasi va simmetrik nuqtasi (𝑎2 + 1; 𝑎) bo’ladi?
𝐴) − 2 𝐵) 3 𝐶) 1 𝐷) 2
tashqi chizilgan aylana markazi koordinatalari mos
ravishda (1; 1) va (3; 2) bo’lsa, bu uchburchakning 11. 𝑓(𝑥) va 𝑔(𝑥) funksiyalarning hosilari
medianalari kesishgan nuqtasining koordinatasini mavjud. 𝑓′′(𝑥) − 𝑔′′(𝑥) = 0, 𝑓 ′ (1) = 2,
toping? 𝑔′ (1) = 4, 𝑓(2) = 3, 𝑔(2) = 9 bo’lsa
7 5 5 7 3 3
𝐴) ( ; ) 𝐵) ( ; ) 𝐶) (7; 5) 𝐷) 𝑡. 𝑗. 𝑦
3 3 3 3
𝑓 (2) − 𝑔 (2) ning qiymatini toping?
2. 2𝑎⃗ + 3𝑏⃗⃗ + 𝑐⃗ = 0 bo’lsa, 𝑎⃗ ∙ 𝑏⃗⃗ + 𝑏⃗⃗ ∙ 𝑐⃗ + 𝑐⃗ ∙ 𝑎⃗ ifoda 𝐴) − 5 𝐵) 3 𝐶) 5 𝐷) − 3
qaysi jovobga teng? 12. [0; 2𝜋] oralig’ida quyidagi tenglama
𝐴) 6 ∙ (𝑏⃗⃗ ∙ 𝑐⃗) 𝐵) 3 ∙ (𝑏⃗⃗ ∙ 𝑐⃗) 𝐶) 2 ∙ (𝑏⃗⃗ ∙ 𝑐⃗) 𝐷) 0 nechta yechimga ega?
3. Quyidagi ifodaning yoyolmasidagi 𝑥 5 ning cos 6𝑥 + tg 2 𝑥 + cos 6𝑥 ∙ tg 2 𝑥 = 1
𝐴) 5 𝑡𝑎 𝐵) 6 𝑡𝑎 𝐶) 7 𝑡𝑎 𝐷) 4 𝑡𝑎
koeffisentini toping?
1 10 1 9 13. Ikki parallel chiziqning birida 6 ta nuqta
(𝑥 + ) ∙ (𝑥 − ) ikkinchisida esa 8 ta nuqta berilgan bu nuqtalar
𝑥 𝑥
𝐴) 𝐶93 𝐵) 𝐶94 𝐶) − 𝐶93 𝐷) − 𝐶94 orqali o’tkazilgan barcha chiziqlarning, ikki
parallel chiziqlar orasidagi, kesishish nuqtalari
4. Agar 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 = 0 va 𝑏𝑥 2 + 𝑐𝑥 + 𝑎 = 0
𝑎3 +𝑏 3 +𝑐 3
nechta?
tenglamalar umumiy ildizga ega bo’lsa, ni 𝐴) 210 𝑡𝑎 𝐵) 315 𝑡𝑎 𝐶) 420 𝑡𝑎 𝐷) 840 𝑡𝑎
𝑎𝑏𝑐
toping? 14. 𝑥 2 + 𝑦 2 − 4𝑥 − 4𝑦 + 4 = 0 aylanaga (6; 4)
𝐴) 0 𝐵) 3 𝐶) − 1 𝐷) − 3 nuqtadan o’tkazilgan urinma 𝑜𝑦 o’qini 𝐴 va 𝐵
5. 2,4,5,7,8,9 sonlaridan tuzilgan uch xonli 𝑥𝑦𝑧
̅̅̅̅̅ nuqtada kesib o’tadi. |𝐴𝐵| masofani toping?
sonlar uchun 𝑥 < 𝑦 va 𝑧 < 𝑦 (takroriy hollarsiz) 𝐴) 6 𝐵) 8 𝐶) 10 𝐷) 12
shartlari o’rinli bo’ladigan nechta shunday uch
15. (2; 5) nuqtadan 3𝑥 − 4𝑦 + 8 = 0 chiziqga parallel
