0% found this document useful (0 votes)
35 views25 pages

ACS Module 2 Part, 3

The document discusses various mathematical concepts related to state-space systems and transfer functions, including the derivation of state transition matrices and the application of the z-transform. It includes equations and examples for finding the response of systems and analyzing their stability. The content appears to be part of an engineering course material from St. Thomas College of Engineering & Technology.

Uploaded by

petpar1962
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
35 views25 pages

ACS Module 2 Part, 3

The document discusses various mathematical concepts related to state-space systems and transfer functions, including the derivation of state transition matrices and the application of the z-transform. It includes equations and examples for finding the response of systems and analyzing their stability. The content appears to be part of an engineering course material from St. Thomas College of Engineering & Technology.

Uploaded by

petpar1962
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

PageNo.

5
3 THOMAS cOLLEGE OF ENGINEERING & TECHNoLOGY CHENGANNUN &T.THOMAB COLLEGE OF ENGINEERING 4 TECHNOLoGY CHENOANNUR ST.THOMA GOLLEGE OF ENONEERING &

4 A discvel tim 6ysam given by okjenence equounM


ck+2)+ 5y (k+) +6y Ck) - ulk
YCo) = ) =0, T Sec.
a) dalunime Hhe S t a mada P.
in comt i Cal Fum.

5) Fmd Hhe Stalk fram ihm matrex


9 for wput uk)=l , k7, fmd ofp YC).

Ck+2)+ 5y (k+ t) + 6 yCk) = u(k)

Appy z-troofnm on balh Sides


Ycz) +5z Ya) + 6 Ycz) = l(z)
Ycz)[+5114] -Ucz
Yc) =
Ucz)
TRACE KTU z+5Zt6
A
(Z+2)(Zt3)

t
(Z+2)(Zt3) Zt
A=
Z43 Z--2
13 L
Z+-3
ce)
Z3
Yrz) U(z) Mz)
Zt2
Z43
Yz) I()Ya(z) hme
= (Z+2) X a) = Urz)
Zt
Z A(z)t I ( Z ) = U(z)
1 (k+ 1) t 2 C4 [k) U(k) =

l4t) -Il[k) +u (k) ()


21Z) Uz) + 3) 2 (z) = U(2)
Z4.3
Z h2rz) +3 2rz)= U(z)
Page No 6
SHOMAS COLLE Gt OF
ENGINE ERING & TECHNOLOGY CHt NEEANNUN ST THOMAS COEO OY
ENGINININ tGh y

2(k+ t3 X3k) = U(k )


a (k) -3 3 (K) + uk)
XICk)
T2k)
Yczl () - X2()
YCK K (E) - d2Ckk)
Yck)L )
7Ck)

To Tindstniz trasithom matrX, A


A
z1-Alz -
A
Z1-A-z TRACE
o1
-3
KTU Zt 2

Zt3
Z1-A (z+2) ( z+3)
L[zs
(z1-A)E
(+2) |2
o
7 Zt 2

Zt Z13

1-A
743
rtA z
213
A (-a
(-3)
PageNo. 7
O M A S COLLEGE OF ENGINEERING & TECHNOLoOY CHENGANNUR ST.THOMAS coLLEGE OF ENGINEERING & TECHNOLOGY CHENGANNUR ST.THOMAS cOLLEGE OF ENGINEERING &

Tohind yclk) whm wwt skp

) (z1-)zXto)+ Z (21-4) 8 )
hk Xco) = O, &Ck) = I u(z) =
nck) - (z1-A) B Ua)
(Z1-AB Uz)=
Z+

Z+3
Zt
z- (z-1) (Zt+2)
Z43

TRACE KTU Z
(z-1) (2t3)

(z-1)(z+2a

T-3
(2-1)(Z42) z- Z+2
-

(Z (Z+ A) Z-I Z+2

(z-) (Z1)

z-1) (Z+ 3) Zt3

Z431 Z-
Z

(2-1) 2 3 Z-I 4 z +3
O A S coLLEGE OF ENGINEERING &
TECHNOL OGY CHENGANNUR ST
PageNoE
THOMAS coLLEGE OF ENGINEERING & TECHNOLoGY CHENGANNUR ST THOMAS
COLLtGE 0

z ) (z+2)

