PRE-RMO                                    MATHEMATICS                                       FUNCTION
121 14641 
                                     
                                                4
                                                 25             64
 1.   Evaluate : (i) log 3 27 / 729 (ii) log5       (iii) log 2    (iv) log11  3        
                                                625             8                1331 
      Solution
            
      log 3 27 / 729          
                 33
       log 3        log 3 1  0
                 33
                    4
                     25
      (ii) log5
                    625
               4 25 
       log5       
               625 
               25
                        1/4
       log 5
                25
                     2
       log 5  51/ 2  4 
         7             7
          log5 5  
         2             2
                        64
      (iii) log 2
                        8
       log 2 8
       log 2 23/ 2
          3
      
          2
                 121 14641 
      (iv) log11  3        
                    1331 
             112  112 
      log11           
              11 
      log11 11
                     3
     3
2.   Prove that: 3log10 1.5  log10 240  2log10 9  1
     Solution: 3log10 1.5  log10 240  2log10 9  1
     Taking L.H.S.
     log10 1.5   log10 240  log10 9 2
                 3
              1.5 3 .240 
      log10               
                   92      
                           
              15 15 15  240 
      log10                   
              1000  9  9 
      log10 10  1 R.H.S.
3.   Prove that: 3log 4  2 log 6  log 18 
                                                   3/2
                                                             
                                                          log 96 2   
     Solution: Taking L.H.S.
     3log 4  2 log 6  log 18 
                                      3/2
      log  4   log  6   log 18 
                 3              2           3/ 2
             4 3  18 3/ 2 
      log                     
                    6 2
                                
                               
            4  4  4   9 3/2   2 3/2 
      log                                  
                       6   6               
                                            
             
      log 96 2             R.H.S.
                                 1 
4.   Find x when, (i) x  log 7   (ii) log 0.4 x  4
                                 49 
     Solution:
                1 
     x  log 7  
                49 
      log 7 1/2  7 
                         2
               
       2  2  log7 7 
      4
     (ii) log 0.4 x  4
     x   0.4 
                     4
     x  0.0256
5.   Prove that: (i) logb a  logc b  log d c  logd a
                    a2      b2     c2
     (ii) log           log  log    0
                    bc      ca     ab
                 1        1         1
     (iii)                              1
             log a abc logb abc log c abc
     Solution:
     logb a  logc b  logd c  logd a
     Taking L.H.S.
     logb a  logc b  log d c
      logb a  log d b
      log d a = R.H.S.
                              a2      b2     c2
     (ii) Given, log              log  log    0
                              bc      ca     ab
     Taking L.H.S.
             a2      b2     c2
     log         log  log
             bc      ca     ab
            a 2 b2 c2 
      log    
            bc ca ab 
      log 1  0 R.H.S.
                             1        1         1
     (iii) Given,                                   1
                         log a abc logb abc log c abc
     Taking L.H.S.
         1        1         1
                      