xonali sonlar mavjud?
𝐴) 20 𝑡𝑎 𝐵) 40 𝑡𝑎 𝐶) 60 𝑡𝑎 𝐷) 30 𝑡𝑎 ravishda 3𝑥 + 𝑦 + 4 = 0 chiziqgacha bo’lgan
6. {𝑎𝑛 } arifmetik progressiyada 𝑎7 = 15 masofani toping?
15 9
bo’lsa, 𝑎2 𝑎7 𝑎12 ifoda eng katta qiymatga 𝐴) 𝐵) 𝐶) 5 𝐷) 𝑡. 𝑗. 𝑦
2 2
ega bo’ladigan arifmetik progressiyaning 16. (3; 2) nuqtadan o’tuvchi to’g’ri chiziqning
ayirmasini toping? quyidagi chiziqlar orasidfagi kesmasi uzunligi 2 ga
9
𝐴) 9 𝐵) 𝐶) 0 𝐷) 18 teng bo’lsa bu chizqning tenglamasini toping?
4
7. Agar funksiya, 3𝑥 + 4𝑦 = 11 va 3𝑥 + 4𝑦 = 1
𝑎𝑥 3 + 𝐵, 0≤𝑥≤1 𝐴) 2𝑥 + 𝑦 − 8 = 0 𝐵) 3𝑦 − 4𝑥 + 6 = 0
𝑓(𝑥) = { 𝐶) 3𝑥 + 4𝑦 − 17 = 0 𝐷) 2𝑥 − 𝑦 − 4 = 0
2 cos(𝜋𝑥) + arctg 𝑥 , 1 < 𝑥 ≤ 2
[0; 2] oraliqda hosilasi mavjud bo’lsa 17. 𝑧 kopleks son uchun, |𝑧 − 3 − 2𝑖| = |𝑧 + 2𝑖|
tenglik o’rinli bo’lsa |𝑧| ning eng kichik qiymatini
quyidagi qaysi javob to’g’ri?
𝜋−8 28−3𝜋 toping?
𝐴) 𝐴 + 𝐵 = 𝐵) 𝐴 − 𝐵 = 1 4 7 9
4 12
𝐴 2 𝐴) 𝐵) 𝐶) 𝐷)
𝐶) = 𝐷) ℎ𝑎𝑚𝑚𝑎 𝑗𝑎𝑣𝑜𝑏 𝑡𝑜′𝑔′𝑟𝑖 2 5 10 10
𝐵 3𝜋−26 19
𝑢(𝑥) 18. Quyidagi ko’phadda 𝑥 oldidagi koeffisentni
8. 𝑓(𝑥) = ln (𝑣(𝑥)) bunda 𝑢′ (2) = 4, toping?
𝑣 ′ (2) = 2, 𝑢(2) = 2, 𝑣(2) = 1 bo’lsa (𝑥 − 1)(𝑥 − 21 )(𝑥 − 22 ) … (𝑥 − 219 )
𝑓 ′ (2) ni toping? 𝐴) 220 − 219 𝐵) − (220 − 1) 𝐶) 220 𝐷) 0
𝐴) 0 𝐵) 1 𝐶) − 1 𝐷) 𝑡. 𝑗. 𝑦 19. Quyidagi ketma-ketliklar 100 tadan hadga ega
9. 𝑥𝑦 + 𝑎𝑥 + 𝑏𝑦 = 0 chiziqga (1; 1) bo’lsa ularning eng oxiregi umumiy hadini toping?
nuqtada o’tkazilgan urunma 𝑜𝑥 o’qi bilan 1, 11, 21, 31, …
holsil qilgan burchagi arctg 2 bo’lsa, 𝑎 va 31, 36, 41, 46, …
𝑏 ni toping? 𝐴) 381 𝐵) 521 𝐶) 281 𝐷) 𝑡. 𝑗. 𝑦
𝐴) 𝑎 = 1; 𝑏 = 2 𝐵) 𝑎 = 1; 𝑏 = −2 20. 𝑦 = 𝑥 ∙ 𝑒 |𝑥| , |𝑥| = 1, 𝑦 = 0 ushbu chiziqlar bilan
𝐶) 𝑎 = −1; 𝑏 = 2 𝐷) 𝑎 = −1; 𝑏 = −2 chegaralangan sohaning yuzini toping?
𝐴) 4 𝐵) 1 𝐶) 2 𝐷) 6