(z)(Z43)
X1[e) () (-2) k

2(b)( (-3)
y( -]7]
7(k) - XiCk)

()*- (2) (3
=TTRACE KTU
- (-21k.
5) Fnd Hu reshonse of he sm
xlkt1) = Mck) + u6),
-I

Co)=_ if us)=I fr e 0, 1 2,

U(z)
LO -

z-I
nok)= z (z1-A) z, Xroj t z (11-A) Bua)

ZI-A =z 7Z-
Zt
-

2
21-A (z-1(z+1) z
=(z4)z+1)
Page No. 1
ng&r
Engiaterung
ENGINEERING&
ST.THOMAS CcOLLEGE F
TECHNOLOGY CHENGANNUR
cOLLEGE OF ENGINEERING &
TECHNOLoGY CHENGANNUR ST.THOMAS
OMAS COLLEGE OF ENGINEERING&

(ZI-4)
(z-1) (Z+1) z-

(z-) (z+)
O

(Z1-A)Z
(z-) (Z+D
z
O
Z+f-

3-Alz? (Z-!(z) Z4 Zf

A B
z-I1-1

TRACE KTU
z
E

k k
--

A Xo)a f
(1)
(-,
-( (-)
(z1-)Buz)= Z-I (z) (Z+1
Z+
NAAC

1 5tale wmd enplam h propertis of Stk t romwetton mtry

a) Fwd a stae trmsitram motvix fo A= o -1

Conyley-Hrmilto heovem 3

A-[
-

a 3The cha ctemstrt equhn iu1-A-0


21-42 0
-

0
3 - 2 43|
Thcuts of I chmautervwht eguahm eagen v a s
n(743) t =0 n+ 37t 0 :
(+1) (+a) -0
a =-a
Let fA)= e TRACE KTU
when 1--1Slau)=e»t
= e»t -E
a)ent

f-)=e
fCna)-ezt=_

we kno hot £C2)= _do + 2 t d2 ai..


hn M-2, 2t-do4 AL

oD -()
o-3 o
We kns _hat fe)=_e_gt-2) - eE
do-d e - (1)
(2 7 o-2d = e*.
( 2 )(2) _4 = ë -e
odoE+ d ét+ef-E= aet-e"
NAAC PaeNo
&
tNGINEER'NG
COLIEGt O
81 HOMAB
UR

JA) do 1t d A = e

A do 1 t dy A

"- o + e-at[o -
LO L -3

a Lt t s3e*]

whwch 4 STM.
- e+ae

12
3)Fmd ftA)-_A f A=0 usng Caylay
Hrowwilfo hcave -2-3
A TRACE
-3
KTUTheohamaAtevshz e4ubhm
ni-A=0

13
a (h3 td =0 nA3 =D.
(EL)_(2t2) = d

wn A- S)=
-l=_(2)
- 2 ) - (-2 2 4036

n-
We knowo hat ica:)-dota i t d2E n-1
Cai)-_do t d Ai
whn = - 1 - ) = do -d 1
2- 7 t(-2) = do-a d_= 4036
thunt LPiNG &iELurihuLUr CH NiANNIH S irwMAB Ft A tRING& TFCIUNC GY CMENGANAK I HOMAS coLEGE oF ENGINEERING

odo- dy (
d -a = 4036b
(3)
()-(2) o =-4035
d-4=4,. + o = 4-4035 =4034
SCA)=_Al do1 t oA
4034 0 t4035 o
-23
-4034 0 o 4035 1
-4034 -8070-12105
12
-4034 -4035
8010

4) Foy wtaim sysem_ when Xto)= e nXCt)=|


wwle Xo)=| nXtH)-e TRACE KTU -3est|

Dekimwme \hs ystm makrix A

KLt)=_eAtXto)
Let_ A A2 nd h cquohim u
Aa A4 XI)_AXtt)._
3t
No Xtt)= e hene
3 3t
CundXco)= 4 XLo]_[-3]
-3
Now XLol =_A XLo)
31 AL A
As At l-3]
NAAC age No.
naer

N EKIMG 4 lttNoLCIGY CIIENGANNUR T THOMAS COLL&GE OtNINEERING & TECINOLUC C E NGANNUR ST THOMS COLLEGt OEGINEERRING

A-3 A& = -3 (1)


