Worksheet – 02 (Continuity and Differentiability)
Class: 12th Subject : Maths Date: 28/05/2025
sin3x αsinx βcos3x
1. If the function f x , x R , is continuous at x 0 , then f 0 is equal to
x3
(a) -4 (b) -2 (c) 2 (d) 4
tan a 1 x b tanx
, x0
x
2. For a, b 0 , let f x 3, x0 , be a continuous function at x 0 .
ax b x ax ,
2 2
x0
b ax x
b
Then is equal to
a
(a) 5 (b) 6 (c) 8 (d) 4
3. If log x y 3sin 1x , then 1 x 2 y xy at x
1
is equal to
2
π π π π
(a) 9e 6 (b) 9e 2 (c) 3e 6 (d) 3e 2
a bcos2x
; x0
x2
4. Let f : R R be defined as f x x 2 cx 2; 0 x 1 If f is continuous everywhere in R and m
2x 1; x 1
is the number of points where f is NOT differential then m a b c equals
(a) 3 (b) 1 (c) 4 (d) 2
5. Let f x 2x 2 5 x 3 , x R . If m and n denote the number of points where f is not continuous
and not differentiable respectively, then m n is equal to
(a) 5 (b) 3 (c) 2 (d) 0
1 x2 1
6. Let y log e 2
, 1 x 1 . Then at x , the value of 225 y y is equal to
1 x 2
(a) 746 (b) 736 (c) 742 (d) 732
x
1 1 a
log e ,x 0
x 1 x
b 1 1 4
7. If the function f x k , x 0 is continuous at x 0 , then is equal to
a b k
cos 2 x sin 2 x 1
,x 0
x2 1 1
1 Topper’s Choice, SCO 76, 2ND Floor, Sec-40-C, CHD
www.topperchoice.in, tcsco76@gmail.com, 9988590021
(a) 4 (b) 5 (c) -4 (d) -5
x2 5x 6
, x2
11 5 x x 6
2
8. Let f : R R be defined as f x tan x 2
x x
c , x2
11, x2
where x is the greatest integer less than or equal to x . If f is continuous at x 2 , then is
equal to
(a) c c 1 (b) c c 2 (c) 1 (d) 2e 1
ae x be x , 1 x 1
2
9. If a function f x defined by f x cx ,1 x 3 be continuous for some a, b, c R
ax 2 2cx, 3 x 4
and f 0 f 2 e , then the value of a is
1 e c e
(a) (b) (c) (d)
c 3c 13
2
c 3c 13
2
e 3c 13
2
e 3e 13
2
2cosx 1
, x
10. If the function f defined on , by f x cotx 1 4 is continuous, then k is
6 3
k. x
4
equal to
1 1
(a) 1 (b) (c) 2 (d)
2 2
a x 1, x 5
11. If the function f x is continuous at x 5 , then the value of a b is
b x 3, x 5
2 2 2 2
(a) (b) (c) (d)
5 5 5 5
sin 1 x sinx
,x 0
x
12. If f x is continuous at x 0 , then the ordered pair p, q is equal to
xx x
2
,x 0
x3/2
5 1 3 1 3 1 1 3
(a) , (b) , (c) , (d) ,
2 2 2 2 2 2 2 2
2 Topper’s Choice, SCO 76, 2ND Floor, Sec-40-C, CHD
www.topperchoice.in, tcsco76@gmail.com, 9988590021
tan8x
8 tan 7 x π
, 0x
7 2
π
13. Let f : 0, π R be a function given by f x a 8, x
2
b
tanx π
(1 cotx ) xπ
a
,
2
π
where a, b Z . If f is continuous at x , then a 2 b2 is equal to_______.
2
14. Let a, b R, b 0 . Define a function
asin x 1 , for x 0
f x
2
tan2 x sin 2 x , for x 0
bx3
If f is continuous at x 0 , then 10 ab is equal to _____.
1 1 3x
logc , when x 0
15. If the function f defined on f x x 1 2x
when x 0
k,
is continuous, then k is equal to_____.
Answer Keys
1. (a) 2. (b) 3. (b) 4. (d) 5. (b)
6. (b) 7. (d) 8. (a) 9. (d) 10. (b)
11. (a) 12. (b) 13. (81) 14. (14) 15. (5)
3 Topper’s Choice, SCO 76, 2ND Floor, Sec-40-C, CHD
www.topperchoice.in, tcsco76@gmail.com, 9988590021