𝐎’𝐳𝐛𝐞𝐤𝐢𝐬𝐭𝐨𝐧 𝐌𝐚𝐭𝐞𝐦𝐚𝐭𝐢𝐤𝐥𝐚𝐫𝐢 𝐯𝐚 𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐤𝐚 𝐀𝐬𝐬𝐨𝐭𝐬𝐢𝐚𝐭𝐬𝐢𝐲𝐚𝐬𝐢 HTTPS://T.ME/UZMIA31


2
21. Hisoblang: 32. Hisoblang:
2 1
𝑎𝑥 − 𝑏
∫ 𝑑𝑥 ∫ (𝑥 − [2𝑥])𝑑𝑥
𝑥√𝑐 2 𝑥 2 − (𝑎𝑥 2 + 𝑏)2 −1
𝑎𝑥−
𝑏
1 𝑎𝑥+
𝑏 𝐴) 1 𝐵) 2 𝐶) 3 𝐷) 0
𝑥 𝑥
𝐴) arcsin ( ) + 𝐾 𝐵) arcsin ( )+𝐾 33. Quyidagi ko’phadda 𝑥 49 oldidagi koeffisentini
𝑐 2 𝑐

𝑎𝑥+
𝑏 toping?
𝑥
𝐶) arcsin ( )+𝐾 𝐷) 𝑡. 𝑗. 𝑦 (2𝑥 + 1)(2𝑥 + 3)(2𝑥 + 5) … (2𝑥 + 99)
𝑐
𝐴) 250 ∙ 2500 𝐵) 249 ∙ 2500
22. 𝑦 = 2𝑥 4 − 𝑥 2 chiziq, bu chiziqning minimum
𝐶) − 250 ∙ 2500 𝐷) − 249 ∙ 2500
nuqtalari ordinatlari va 𝑜𝑥 bilan chegaralangan
soha yuzini toping? 34. Differensial tenglamani yeching:
9 7 11 13 𝑑𝑦 𝑥+𝑦+1
𝐴) 𝐵) 𝐶) 𝐷) =
120 120 120 120 𝑑𝑥 2𝑥 + 2𝑦 + 1
2
23. 𝑓(𝑥) = { arcsin 𝑎 + 𝑥 , 0 < 𝑥 < 1 𝐴) ln|3𝑥 + 3𝑦 + 2| + 3𝑥 + 6𝑦 = 𝑐
2𝑥, 𝑥≥1
𝐵) ln|3𝑥 + 3𝑦 + 2| − 3𝑥 + 6𝑦 = 𝑐
Bu 𝑓(𝑥) funksiya 𝑥 = 1 da minimumga ega bo’lsa,
𝐶) ln|3𝑥 + 3𝑦 + 2| − 3𝑥 − 6𝑦 = 𝑐
𝑎 ni toping?
𝐷) ln|3𝑥 + 3𝑦 + 2| + 3𝑥 − 6𝑦 = 𝑐
𝐴) sin 1 𝐵) − sin 1 𝐶) 0 𝐷) 𝑡. 𝑗. 𝑦
35. Hisoblang:
24. ∀ 𝑥, 𝑦 lar uchun, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) o’rinli. 3𝑛
𝑓(𝑥) = (2𝑥 2 + 3𝑥)𝑔(𝑥) barcha 𝑥 uchun 𝑔(𝑥) 𝑛
lim ∑
usliksiz, 𝑔(0) = 3. U holda 𝑓 ′ (𝑥) qaysi jovobga 𝑛→∞ 𝑟 2 − 𝑛2
𝑟=2𝑛+1
teng? 3 2
𝐴) ln √2 𝐵) ln √ 𝐶) ln √ 𝐷) ln √3
𝐴) 9 𝐵) 3 𝐶) 6 𝐷) 𝑡. 𝑗. 𝑦 2 3