A3-3 A4 = -()
StmdlomyXct)e nn&XLE)==_|eet

Cmd Xlo) =
4
Xta)=_A_Xto)
fA AL Az1
ALtAa _4 -(3)
A3t A4=
3- 4Az= 4
Ael-Aa=l-4= 0
(A)-(2) TRACE
4A4= -8 KTU
A4 =-2
(A=Ast A4 =1L A3=l-A4 =I+2 3
S AA1 A2
LA3 A4J L
SCekain_ls rtuhm_o lhamogenisskata eqnahm
-AXhas A[1-21 nd Xtoj=p.s
to homageni.os Stnle Equasm X
Ax
Salwtiom Tct) =_pct). Xco)
t)-e= 51-)
S1-A)=s 4 -2 - 2
4 -4 S44
2
S1-A st4 t 3 = S35-4 +3 =5+35-2
iNASGY E NGANNU OMAS LALE

51-A= S3 5-= S+35


2
a
=(S-0.561) (5 +3. 561)
(51-A Adj -6
(51-A) -D-66)(55 S+ 4 -2
S1-4 (s-0-561)(S+3.561) 4
St4 S-1J
= (S-0-56t}{S+3-3EY- S-0-56t} {S+3+561
4
-1
(S-0-561) (5t 3.S61) (S-0S61) (Si3-561
St4
5-0.561) (St3.561) S-0.56] St3 561
St4 =A St3.561 + B (s-0 561)
A=: 1D
A
S+4 11D6 e°551E 3-561
S-0-561) (S+3.56) - D-106 e

S-D561) (St3-561) TRACE


A KTU S-D 5b1 St3 561

a = A(Sf 3-561)+3(S-0.561)
A= - 6:485 Cmd B= O485
- -0.485 e
0561t -3.561t
t0:4-85 e
CS-0 561) (5+ 3 561)
A
S-D.561) (S+3.561) (S-0.561) (St3 561)
4 A (3 St3.56 + B(S-0 561
A-0:242 n 3 =-0:
242
-5 61E -3 561t
|
(s-0.561) (S+ 3.561) = 0:242e D-24 2 e
S
A
- - (S-0.56i) (S+ 3.561) S-0S61 St3 56
NAAC
sOnROnATION CO
Page No

S- St 3.561) + 13 ( S-0-56
A = - O1b6 md B 106 3.561t
- D10b .561t I-10b e
5-1
S-0561)(5t3 56) 0.561t -3-56Tt D.56t -3.5E
- 0-1D6 e - D46Se +D-465e
eAtbt) =11b6e
0 56It .3-56t ,561E -356lE
Lo-242e-0242e -0-1Obe+p.10be

Lctl= d Xo) d¢t)[05

TE) = | 0-068 e 56|E


0.432e37561t
3.561t
0.DIS e 56|E
D985 e

TRACE KTU 12spawe v


6) FrSystemeprssenled by_X= AX A
XEl=[aetj when Ktal= Cmd

L X4)=[4e when Kco)=|4

Delanm lhe systm matrix A_md Ihe Stalk_


romsihan matzix
he solwim of homaqeni eqnah on =AX
t

Let A-AAz
Aa A4
We howe Kctl= aet t)=|-eet|
AL t=o Xtol= and
NAAC
AIONAL ABSESSAMET AND
ACCCHEDYATKON o U N C H
PageNo.
Or
ENGINEERING
&
COLLEGt
CHENGANNYR SLOMAS
{NGNEERING4
TECHNO OGY
O
Xc)= - 8e2t
OLLEGE
HONAS
N G t R G 3 TECHNOLOG H N

+e+
(-22t

At t-0
4

We hawe X=AKtt)=fA1 A XtU


A3 A+
At teO
A AXco)
As A4
SA A2 1 2.

