Traverse Survey
Traverse Survey
1:
TRAVERSE BY TOTAL
STATION
Optic Digit
al al
INSTRUMENT : OTHERS
Prism
Tripod
3
2 Bg/d Bg/d
4
Bg/
d
Bg/d
1
5
Bg/ Bg/d
d
6
TYPES OF TRAVERSE : Closed Traverse
Starts with one known station and end with the same
station.
The coordinates of the starting station and the end station
must be same.
If there is a difference between starting coordinate and end
coordinate, the error can be identified and the correction
must be done to the each traverse line.
Can be checked and adjuste1dc.oordinates
B X= 1000m
N
1 Y= 1000m coordinate
s X= 1400m
3 Y= 900m
n
A
C
2
A coordinates
X= 1000m
Y= 1000m 4
D Station 1 and n is known point (coordinate)
Open Traverse
The measurement starts with one known station and
the end points are not in the same station.
The traverse maybe has one known coordinates (a station).
The error by using this traverse is difficult to define.
Suitable for long narrow strip (construction of
1
highway and railway)
coordinates 3
X= 1000m n
Y= 1000m
2
•Angle measurement (Bearing) 30.000 m
1
•Measurement 2o5f.0a0n0glme between two or more points by
using t3otal
station or prismatic compass.
Procedure in Survey Works
1. Reconnaissance Survey
2. Station Marking
3. Observation and Measurement
4. Booking for Bearing Observation
5. Observation Checking
1. Reconnaissance Survey
Carried out to determine and selection of suitable station points. The
criteria for selection of station points:-
• Use “whole to part “ principle.
• The number of station must be minimize but cover all the survey site.
• The distance between station must be far (more than 30 m) and same as other
traverse line.
• Avoid the sight line to close with earth surface.
• Station must be at the stable surface.
• Try to avoid any disturbance such as tree, building etc.
• The station must be available to observe all the detail surrounding.
Bg/ 3
2 d Bg/
d
4
Bg/
d Bg/
d
1 5
Bg/ Bg/
d 6 d
Principle of Traverse Surveying
•“From whole to the Part”
Pkt 1 Pkt 2
Traverse
Line
L1 L2 L3
Pkt 6 Pkt 3
Site area to be
surveyed
Pkt
Pkt 5 4
2. Station Marking
•The station can be mark when the station criteria had been full fill.
•The common station marking are wood peg and nails.
•The selection of the station marking depend on the site condition.
•The survey works on the road, the suitable marking is nails.
•If the survey works in the forest or construction site, the wood peg is
the best used as station marking.
•For permanent marking, the station can be in concrete.
Pkt 1 Pkt
2
L1 L2 L3 Pk
Pkt
t3
6
Pk
Pkt t4
5
3. Observation and Measurement
There are two types of observation in traverse:-
• Angle – measure internal angle of the traverse
• Bearing – measure angle from the north in close wise direction
Face Left :
When the vertical circle of the theodolite lies to the left of the observer when
taking a
first reading, the position of the instrument is referred as face left. The first reading
in new
observation.
a First, read back
station, a with face
N left
c
Second, turn theodolite to b
and
read front station with face left
b
C= instrument setup
• Face Right
•When the vertical circle of the theodolite lies to the right of the
observer when taking a reading, the position of the instrument is
referred as face right.
•The observation of the angle (horizontal or vertical) is known as face right
observation.
b
C= instrument setup
DIFFERENT IN ANGLE BETWEEN
FACE LEFT AND FACE RIGHT
N(+)
0°/360
°
W(-) E(+)
270° 90°
2. Bearing comparison
The last bearing is compare with the establish or known bearing value.
Example:
Line AB read as 29º 29’ 21”
Suppose read as 29º 29’ 29”
Angle misclosure – 8” in 4 station a, b, c and d.
Adjustment +2” per station.
3. Cross-bearing
The checking was done by observation to the other reference station and
compare the difference
Accuracy in Traverse Theodolite
•Misclosure that recommended by Department Survey And Mapping
Malaysia (JUPEM)
⚫ Wind
Error of Manipulation
⚫ High temperature
⚫ Inaccurate centering
⚫ Haze ⚫ Inaccurate levelling
⚫ Unequal settlement of tripod ⚫ Non – elimination of parallax
⚫ Slip
leg
Error of Observation
⚫ Inaccurate bisecting signal
⚫ Non vertical signal
⚫ Displacement of pegs / signal
⚫ Wrong Reading & Booking
Source of Error
Some sources of error in running
a traverse observation are:
⚫ Poor selecting of stations, resulting in bad
sighting conditions caused by alternate sun
and shadow.