     log a abc logb abc log c abc
     log abc a  log abc b  log abc c
     logabc  abc   1 R.H.S.
6.   Solve for x: log3  log  x  1  log  2 x  7 
     Solution:
     Given, log3  log  x  1  log  2 x  7 
     log  3x  3  log  2 x  7 
     3x  3  2 x  7
     x4
7.   Solve for x: log 2  log  x  2  log  3x  5  log3
     Solution:
     Given, log 2  log  x  2  log  3x  5  log3
     log  2 x  4  log  9 x  15
     2 x  4  9 x  15
     7 x  19
          19
     x
           7
                          log10  x  3           1
8.   Solve for x:                              
                         log10  x  21
                                  2
                                                   2
     Solution:
                     log10  x  3        1
     Given,                            
                    log10  x  21
                             2
                                           2
     2 log10  x  3  log10  x 2  21
      x  3        x 2  21
                2
     x 2  9  6 x  x 2  21
     6 x  30
            30
      x       5
             6
      Thus, x = 5.
9.    Solve for x: log 4 log3 log 2 x  0
      Solution:
      Given, log 4 log3 log 2 x  0
      log3 log 2 x  40
      log 2 x  31
      x  23  8
      If a 3  b 3  0 and  a  b   0 , prove that : log  a  b  
                                                                          1
10.                                                                          log a  log b  log 3
                                                                          2
      Solution: Given, a 3  b 3  0
       a   3
                 b 3    a  b   3ab  a  b 
                                 3
       or  a  b   3ab  a  b 
                       3
                                                a   3
                                                           b3  0 
       Taking log both sides, we get
        3  log  a  b    log3  log a  log b  log  a  b 
        2log  a  b   log a  log b  log 3
                           1
       log  a  b          log a  log b  log 3
                           2
       Hence proved
                                 x2  2
11.   Find range of : y 
                                 x2  2
                          x2  2
      Solution: Given, y  2
                          x 2
                x2  2
      y               ;xR
                x2  2
      yx 2  2 y  x 2  2
      x2  y  1  2  2 y
             2  2y
      x2 
             1 y
               2  2y
      x
                1 y
      Now, x is defined if
      2  2y
             0
      1 y
      y   1,1
                                 x2  x  1
12.   Find range of : y 
                                 x2  x  1
                                    x2  x  1
      Solution: Given, y 
                                    x2  x  1
         x2  x  1
       y 2         ;xR
         x  x 1
       yx2  yx  y  x2  x  1
       x2  y  1  x  y  1   y  1  0
       D0
        y  1        4  y  1  0
                  2             2
       3 y 1 y  3  0
       1
          y3
       3
13.   Find range of : y  9  x 2
      Solution:
      Given, y  9  x 2
       y  9  x2
      as 9  x  0,9
              2
       y  9  x 2   0, 3
14.   Check Surjectivity:
      f : 0,2   1,26 , defined as f  x    3sin x  4 cos x 2  1
      Solution:
      f  x    3sin x  4 cos x   1
                                      2
      As  25  3sin x  4cos x                  25
      5  3sin x  4 cos x  5
      Thus f  x min  0  1  1
      f  x  max   5   1  26
                      2
      Thus f  x 1,26
      Hence f(x) is onto
15.    f : R  S , defined as         f  x   [sin x] is an onto function then S must be, (where [.] is GIF)
      (a) [−1, 1]                 (b) {−1, 0, 1}           (c) {−sin1, 0 , sin1}           (d) none
      Solution:
      f  x   [sin x]
      For all real values of ‘x’
      Sin x gives values between −1 and 1
      Thus all integers between them will be range of [sin x]
      Thus S 1,0,1
16.                               
      Find the range of log3 x 2  9 .        
      (a)  0,                  (b)  2,               (c)  3,                      (d) 9,  
      Solution:
      We know that the range of x 2  9 is 9,   .
                                         
      Thus, range of log3 x 2  9 will be  log 3 9, log 3   , that is  2,   .
17.   Find the range of the function y  x 2  7 .
      (a) y   7,             (b) y   7,           (c) y    7,               (d) y   7,  
      Solution:
      We know that x 2  7   7,   .
      Thus,     x 2  7   7,    
                                                    3
18.   Find the range of the function y                   .
                                               5  4cos x
              1                       1 1                      1                           1 1 
      (a) y   , 1            (b) y   ,               (c) y   , 1                (d) y   , 
              5                       5 4                      9                           9 4
      Solution:
                      3
      Given y 
                 5  4cos x
      We know that  1  cos x  1
       4  4cos x  4
       5  4  5  4cos x  5  4
       1  5  4cos x  9
                 1        1
      1               
            5  4cos x 9
        1         3
                       1
        9 5  4cos x
            1 
       y   , 1
            9 
19.                                     
      Find the range of y  log16 x 2  x  1 .   
              3                                                   3 
      (a) y   ,             (b) y  8,              (c) y   2 4 ,             (d) y  1,   3
              4                                                           
      Answer: (b)
      Solution:
      Given y  log16  x 2  x  1
                                       3 
      We know that x 2  x  1   ,  
                                       4 
                                3         
       log16  x 2  x  1  16 4 , 16  , that is, log16  x 2  x  1  8,  
                                          
       y  8,  
20.   The function f :    defined as f  x   x 2  x  12 is _____.
      (a) one-one               (b) many-one               (c) onto                      (d) into
      Answer: (b), (d)
Solution:
The given function is f :    defined as f  x   x 2  x  12 .
Consider,
f  x1   f  x2 
 x12  x1  12  x2 2  x2  12
 x12  x2 2  x1  x2  0
  x1  x2  x1  x2  1  0
 x1  x2 or x1  x2  1
 f is many-one.
Consider,
f  x   x 2  x  12
                                  2   2
                     1 1 1
        x  2  x           12
           2
                     2 2 2
                      2
             1  49
      x  
             2   4
             49   
 f  x    ,  
             4    
               49    
Thus, Range    ,   , but Codomain   .
               4     
Since range and codomain are not equal, the given function is into.
Thus, the given function is a many-one into function.