Fo irst case -e
4 As
2 At A2 8
2 A3 +A4 = -12)
Far Sewn came TRACE KTU
[A Az1 4
As 2
A4 L
4At A2 =-8 (3
4 A3tA4 =2 -(4
- (2) -2AL0 A= 0
8
2At A2= -8, Aa
(2)-(4 2 2A3 =-2 As
(2) 2 A3+ Af =-4 a A4-4 A4=
Sn A=A Az 0-8
Aa A4
Toad stalk rgmsihan matrix
(s1-A)= 0- -6
5 6
St6
-

51-A_s(5+4)++8 s65te =(S12) (314)


NAAC
aara ACCREAT CJCN

LLtt
ENGINEtRING & !E CINOLOGY CHENCGANNUH ST THOMAS CLLEGf ENGiNE ERING &
itiJL CA HENGANUA OF
THOMAS COLLE GE EIPiEER

$1-A Adj(51- St6 -8


S1-4 St2) (St4) S
St6 -8
S+2)(S+4)(SF2}{sT4)
S
S+2) (5t4) (St2) (St4)
St6 A
(S+2) (St4) S+2 St4
(+4) + B (s+2)
Stb A
utS=-a t EA[2) A-
S--4 B-2) B--4
Stb e 4t
S+2) (S+4) S+2

4 TRACE KTU S+4

(S+2) (St4) St22 Stf

Ywt S=-2 1 =A2 A=2 .5


S4 _1= B2).. -

B-/20:5
05 0.5 0.5eD.5 ett
(S12) (514 Sta St
-8
St2) (St 4)
5D.5 4 4E
S

S2) (St4) Sta St4


S= A(St4) +B(Sta)
P S--3 -a= A(2 A
S=4 2 - 4 = B(-2) _8= 2
NAAC
ADCREDTATI GoUNCA
Page No

S -2+2et
(542) S+4) 5t
4 2 4 4t

ae4t
0-5 e0.5

A mem ttmme imvoiowt sys lem y chavact evized


by Ih omaqemies state equatio

Compwle e sonhin of homogemous


equiovM, wnme he tnihal stoi vector XDs
Gaiven A=|4 Xo
TRACE KTU
trnonoqeniaws equahn X- AX, Ie scduhn
ct)=ft) Xco)_
Otl= 1S1-A)=eAt
=5-1
S-1
51-A(s-
(53-AAdi(s1-a)
61- (s-1) S-1
(s1-A-[E
te
o
Ket)- ct): Xco) - |e e
te
ee
NAAC
ATHONL AS8 NAA
CENAON COUNCH
AND Pa
ENGINEERINGa
ENGINEERING &EINOL OGY CHENGANNUR ST THOMAS COuEGF D
Lt tNGINEERIMG ECtNOOGY CHENGANNUR ST (HOMAS CCLeGE O:

3) taim I time sponse of Ihe tollcwg smM


- ) whn uci lke wmnit
skp ocving at t=0 amd

Xo)=
O

Total Respanse, Lct)= Gt) Xco) tL|$1-4BUs


We kn dromLast enample, ZIR=et7

zSB =_(61-)8 US tet

We knowe (51-4)=
TRACE KTU
ZSR L

- s(S-)
ZSk=
SS-1)
ss-)
Puut s-01 A-), A=H
= A (s-1) +BS
6-1l= BO),B-I

1+(S-)
(s-1)2
NAAC Piage Na
AIK2BA AS hh
ACCREDATKOANCOJANh

1U1iEat ENGINEERgG
twGNt RNG 'tNCN.UG R aANNi ST T«AMAS tE D ENINT ERIN 4 1F ,HNU uY
t NGANNR THOMA

z5R et
te
(6-1)
Total Raspose.. Kt) = ZIR +ZSR
zt) = et
te te L atet

g Fwdie Vspavse of he syskm

-2 -3 LoJ
nd Ytt)=4 oXblhe ollowrin tnpuk
41
Uct)= TRACE
uct) KTU
unau Ltluwwt 3t
U2tt s p tmsh o.
A=
--3
-qct)=_et
S1-A)
61-A)[s
-2 La St3]
SI-A s(S+3) ta =Si35t2 =(5t) (St a)
(s1-A Ad(s1-4)= S#3 1
S1-A (s+)(S2-2 S
S+3
S+S+ a) (s+1) (S+2)
o

St3
t5+19LS+2) (S++}{S+2}}-
A
541)(S+3) St2
NAAC
ATIONA AsseSE a age N
D ER
LCA ,ENGANNUR
S THMAS CAI EGE
aNEEKINGIECHNOLOG
CEGANNUR
ST TtOMAS COLLEut
9 NsiNE t Ri

