0% found this document useful (0 votes)
30 views41 pages

Lecture # 11+12

This document discusses the concepts of extreme values and saddle points for functions of several variables, focusing on how to locate maxima, minima, and saddle points using partial derivatives. It includes a review of absolute and local extrema for single-variable functions, extends these concepts to multivariable functions, and introduces the Second Derivative Test for identifying critical points. Several examples illustrate the process of finding critical points and determining their nature using the Hessian determinant.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views41 pages

Lecture # 11+12

This document discusses the concepts of extreme values and saddle points for functions of several variables, focusing on how to locate maxima, minima, and saddle points using partial derivatives. It includes a review of absolute and local extrema for single-variable functions, extends these concepts to multivariable functions, and introduces the Second Derivative Test for identifying critical points. Several examples illustrate the process of finding critical points and determining their nature using the Hessian determinant.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 41

14

Functions of Several Variables

Book: Calculus and Analytic Geometry (11th Edition) by


George B. Thomas, Jr. and Ross L. Finney

Book: Calculus Early Transcendentals (6th Edition) by


James Stewert.
14.7
Extreme Values and Saddle
Points
Objective: In this section, we will learn how to use partial
derivatives to locate maxima, minima and
saddle points of functions of two variables.
Review (Functions of single variable)
Absolute Extremas

Max: f (c)  f (x)  x [a, b] y  f (x)

Min: f (c)  f (x)  x [a, b]


f (b)

f (a)
Local Extremas
a b x
Max: f (c)  f (x)  x [c  h, c  h]
Min: f (c)  f (x)  x [c  h, c  h]
Review (Functions of single variable)

Absolute Extremas

Max: f (c)  f (x)  x [a, b] y  f (x)

Min: f (c)  f (x)  x [a, b]


f (b)

f (a)
Local Extremas
a b x
Max: f   0  f   0 Geometrically
Tangent line is parallel to x-axis means
Min: f   0  f   0 slope of the tangent is zero.
f0
Multivariable Functions:
Absolute Extremas

Max: f (a, b)  f (x, y)  (x, y)  D


Entire Domain
Min: f (a, b)  f (x, y)  (x, y)  D
Multivariable Functions:
Local Extremas

Max: f (a, b)  f (x, y)  (x, y)  D


An open disk
Min: f (a, b)  f (x, y)  (x, y)  D

Geometrically
Tangent lines are parallel to x and y axes means
slope of both tangent lines is zero, therefore

fx  0  f y
Example:
Example:

Solution:

Therefore the critical points are:


(0,0) and (1,1)
Example:

Solution:
Example:

Solution:
• This example illustrates the fact that a function
need not have a maximum or minimum value at
a critical point.

• This fact leads to the definition of a Saddle


Point.
 We can see that f(0, 0) = 0 is:
 A maximum in the direction of the x-axis.
 A minimum in the direction of the y-axis.

 Near the origin, the graph has the shape of a saddle.


 So, (0, 0) is called
a saddle point of f.
Multivariable Functions:
Saddle Point: A critical point at which f(x,y) does not have a relative
extrema is called a saddle point.

Max: f (a, b)  f (x, y)  (x, y)  D


Both conditions hold !!!
Min: f (a, b)  f (x, y)  (x, y)  D

Geometrically
Even in this case, the slopes of both
tangents is zero

fx  0  f y
Neither maxima nor minima.
EXTREME VALUE AT CRITICAL POINT
• We need to be able to determine whether or not a
function has an extreme value at a critical point.

• The following test is analogous to the Second


Derivative Test for functions of one variable.
Theorem: Second Derivative Test
If f (x,y) and its first and second derivatives are continuous near
a critical point (a,b) then

f can have a local maximum or local minimum at (a, b), or (a, b)


can be a saddle point of f.
Theorem: Second Derivative Test
The expression , is called the discriminant or
Hessian of ƒ. It is sometimes easier to remember it in determinant
form,
f xx f xy
D  f xx f yy  f xy 2
f xy f yy
Example:

Solution:
Step I: Find the critical points
f x  2x , f y  y 2 1
f x  -2x  0  x0
f y  y 2 1  0  y  1
Critical points are (0,1) and (0,-1)
Step II: Find the Second derivatives

f xx  2 f xy  0 f yy  2y
D  f xx f yy  f xy2  2(2y)  0  4y
Geometrically, the surface can be drawn on any computer algebra
system which verifies that the there is a local maxima and one saddle
point.
Example: Locate and identify the critical points of the following
function
f (x, y)  4xy  x 4  y 4

Solution:
Step I: Find the critical points f x  4 y  4x 3 , f y  4x  4 y 3
f x  4 y  4x 3  0  y  x3
f y  4x  4 y 3  0  x  x 9  0
x(1 x 8 )  0  x  0,1,1
Critical points are (0,0), (1,1) and (-1,-1)
Step II: Find the Second derivatives

f xx  12x 2 f xy  4 f yy  12 y 2
D  f xx f yy  f xy2  12x 2 (12 y 2 ) 16  144x 2 y 2 16
Step III: Test the critical points