25. Hisoblang: 36. 10 ta talaba bir qator turibdi, necha xil usulda 4 ta
sin2 𝑥 talabani shunday tanlab olish mumkinki bunda hech
1/ sin2 𝑥 1/ sin2 𝑥 1/ sin2 𝑥
lim(1 +2 +⋯+𝑛 )
𝑥→0 bir ikkitasi yonma-yon turgan emas edi?
𝑛(𝑛+1)
𝐴) ∞ 𝐵) 0 𝐶) 𝐷) 𝑛 𝐴) 35 𝐵) 36 𝐶) 40 𝐷) 41
2
100
26. 17 256 ̅̅̅ soning oxirgi ikki raqami yig’indisi
=. . . 𝑎𝑏 37. (√2 + 4√3) ifodanni yoyilmasida nechta had
𝑎 + 𝑏 ni toping? irratsional had?
𝐴) 9 𝐵) 3 𝐶) 6 𝐷) 10 𝐴) 25 𝐵) 26 𝐶) 76 𝐷) 𝑡. 𝑗. 𝑦
27. Hisoblang: 38. 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 = 0 tenglamaning ildizlari 𝛼 va 𝛽.
sin(𝜋 cos 2(tg(sin 𝑥)) Agar 𝑎 + 𝑏 + 𝑐 < 0, 𝑎 − 𝑏 + 𝑐 < 0 va 𝑐 > 0
lim
𝑛→0 𝑥2 bo’lsa [𝛼] + [𝛽] ning qiymatini toping?
𝜋 𝜋
𝐴) 𝜋 𝐵) 𝐶) 𝐷) − 𝜋 𝐴) 1 𝐵) − 1 𝐶) 0 𝐷) 𝑡. 𝑗. 𝑦
4 2
|𝑥 − 1|([𝑥] − 𝑥), 𝑥 ≠ 1 39. Agar quyidagi tenglik o’rinli bo’lsa 𝑘 ni toping?
28. 𝑓(𝑥) = { berilgan bo’lsa 𝜋
0, 𝑥=1 3 tg 𝑥 √cos 𝑥 1
qaysi javob to’g’ri? ∫ = 1−
𝐴) 𝑓 ′ (1+ ) = 2 𝐵) 𝑓 ′ (1− ) = 0 𝐶) 𝑓 ′ (1− ) = −1 0 √2𝑘 √2
𝐴) 2 𝐵) 6 𝐶) 3 𝐷) 𝑡. 𝑗. 𝑦
𝐷) 𝑓(𝑥) 𝑑𝑎 𝑥 = 1 𝑑𝑎 ℎ𝑜𝑠𝑖𝑙𝑎𝑠𝑖 𝑚𝑎𝑣𝑗𝑢𝑑 𝑒𝑚𝑎𝑠;
5𝑥 8 +7𝑥 6 40. Agar ∫ 𝑒 𝑥 (𝑓(𝑥) − 𝑓 ′ (𝑥))𝑑𝑥 = 𝑔(𝑥) bo’lsa, u
29. 𝑓(𝑥) = ∫ (𝑥2+1+2𝑥7)2 𝑑𝑥 da 𝑓(0) = 0 bo’lsa, 𝑓(1) holda ∫ 𝑒 𝑥 𝑓(𝑥) 𝑑𝑥 qaysi javobga teng?
ni toping? 𝐴) 𝑔(𝑥) + 𝑒 𝑥 𝑓(𝑥) + 𝐶
1 1 1 1
𝐴) − 𝐵) 𝐶) 𝐷) − 𝐵) 𝑔(𝑥) − 𝑒 𝑥 𝑓(𝑥) + 𝐶
2 4 2 4
1
30. Hisoblang: 𝐶) (𝑔(𝑥) + 𝑒 𝑥 𝑓(𝑥)) + 𝐶
2
2021 1
∫ (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) … (𝑥 − 2021) 𝑑𝑥 𝐷) (𝑔(𝑥) + 𝑒 𝑥 𝑓′(𝑥)) + 𝐶
2
1
𝐴) 20212 𝐵) 2020 ∙ 2021 ∙ 2022
𝐶) 2021! 𝐷) 0
31. 𝑓(𝑥) = min(𝑥 + 1; √1 − 𝑥 ) bunda 𝑥 ≤ 1, bu
𝑓(𝑥) va 𝑜𝑥 o’qi bilan chegaralangan sohaning
yuzini toping?
7 1 11 7
𝐴) 𝐵) 𝐶) 𝐷)
3 6 6 6

𝐎’𝐳𝐛𝐞𝐤𝐢𝐬𝐭𝐨𝐧 𝐌𝐚𝐭𝐞𝐦𝐚𝐭𝐢𝐤𝐥𝐚𝐫𝐢 𝐯𝐚 𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐤𝐚 𝐀𝐬𝐬𝐨𝐭𝐬𝐢𝐚𝐭𝐬𝐢𝐲𝐚𝐬𝐢 HTTPS://T.ME/UZMIA31


3

Javoblar:
1. A
2. B
3. C
4. B
5. B
6. C
7. D
8. A
9. B
10. D
11. A
12. C
13. C
14. B
15. C
16. B
17. D
18. B
19. B
20. C
21. C
22. B
23. A
24. A
25. D
26. A
27. A
28. D
29. B
30. D
31. D
32. A
33. B
34. D
35. B
36. A
37. D
38. B
39. A
40. C

𝐎’𝐳𝐛𝐞𝐤𝐢𝐬𝐭𝐨𝐧 𝐌𝐚𝐭𝐞𝐦𝐚𝐭𝐢𝐤𝐥𝐚𝐫𝐢 𝐯𝐚 𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐤𝐚 𝐀𝐬𝐬𝐨𝐭𝐬𝐢𝐚𝐭𝐬𝐢𝐲𝐚𝐬𝐢 HTTPS://T.ME/UZMIA31

You might also like