5+8A(S+2) + B (5+1)
A2
PutS-1 > 3 - A )
S 1= B(H)1 3= e
-2t
St3
S+I St2
(S41)(S+2)
A + B
S+)(6+2) St S+2

Put 6-1 1_Al_E


6-2 I=B . 13 2t

6+1) (42)
TRACE KTU StI 5t2
L64)(542)
A s2
6F1) (S+2) 4|

6= A(S+2) +B(s+1)
A=
S-2 -2= B() B 2
-2E
- Etae

(s+1) f512) StI S+2

eF2
KcoJ =[oo1
ZI ct) Xco)= Lo
NAAC
NATIONAL ASSESSMENT AND
a r CAEDTATIOM COUNCH
PageNo.
COLLEGË Of ENGINEERIK.
STHOAS LOLLEGE OF ENGINEERING
L TECHiNO CGY CHENGANN JR T THOMAb
L ut
N L RING &
TECHNOLOGY HE NGANNUR

SR = 51-4)'B Uts) Uul Ys


St3 LS+3
(S41) (S+2) (St1) (St2)
o TJLEE
(S+1) (53) 1)(+2)J
|St3
L S H )(St2) G)(3+2)5 2.t
St3
t(sH1)(S+2 (S+1) (S+2)
S+3 3 (5+3)
(S1) (Sta) (S+1)5+2) S(S+3
5

s(5+1)
TRACE 3
(s+15+2)(6t3)
KTU
6 5
(5-)5 (S+1) (542)[St3J
sing wtial rochr
t0:5 tD.5
ZSR=L S+1 S+I St2 S+3

3 0.5 5
TSt-S+3- S S t S+3

S 3-3.5Et-EZ0.5e
2ta5e+3E 2.5
5 3t
3 E

=3E
+Zs=|3-2.5 2
-e +0.5 e
=ZIR
2 t 2 5e't2e2.5e5 ate)
ENLNLE iNG N OG7 CHENiNNUH hAAS LEU NIN E,MING &tCiil G CitNEjANHLH S AS t LEGi NGEt*

Ytt)= X6) = DX, tt)


1 LI 1 2 1)
YCE XLE)=3-a.5e 2+D 5 e
-2t
zttXTEI+Xzttl=3-2:5e-+0D53
t a : 5 e t a E 2 g . 5 es3t

Y2lt)=S=4 t e - e s

IoComioley hesta madel

2 4
Fmd. Ihe Set ofinitial conditirw Sudh_Hhot mode
2t
iaSupprSsednm Ytt
e At
Fmd_eAt A=o
TRACE KTU
61-A= 0
[s -11
Lo s S-1
SI-A s(s--a=S-5- =
(S+1) (S-2)
51-A]'= Adi (ST-A) S-1
5
S1-A (S+1) (s-2) S
S-I

(s+1) (-2)SH1) (5-2)


S
Ts+fs-2}- (S+1(s-2)
S-L A
(S+1) (5-2) StI S-
S-1=_A (S-3) + 3 (S+1)
PukSl -3 =_A-3 A=23
S= _ = B(3
u i tNGINEE.RING& " L H . G CHENGANNUR ST THOGAS OLLEGE OF =MNEERNG & YECiNO G Y CHENGANNUR ST THOMAS UOLEGE OF ENGNEERH

5- 3 -* Y3 e+2
s+1) (5-a) StI S-2 3

A S-
S+1) (5-2) S+I

4Al6-a) +B_(S+1
Pot S=2 4 B(3 B-3
= A-3 A=
S+I S-2 3
2t
(S+1) LS-a) 3

S A B
S+1)(6-2) Stl S-
S A(s-a) + 3 (St
Puk S=a TRACE
2 -B(3, KTU
B 23
5- -1=A-3 _A =Y3
S+1) (5-2) StI S-2

h Sduhic homog enirws eau rn


Xt)=_e X(b)_ Let Xto)=|
3
a
tt)-
a3 ) 5(gEz)|
eRa-b) + 4(a+b)
2
(-2atb)(aaab)
Yc) [ 4 ] X taXa
(2a-b) + (R+b}+ae (-2a+h
(2a+2b)|
Yt)4 (20-b -4a +2b) +L e2 (Dtbt4a1 4b)
-20+bes 5aisb)
YcA)= TRACE(5a15b)
(-2atb]t KTU
at
Gwwen hat SWhhye e term acn YIE
5t5b= o atbo a
Initnl stask vestov Xo)- =+ whame vn fo
LD - m