• Theodolite is not perpendicular to the station
• Theodolite is not level during observation
• Wrong handling for total station and tripod
• Parallax
• Effect from curvature and refraction
• Error in reading or booking
Mistakes In Traversing
⚫ Occupying or sighting on the wrong station
⚫ Incorrect orientation
⚫ Confusing angles to the right and left
⚫ Mistake in recording and reading
FIELD WORK : TRAVERSE BY TOTAL
STATION
Procedure:
1. Select site (Reconnaisance Survey)
2. Station Marking (4 station marked with picket)
3. Mark the station base on clockwise direction.
4. Distance between stations is 25-30 m.
5. Datum : Observe using Prismatic Compass for station 2-1.
1 +/-30 m 2
+/-30 m +/-30 m
4 3
+/-30 m
Thank You….
CHAPTER 3.2:
INTRODUCTION TO COMPASS AND TOTAL
STATION
Telescope
-View the target
Compass needle
-Show direction
Bearing reading
-Shows bearing observ
Zero clamp
-Lock bearing to 0 sam
north direction
SURVEYOR COMPASS
Focus
-Zoom in and Zoom
Out the target
Bubble
-Make the instrume
centre to the station
Needle clamp
-For lock North Direc
Bearing clamp
-For lock target
NORTH DIRECTION
• Direction of a North
line must be determine
Magnetic
by North-South line. North
• The problem is, True
how we can determine North
S
True North
North direction that showed by meridian line.
Can be determine by astronomical method.
All bearing that use the true north can be call azimuth.
This is really a true north.
U A
S
Grid North
North direction that showed by the grid line in the map.
It refer to rectangular coordinate system by each country.
U A
S
BEARING
• Angle measured in clockwise
direction between survey lines with
the north direction.
• The following are types of bearing:
1. True Bearing
2. Magnetic Bearing
3. Grid Bearing
4. Whole Circle Bearing
5. Quadrantal Bearing
6. Forward/Backward Bearing
BEARING
• Angle measured in clockwise
direction between survey lines with
the north direction.
• The following are types of bearing:
1. True Bearing
2. Magnetic Bearing
3. Grid Bearing
4. Whole Circle Bearing
5. Quadrantal Bearing
6. Forward/Backward Bearing
1. TRUE BEARING
• Angle between the true north to the direction of
the direction of the line (A).
North Pole
True Bearing
θ
South Pole
X
2. MAGNETIC BEARING
• Angle between the direction of the magnetic north
showed by magnetic needle and the direction of the line
North Pole
Magnetic
North Pole
Meridian Magnet
Magnetic South
Pole
South Pole
* Sudut akan
berubah dari masa ke
semasa
3. GRID BEARING
• The grid whole circle bearing of any survey lines is the
clockwise angle between grid north line and the survey line.
GB U A
S
4. WHOLE CIRCLE BEARING
• Angle from any north direction to the surveyed line.
• Whole circle bearing (WCB) is the measurement line
where the direction of the measurement is clockwise.
• WCB range is 0° - 360° from north direction.
N
W E
S
5. QUADRANTAL BEARING
• Angle form any line which it makes with the
north-south axis.
