0% found this document useful (0 votes)
57 views41 pages

DSD 5th Unit

The document discusses various concepts related to graph theory, including types of graphs, graph representations, and traversal algorithms such as Breadth-First Search (BFS) and Depth-First Search (DFS). It covers definitions of vertices, edges, paths, cycles, and connected components, as well as methods for finding shortest paths. Additionally, it highlights the importance of directed and undirected graphs and their applications in computer science.

Uploaded by

anlenbabish00
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
57 views41 pages

DSD 5th Unit

The document discusses various concepts related to graph theory, including types of graphs, graph representations, and traversal algorithms such as Breadth-First Search (BFS) and Depth-First Search (DFS). It covers definitions of vertices, edges, paths, cycles, and connected components, as well as methods for finding shortest paths. Additionally, it highlights the importance of directed and undirected graphs and their applications in computer science.

Uploaded by

anlenbabish00
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 41
Ve) Gueaphx | > A Paph G= (VE) twonists of 8 sek of VerHaus vig Edepes le) here VY finite non enepty Bet of verte (v9 ES in se ‘bdgese) , ” Ge yey Eq t- Nad £ Ns yey *y tw Vv, * Vo, q aw mE connected b v ei Voy, lL L Cm f yap, Yak Vy" IM, Yo, Vey M4) 3 vertices. [Ms v09, War var, Ova, ¥4 9, CVA MD Ce Mg) C209] bo ee 6 a Vi — Va 4, Ye “ . 23 M1, Vs © qi yo ve YS les 7 toy ** 3 v v +a a? as VG M2 Ye Dey ak RUT Teme A: nia bs {Oe at] EBB HB Nodss > vertices Eagts > Lundy bho 2 vethees (010 2 nodes, 2) yee?) Graphs jhe arc Types 5} Birapl. Shay are! Q) Durected 9) cycle by unduurctid n) DAG °) wargnicd HeRR Wy) puget rf ay Computed 4d) gol} oop 2) subgeaph k) Bi-eonnecti ty L) eut verux | = path | ly Auiccted graph | > Aireted edge SMV (eM) | (vy, ved4 Ca wd | Cvs, va) Fg, 2) | (v2, OY 2%) b) Unde cled uaph Undireoted edges rages ee anced b woe fwd (YW) = lv, wy (v,, vo) = Cv.) Ova v5) = (vg, va) , x G wha e | Ya, W) =) CW, vp y |e) ) waltg tid quark (vate ne aa [2a waged FP i: guagh woliick, + em os song ln A edi | Mt eiiig9 49 ‘ang od a value a) completa graph me seed 7 ait an undiieeted qpeph ohn veabiees consist % 1D) nin +N, of edges, a? Strongly wnnsded qorh > 24: Socal niw. 5 Ce file ahding 2). sub-qaphs Carpet) DA Subgraph “Boh aph Gu a Graph Auch that thu Aak Of yeti & sok of edges of 6 ' are proper subse of the et of elas ef 4, @) j —_¥ Q! f) path = (amour) | DA path is aenottd witha. sequence, of Wei ether ok an edges me vertem at yeatex. 6) @) ‘ Wi, Meu! areabing } vy » “e E> no. of | )—-8 et & ps 9) cycle \ (ret | boop) Jy A tlosed talk thootigh the raph with | . , ; ‘yepeated vertion mastty hanng the tame start \P » eaetty hawng Foe verter % ending yetesr , | ) >) Vv) Ove 2% Vy. Vo Vy OV, OV Vy Vp V2 ON Vyas 03 Vg 25 OY v hy V3.2 3 7 V5" sp a cyte yeph: = @ > edges ane qeere ahould | fomt a at eyele 5 WEA + 2B Adtected Aeyelic graph > No wyele. iaetins Auyelte graph DTt doen't fom a cycle. ‘ ted hp we eonneeted 1) strongly tanneeted Gop alte L% U A ~ path > AW nol” peachadk > Aimed geek ) Aeger we Verte dequs (wv) 2 types oh degree! a) Indegve b) outdenres a) Videgree ~> vedio! the NO- Of edges Thay , ungide Weldentty That