Power Method Iterations
May 20, 2025
We apply the Power Method to the matrix:
1 −3 2
A = 4 4 −1
6 3 5
Initial guess vector:
1 1
1
x(0) = 1 , normalized: √ 1
1 3 1
Ax(k)
We iterate using x(k+1) = ∥Ax(k) ∥∞
, and estimate eigenvalue using Rayleigh quotient.
Iterations:
1
Iteration Approx. Eigenvalue Normalized
Eigenvector
x(k)
0.0000
1 8.4999 0.5000
1.0000
0.0769
2 6.7500 0.1538
1.0000
0.2727
3 6.1744 −0.0126
1.0000
0.3503
4 6.5826 0.0061
1.0000
0.2996
5 6.8414 0.0656
1.0000
0.3086
6 6.9606 0.0690
1.0000
0.2982
7 6.9909 0.0664
1.0000
0.3003
8 6.9979 0.0668
1.0000
0.2998
9 6.9995 0.0667
1.0000
0.3000
10 6.9999 0.0667
1.0000
0.2999
11 7.0000 0.0667
1.0000
0.3000
12 7.0000 0.0667
1.0000
0.3000
13 7.0000 0.0667
1.0000
0.3000
14 7.0000 0.0667
1.0000
0.3000
15 7.0000 0.0667
1.0000
0.3000
16 7.0000 0.0667
1.0000
0.3000
17 7.0000 0.0667
1.0000
0.3000
18 7.0000 0.0667
1.0000
2
Final Result:
0.3000
λmax ≈ 7.0000 , x ≈ 0.0667
1.0000