NW NE
W E
SW SE
S
Quadrant 1 Quadrant 2
U
U
0 0
B T
B T
Quadrantal bearing
S is N 0 E S
Quadrantal bearing is S (1800- 0) E
Quadrant 3 Quadrant 4
U
U
0 0
B T
B T
S
S
W N
X
φ θ
W E
A
ω Φ
Z S Y
•94˚00’00”
S
•123˚20’00”
86˚00’00”
•175˚32’00”
ES U
•199˚46’50”
•242˚12’23” 56˚40’00”
•255˚28’33” E
Whole circle
•288˚34’13” S 4˚28’00” bearing
•311˚43’22” ES
•11˚12’13” 19˚46’50”
WS
•56˚44’56”
62˚12’23”
W
S
U
75˚28’33”
W N
48˚16’38”
N W
N
7
11˚12’13”
1 E N
˚ 56˚44’56”
2 E
5
’
4
7
”
W
QUADRANT BEARING TO WHOLE CIRCLE BEARING
•N 84˚00’00” E U
84˚00’00”
•N 23˚20’00” E
23˚20’00”
•S 75˚32’00” E Whole circle
•S 35˚46’50” E 104˚28’00” bearing
•S 42˚12’23” W 137˚47’37”
•S 55˚28’33” W 222˚12’23”
•N 88˚34’13” W 235˚28’33”
U
•N 11˚43’22” W 271˚25’47”
•S 11˚12’13” W 348˚16’38”
Quadra
•N 56˚44’56” E 191˚12’13” nt
56˚44’56” bearing
S
6. BACKWARD BEARING / FORWARD BEARING
1. INTERIOR
2. EXTERIOR
3. DEFLECTION
4. ANGLE TO THE RIGHT OR LEFT
• Forward bearing from interior angle
3
1. Find back bearing (2-1)
2. Back bearing (2-1) – Interior angle
3. Forward bearing (2-3 ) = 159º 39’ 40”
• Interior angle from bearing
3
1. Find back bearing (2-1)
2. Back bearing (2-1) – Forward bearing (2-3)
3. Interior angle (at 2 ) = 119º 49’ 40”
• Exterior angle from bearing
T Receive
S r
Known point
Function of total
station
•Angular measurement
•TS capable to measure vertical and horizontal angle
• same function as theodolite (measure angle)
•Distance measurement
•TS also capable to measure slope distance.
•TS has an emitter that generates modulated microwave or infrared
signals. This waves or signals will be reflected by a prism reflector. The
modulation pattern is read and interpreted by microprocessor in TS. The
distance determined by emitting and receiving frequencies and
wavelength to the target.
Function of total
station
•Data recording and processing
•Micro computer in TS can store the data
•Data recorded can be download to a computer and process using
application software in order to generates a map of survey area
•Using the vertical angle, TS can calculate the horizontal and vertical
distance components of the measured slope distance
•Coordinate determination
•TS determines the coordinates of an unknown point relative to the
known coordinates by establishing a direct line of sight between two
point
•Angle and distance measured; coordinates are calculated using
trigonometry and triangulation.
Structure and Component of
1.TOTAL SATION
A GTS-230N Series two-faces type of
total station
total station can get the value of distance
and angle
2000m for a prism used with condition of
slight haze with visibility about 20km.
Structure and Component of TOTAL
STATION
2.PRISM
TOTAL
STATION /
THEODOLITE
STATION / PEG
PLUMBOB
•Centering and levelling a total station
• Focus on the surveying point or station.
• Centre the surveying point or station in the optical plummet.
• Center the bubble in the circular level.
• Center the bubble in the plate level by using the foot screw.
• Check to see the bubble is in same position in any direction.
• Center the instrument over the surveying point by looking the optical plummet
eyepiece to make sure the point in the actual position and the bubble also in a
plate level.
Setting up Instrument
•Removing Parallax
• Focusing on the reticle.
Error in TS &
reflector constant Error in frequency
(Scale error)
error Cyclic
(Zero error)
Zero Scale
error error
This takes into account the uncertainties in Deriving in this instance from
the position of the electrical centre of the incorrect pattern frequencies
transmitter and uncertainties in the generated within the instrument.
effective centre of the reflector
Cyclic error
This produces errors that are function of
the point in the phase cycles where the
measurement occurs and which
consequently repeat over every
wavelength of the measuring wave.
Total Station Errors
Instrumental and reflector constants
•Also known as zero error. The uncertainties in the position of the
electrical centre of the transmitter and uncertainties in the effective
centre of the reflector
•Signals travel over some distance internally during both transmission and
return.
•The point from which the signal to be transmitted, the electronic centre,
may differ from the geometric centre referred to the location of the
instrument over a station.
•This gives rise to a constant, which must be applied to all distance
measured with that instrument. The constant value are specified by the
manufacturer.
Reference
point
3
1
Target point
4
Station
2
Reference point Target point
1. Using -Set datum for
Compass face left and
to get the datum measure bearing
2. Start and distance,
Observation by Continue for face
using Total Station right
Station
1 Station 3
Station point
1.Prismatic
Compass
(Datum)
2. Total
Station (Face
Left and
Face Right)
FIELDWORK PROCEDURES
Observation
STN 2
STN 1
STN 3
STN 2
STN 1
STN 3
compass
STN 4
Stn marked by pegs or nails
FIELDWORK PROCEDURES
Observation
STN 2
STN 1
STN 3
STN 4
Stn marked by pegs or nails
FIELDWORK PROCEDURES
Observation (cont…)
STN 2
STN 1
STN 3
STN 4
Stn marked by pegs or nails
FIELDWORK PROCEDURES
Observation (cont…)
STN 2
STN 1
STN 3
STN 4
Stn marked by pegs or nails
FIELDWORK PROCEDURES
Observation (cont…)
STN 2
STN 1
Clockwise
STN 3
STN 4
Stn marked by pegs or nails
EXAMPLE OF BOOKING
FORM FOR
TRAVERSE
BEARING / ANGLE F LINE
Distance
r T Vertical Distance Final
Station Temp. Between
Face Left Face Right Mean o FINAL BEARING o Angle (m) Distance
Support
m
2
2
2
3
3
4
4
1
1
HOW TO BOOKING THE
OBSERRVATION? Slope dist.