1otrwm mw sponwe of I lwmg Veutymatvix


oifierential eqyolion K=o 4lktolu) ond
F6-5
LX2
L2whme uE) V wmn skp wp
omd ih Condlrv me X1CoJ =X2( 0) =0.
Here intial condawrys ov
Total Rspe, 2t4) =L$1-A 13 Uu Z5R
NAAC
ATHONAL ASBESSENT KND
ACCREDITATION COUNCH
PageNo.
COLIEGE ENGiNEEkIN
ENGINEERiNG & 1E CHNO CGY CHENGANNUR ST THOMAS
CHENGANNUP S 1hOMAS COLLEGE OF
L G t GINEERING & TECHNOL OG

(s1-) -[s o1.[° -5]-[s


L6 St5

631- =S55t 6=_(5+2 (5t3)


s(S +5) +6T St5 `t5
(61- S+2)(St3)-b tsr2tst3-(st2)(sf3

- S
tGF2)(SR CS+2)[SF3
St5 A
SfA
3St3
B
(s+2) (S+3)
St 5 A (5+3)+ (S+a
Pwt s--2 3 = AU A-3
S--3 B-))
ZSR= St5
(St2)(5t3) (S+2) (5+3)
6
TRACE KTU
S+2)(St31(S2 (St3)J
= sCS+2) (St3)

612 (S13 (S+2(Sr


C
s(s+2) (5+3) St3

4-AG+2 (St3) +B S (St3)+ C s(5ta


Futs-0 = A213=6A A6
S- = B(-2)0 =-28 , 8-2
S=-3 l c(-3 (1) =3C C3

tStSEr3
(S2)(St3J
I=A [S+3) +18(s+2)
NAAC P2

Put62 I= Alt) A-
S-3 I =B(-) 8=
3t
SF3

xt esuu s1-[14
Et_t 2
Ycb)-[ 0] Xtt) - X1tt)=- a 3

12) Givenlhe syskm =[-3 D +3 o . Fmdk


T2-J 2J
vwpw Vectw uct) m he Tolowtn meY0spanse
XH)=_6 (1-e)
Y2lt) =_3e St
he TRACE
goven ime
U.
KTU
mwt
a e2

satuty 1k stali ea"


Ysþase

We knguk X) =_A Xt) +B uct)._


6e

+
[3 0
32
8 +18
44
6-6-3 e+ae 2
-6e+18-18e
!-63 33 aebebe 3a
GYCHENGANNF StiHOMAS
TOLIEGE
ENGINEERING
18 1&e &
TECHNOL OGY CHENGANNUR ST
HOMAG COLLEGE OF
ENGINEERNG &

|-6t12e-6ebe 32
3
o 8 18- 12et
2 -6t12 6E3 E4t =3013
L3 2 3 2
We knaus a o
3_D T
3 2 3 2
3 D
32 6 3

OT18-122e
-6t12 e 6 3 6 4
6-4 e t
TRACE KTU 3t

13 tov Syslem vepresen ed by srolk


eqy eurm Xtt)=AX)
Yspase Xtt)=[E2t when co=
2E2
Gnd Xt) = wne Kco]=
-2
-e
DelwM h syslem matvis A
The souhian of hame qemious
e4uaktmX=AX _
Xt)=et Xco)
Lek_A=AL A2
W hawe
A3 4 e 2

Xtt=-aE
NAAC ntE
COMLEt O NGINEERS
:ENGANNUR S HMAS
E3t. OENINE a ihaJL
THOMA
o EINg d
t Ot de AE NANN PS

Kue)--2 at t Kto)=
-
and Xo)= -2

Secand cane Xct)=e

Perc Xc)=[17
At_b0 Xco)=
XLE)= AKct)=|A2|Kt)
'We haNe
As At
A X)=A A2 XLo
3 Aa

TRACE KTU
-)
4 A3-3A4 -( )
toy Seuond _caoe [-11. A A2
A3A
- = Ai=ta (3)
A3-A4 -(4)

- =A-2A2=Ai-2
AlED
_()-(a 3=-2A4t A4=-A A4
L4) hz-A4=l
Aa=1+Az=1-3=4

You might also like