ventex ¥) outdegue -) yeuten i the tobe north edac, ne Una, faa man Rey [eri] andi ey May vo | My Na Ma | NS 4 ie Va Va ae ve | va | Mi a | ¥) conneetid qark: 2 an undirected qiaph , ws said ¢ be connected i for we par of distant vation vj #Y un WEG) tere wo qsaph fiom vj b wy inh aL x £) Comporunt > the martmal connected sespoph th n) Biconnectot > preenmeled Y cannot be broken ant connected ingle age oph are the qeaphs ‘[ohich 2 dfs connected pices bg r secusecesessesess © “4 ye, 3 Fs E —& OE | ©) cut vertex: ‘ | 13 A vertex V ws a undliechd graph & 4 fp | A ‘ he | [emery Uk aliseonneets the gap aut yetea & also called ast elation | | @. @.1'| 6 ~Os¢ | ie eae @ | 6 Representation h Graph: : . there one > Upes 8} Crvaphs. They ane: point 5 3. | yy Adjacent Matrix (AM) | ) Adjacent nat (Ab) i) Am: . ; | DA graph tontatning n vetie can be Seo by a matia with n apws¢ n columns. Matra formed by sown the eres tocegntad | ats a wows 4 J™ eolumns oh tre matin between _veattea * the qrerh i... Frample 1. Given the Ama AL ‘Of he tip Letui qiaph: . , 9 et re th : ALEl Cl PEE! | verte, ol] tli|olo (mae: 5, FD | Bli jo |nott a4 Arad wpba | c =D |ne | @. I ads | Dlofojejo|r|! ot le | of ofolo| oly te le | of fo|o| ofo rane ie 6 "BE ELE a [mle io fe [> | wiv = >. [Raketed graph onal ded quaphl| wilgnerd graph] \aitectein - ie \ ) | | oe lure . ae | (ver) che \ : | (Mir Vs) My Ya, N3 io (2,0) Ya 4 ve 2 (210d . | tA % vp | (v1, ¥2) | | ‘4 V3 3 {iy | ] (24%) ‘ 5 —__ ¥% 2U3rn) Ve, tay (¥,,¥3) (va }va) \W21 Va) (vy v3) (yy, ¥2) (r,¥, (v5, va) 7D (4, v3? — ‘ piare 4 bl AL: ian he DA graph See m veties 4 n edaec can be. repursanted uring? a a uiked Usk oe Geary Traversac (AT) ST k a graph acehnd que sed ‘for a verter th agraph. mY RAN ’ | > Te is used to aeelde te ander Pf verbiees uy iceted un the seach prec. There ane >-ty pes of Search din GT. They are: ") Breadth first Starch (BES) |) top ss tars) \ |. Breadth fiast Search (BFS): | °>) aby i “o rprretes °*b pare each nooles oF the _qeaph unto 2 parks. vated Nob - vested > The purpose fh che algon thm wes we eit Alt Hha_wustn_estile evel oyetes. DIE usu A ple OS bo Aepreent me yesttid necles, DT works duel sy eel > dnitiatip, BFS stab ak a qrco rectex echuth Js ak evel_ 0, air put hr at wads att the verhices al level t terel 0,19, 3% 418, 6, Fe- ete: urls o & Som. 8 A HSE yee tepad — > Source - destination > Find Me Ahoatut path - a) fiskstras Apert edi method & tend he eo sete, 2B Are shortest path problem. | Buk kuwownh abgodttin “to Jad ee atak pati ain quark: ' 25 Appureable to both quaphs with wore agate weight nlp. > aingte - sowie shortest path : © for a dined + tuncldreeted un verte® called the Source th . wuignted connected graphs ond Svortak path Jy aut ie other verti es: steps ‘ to renter neortsl ty le Fund, the Sp fii doer ue, noob 9. ‘Then, eptind tte SP dum dou bo (he Ch js we Neartert yeater. ‘a © procs for tel eth ov vertices gy. Contfrue nares? to the Aotvrte. MAE rapt ag iy | >, Forws a subir wrty These, Veatt ed, Sie. yes ealges of the shorted path . Example : ‘ (D Apk-. Bea, ty, Cas) alaalauraieh es Fl -y00) Sop oe A LAY (ee 7 a> be > 9.