319 33 20 139 33 10
3 55.336 s 1o ’
co 44
Zenith angle
3 (VA = 90o – 88o 16’ = 1 44’)
o
Station point
4
Target point
1 (319 33 20 + 33 10 180 ) ÷ 2
139 ±
HOW TO BOOKING THE
OBSERRVATION?
BEARING / ANGLE F LINE
Distance
r T Vertical Distance Final
Station Temp. Between
Face Left Face Right Mean o FINAL BEARING o Angle (m) Distance
Support
m
Datum from PC 85 00 00 2 1 88 16 55.336 55.311
3 319 33 20 139 33 10
2 45.118
139 33 15 319 33 15 52 45 35 3 4 93 40 45.211
33
4 52 45 35 232 45 35
1
BEARING / ANGLE F LINE
Distance
r T Vertical Distance Final
Station Temp. Between
Face Left Face Right Mean o FINAL BEARING o Angle (m) Distance
Support
m
Datum from PC 85 00 00 2 85 00 00 1 88 16 55.336 55.311
3 319 33 20 139 33 10
4 52 45 35 232 45 25
1 139 33 40 319 34 00
2 264 59 20 85 00 00
2 264 59 20 85 00 00
• Observation Checking
2. Bearing comparison
The last bearing is compare with the establish or known bearing value.
Example:
3. Cross-bearing
The checking was done by observation to the other reference station
and compare the difference
EXERCISE:DETERMINE ERROR AND
CORRECTION
•Final Bearing
Error = ?
▶Traverse Accuracy
= 1: X ( in ratio)
1: 8000
Example : Traverse Accuracy
Calculation
(Linear Misclosure)
Limitation reading in survey work
Calculation of Latitude and Departure
Nort
h Survey line Formula
B Latitude = D
cosineθ Departure
Bearing = D sineθ
(θ)
Distance Latitud
(D) e Latitude A-B = D cosine θ
Departure A-B = D sine θ
θ
Formula
Latitude = D
cosineθ Departure
= D sineθ
Calculation of
Traverse
Traverse
Adjustment
•Traverse Adjustment
Two Methods
2
Correction in Latitudes for line 1-2, 2-3, 3-4,
3 4-1
1
Distance of Line
= X Diff of
Latitude Total traverse length
N= 1000m 1
Adjustment Latitude and Adjustment
E= 1000m Departure Value.
3
1-2 241.725 72.262
Formula :
Area = ½ [(N1 E2)+(N2 E3)+(N3 E4)+(N4 E1)] –
[(N2 E1)+(N3 E2)+(N4 E3)+(N1 E4)]
Area = meter²
N E
1 1
N E
2 2
N E
3 3
Calculation Area by Using
Coordinate value
Plotting
Types of coordinate
•Rectangular
•Polar
Coordinate System
Polar coordinate system
U
Longitude
Greenwich
0 Latitude
S
• Polar coordinate system is a 2D coordinate system.
• Each point on a plane is determined by a Distance from a
reference point and an Angle from a reference direction.
Coordinate System
• Rectangular coordinate system
Coordinate System
• Rectangular coordinate system
U
1050.
00
B T
0
S
Sources of Error
⚫ Some sources of error in running a traverse are:
⚫ Poor selecting of stations, resulting in bad sighting conditions
caused by alternate sun and shadow.
⚫ visibility of only the rod's top.
⚫ line of sight passing too close to the ground.
⚫ lines that are too short.
⚫ sighting into the sun.
⚫ Errors in measurements of angles and distance.
⚫ Failure to measure angles an equal number of times direct
and reverse.
⚫ Mistakes In Traversing
⚫ Occupying or sighting on the wrong station
⚫ Incorrect orientation
⚫ Confusing angles to the right and left
⚫ Mistake in recording and reading
Thank You…