At (0,0) D  144x 2 y 2 16  -16  0


f (0,0)  0
0,0,0 Is a saddle point

At (1,1) D  144x 2 y 2 16  128  0


f xx  12x 2  12  0
f (1,1)  2
1,1,2 Is a maximum point

At (-1,-1) D  144x 2 y 2 16  128  0


f xx  12x 2  12  0
f (1,1)  2
-1,-1,2 Is a maximum point
Example: Locate and identify the critical points of the following
function
1 1
f (x, y)   xy  ,
x  0, y  0
x y
Solution:
Step I: Find the critical points

f x  1/ x 2  y , f y  x 1/ y 2
f x  1/ x 2  y  0  y  1/ x 2
f y  x 1/ y 2  0  x  x 4  0
x(1 x 3 )  0  x  0,1
The only critical point is: (1,1)
Step II: Find the Second derivatives

f xx  2 / x 3 f xy  1 f yy  2 / y 3
D  f xx f yy  f xy2  (2 / x 3 )(2 / y 3 ) 1  4 / x 3 y 3 1

Step III: Test the critical points

At (1,1) D  4 / x 3 y 3 1  3  0
f xx  2 / x 3  2  0
f (1,1)  2

1,1,2 Is a minimum point


Example: Find the absolute extremum of the function
f (x, y)  x 2  xy  y 2  6x  2
defined in the region R: R  (x, y) : 0  x  5,3  y  0
Solution:
Solution: f (x, y)  x 2  xy  y 2  6x  2

defined in the region R: R  (x, y) : 0  x  5,3  y  0

Interior points y

f x  2x  y  6 , fy  2 y  x A B x
f y  2 y  x  0  x  2 y
f x  2x  y  6  0   3y - 6  0 D
C

Critical point is (4,-2)

f (4,2)  (4) 2  4(2)  (2) 2  6(4)  2  10


Boundary points

1: Along AB: y=0


f (x,0)  x 2  6x  2
df
 2x  6  0  x  3
dx
Critical point on AB is (3,0)

f (3,0)  (3) 2  6(3)  2  7


End points of AB

f (0,0)  (0) 2  6(0)  2  2


f (5,0)  (5) 2  6(5)  2  3
2: Along BC; x=5

f (5, y)  y 2  5y  3
df
 2 y  5  0  y  5 / 2
dy
Critical point on BC is (5,-5/2)

f (5,5 / 2)  (5 / 2) 2  5(5 / 2)  3  37 / 4

End points of BC

f (5,0)  (0) 2  5(0)  3  3


f (5,3)  (3) 2  5(3)  3  9
3: Along CD; y=-3

f (x,3)  x 2  9x 11
df
 2x  9  0  x  9 / 2
dx
Critical point on AC is (9/2,-3)

f (9 / 2,3)  (9 / 2) 2  9(9 / 2) 11  37 / 4

End points of CD

f (5,3)  (5) 2  9(5) 11  9

f (0,3)  (0) 2  9(0) 11  11


4: Along AD; x=0
f (0, y)  y 2  2
df
 2y  0  y  0
dy
Critical point on AD is (0,0)

f (0,0)  0 2  2  2 y
End points of AD

f (0,3)  (3) 2  2  11 A B x
f (0,0)  0 2  2  2 D
C

Absolute Maximum f (0,3)  11


Absolute Minimum f (4,2)  10
y

A B x

Absolute Maximum f (0,3)  11 D


C
Absolute Minimum f (4,2)  10
Example:

d  ( x  1)  y  ( z  2)
2 2 2

d  ( x  1)  y  (6  x  2 y)
2 2 2
We can minimize d by minimizing the simpler expression

d  f ( x, y )
2

 ( x  1)  y  (6  x  2 y)
2 2 2

By solving the equations

f x  2( x  1)  2(6  x  2 y )  4 x  4 y  14  0

f y  2 y  4(6  x  2 y )  4 x  10 y  24  0

we find that the only critical point is ( 11 , 5 ) .


6 3
( 116 , 53 )

d  ( x  1)  y  (6  x  2 y )
2 2 2

  
5 2
6  5 2
3   6
5 2
 5
6 6

5
6 6
Example:
A rectangular box without a lid is to be made from 12 m2
of cardboard. Find the maximum volume of such a box.
Solution:
12  xy 12 xy  x 2 y 2
V  xy 
2( x  y) 2( x  y)
We compute the partial derivatives:

V y 2 (12  2 xy  x 2 )

x 2( x  y ) 2

V x 2 (12  2 xy  y 2 )

y 2( x  y ) 2

You might also like