|/b(a,1) | Clb, 399 penta 00302 babe as bod Cb, 8) > bE ACO F272, ' ue ; \ ecb bie OCU) FEE wen Toph bed Els #(-,a) —+— Ly SP? eC b,29 3) etb, 2) "| €(b, a) — a fle, 4) watieapts #(e4) gp ab, 2) ath,2) | a4) csp Hd) eee 6 no vertea 1 Hay ay | val es ru ee ae S gbutye 8 21! o7 =3 aba» abbrd= 3 alte ee => a pee # oe) l41eh 2 & oc i = L ~ ” ~ atta &@ c.3.p frm Aowtse can be qin! but by kag bstias algosthm © pid the s.p bebwen node Ate bt wr He tellowing Figs ty Applydg’ Ary ketal agent, 1 por adjacent noc - 9, date tost ds tompute por | (A) 3 N pr “ey : wp Rete dst 2 3.P DRDO DEDH sp ah 9B et 3H Spa 47b>t-5H ee ” ~ 3 MINION SPANNING “TREES. 2 nny Ree oh a qeph & a subgraph Wak corrtaans AU the vertices 2 uk alo a Wee +: at qeph ee have mawp pening Ne hee . taeasn?t frome tgete). y fon tude stupa gragh we ) eas Bray mucitiple speeeny bites . \ ‘r be b8. ie Conagtien : |b To find mininawm Span tee ds an tna ted graph, we assume that he Ten graph | ond weighted paph- Ea mst % an undiuedtd graph & ts a hee jormed “farm agh ne that convert All the verticw ‘ 4 with minimum total cost - Q eae % ie wiilate! Homnun 1 prims | ovttiim | ere een 2. Kruskal 4 |. pam’ Ayrithen > P, cs nthm . aaa a art quer alge PTE EB Used for Fndidg the met [rinime ie a Te Tree] +} a geen geaph. 7 fo “pry PA | the given quaph retest be coskghted, tonmectid 2 unctitedicl. Ok tn ts Aimplemenita tion » 1, Randomly choose ony Vertex | 2. The vertex Comnectitig t the oly hating! hast” twiighted is cauatly selected), 3. Pad all the edges that correct the tree bp WLU vertices. AM 4. Fd ‘the deat! ae oage meneant Chtes cages 4 ‘Uneludld ae “4 ges ost vba 5. bh iia) the tae cates avi the dil thak tdi 3s Lek eae : yr 6. keep repeating these slaps inti ald thes yertives are ‘included 4 Met ds obtained for me Neat “east eoetigit - b(a,3) C(-) 00) d(~«) e (a6) Fla,s) sp —» b(a,3) [Need t Ace shortest Youu J Cb, 1) Ato) e(a,6) ost | £0, 92 an 2 oe Sp Cbs!) ped Z ve be ee | ~ set] Thee Ronaliuing yetious vertices q | —+— Selby jafe.ey | (a,b) | Flora) ; | Spo fear) 4) jo tsea ats (4,29 é “MSS SS ep ay ONY: BM | | Ey ) | 5) ay | ates) 628 | SP = d(f,5) 3 + A Ss © | udicosb| os hg + Cost o Cce MST = add all the weigh Of the vertey s” 2 B+ 44 pegeis t Bo inekels Aigorith ms ¢~ (kA) = KA ds used t fend Ke mininurm re Ke for % Connected tong beted qaph . 7 0 i ; = The main target ee perm is be Hog the Subseb e ou es by y wg whith we Can trovene ee 4 vertex 4 wf gaph. D It +ollows rey’ a prrach. bps: 1. FySb, dort alt the edges -fyom lov wget Mh Now, take the o edge with Lowest wougnt + add i Ho the 3 tue Fo is mga seat qe te a in ' tie y \ Continue to add the edges untel we reach all vectored ip ws vcated - Example: agp . The weight ¢h the edge ie abore. graph is EPs | ous gee ebeloww | PA ty Le | a8] he qo [ae BC eh wegne |] 4 ro | By 3 ye oO Now) xort “ie cage gr sbeldov wo she eae Ader the weeps nes qe De‘ with waght a to the MST. ck Gy wok acto Tie cycle, [ps a Add , the “age Be ne (8, to Ghe M87, wb ; ie fs (ae ty the var a Now, pick He sigs, amie Y notidvrering eH aks sm eats « chps: hte MOT, te eden « Nows saab db. oat Goats mal tyele » 80 ‘qs o dn dae Lyle ‘snout not be for. 5 ae Fe pick the tala AC) with vinight oe Neasit. e. hy nate BL "eyaley 40 listed at [eye ahouta not be fore) | 1 den ; a + Pid ow edge Ab uit 0H * Tnebuding me will aio cate the tydls,"60 Asad 185, heal op 5 Pe obtained avr the Tren wagad graph Oy aig Rata ge E ie! ee Cast op the MST > Edge tonne AB+ Be + Bc pap ” . e oly » Cost of msrp _ o ==

You might also like