Som Formula
Som Formula
Abhinav Negi
Join my Telegram Group
https://t.me/civil by
Abhinav Sir
SOM
Books:
➢ Gere & Thimshonke - Concepts
➢ BC Punmia - Numericals
Important Not-Important
OA → Linear curve
A → Proportional limit
B → Elastic limit
C → Upper yield point
D → Lower yield point
DE → Plastic region
EF → Strain hardening region
F → Ultimate stress
G → Fracture point
FG → Necking region
COMPLETE SOM FORMULA REVISION
All grades of steel have same young’s modulus but different yield
stress
COMPLETE SOM FORMULA REVISION
• E = 3K(1 − 2μ)
• E = 2G(1 + μ)
9KG
• E = 3K+G
3K−2G
• μ = 6K+2G
Composite Bars
m = modular ratio
COMPLETE SOM FORMULA REVISION
Poisson Ratio
Lateral strain
=–
Longitudnal strain
COMPLETE SOM FORMULA REVISION
μcork = 0
μaluminium = 0.33
μrubber = 0.5
Impact Loading
Loss of potential energy = Gain in strain Energy
2max
w(h + max ) = (AL)
2E
2
max
w h + max L = AL
E 2E
2max wL
AL − max − wh = 0
2E E
2w 2wEh
2max − max − =0
A AL
COMPLETE SOM FORMULA REVISION
Stress diagram
COMPLETE SOM FORMULA REVISION
Deflection (Δ) Tapered Bar
Circular tapering bar Rectangular tapering bar
=
4PL B
PL log e 2
ED1 D2 B1
=
Where, P = Load applied; E t(B2 − B1 )
Where, t = thickness;
L = Length of bar
P = Load applied
D1 and D2 are Diameter E = Young modulus
COMPLETE SOM FORMULA REVISION
A1E1 + A2E2
Eequivalent =
A1 + A 2
Strain Energy
It is the ability of material to absorb energy when it is strained
1 1
U = P = T Here, P = Applied load
2 2
δ = Elongation due to applied load
T = Applied torque
θ = Angle of twist due to applied torque
• Resilience : Ability of a material to absorb energy in the
elastic region when it is strained.
1
= Area under P – δ curve = P
2
COMPLETE SOM FORMULA REVISION
• Proof Resilience : Maximum energy absorbing capacity
of a material in the elastic region is called proof
resilience.
1
= Area under P - δ curve = PEL × δEL
2
Here,
PEL = Load at elatic limit
δEL = Elongation upto elastic limit
2
Proof Resilience EL
Modulus of Resilience = =
Volume 2E
Here,
σEL = Strain at elastic limit
E = Modulus of elasticity
COMPLETE SOM FORMULA REVISION
Types of Beam
a. Cantilevers beam
d. Fixed beam
e. Continuous beam
COMPLETE SOM FORMULA REVISION
dm
• = v (shear force)
dx
• dv
= L. I
dx
(1) STRESS & STRAIN (4) TRANSFORMATION & (7) PRESSURE VESSELS
1.1 Stress Strain Curve STRESS 7.1 Thin shell
1.2 Stress Tensor Matrix 7.2 Thick shell
4.1 Analytical Method
1.3 Properties OF Materials 4.2 Mohr Circle
1.4 Thermal Stress 4.3 Mohr Circle for Strain
1.5 Elastic Constant & Deformation 4.4 Strain Rossette
1.6 Poisson Ratio
1.7 Impact Loading (8) DEFLECTION
8.1 Various Method
(2) SFD & BMD (5) TORSION 8.2 Strain Energy Method
2.1 Significance 5.1 Pure Torsion
2.2 Numerical 5.2 Power Transmitted by SHAFT
5.3 Torsion Of bars in Series & Parallel
σ m E
= = Bending or Flexural formula
y I R
COMPLETE SOM FORMULA REVISION
S (Ay)
τ=
I.b
COMPLETE SOM FORMULA REVISION
S (Ay)
τ=
I.b
S = S.F. at section XX
Ay̅ = Moment of shaded area about N.A
Ay = Area of cross section above EF
y̅ = Dist. of centroid of area A from N.A
I = MOI about N.A.
b = width of EF where shear stress is required.
COMPLETE SOM FORMULA REVISION
σx + σy σx − σy
σx′ = + cos 2 θ + τxy sin 2 θ
2 2
σx + σy σx − σy
σy′ = − cos 2 θ − τxy sin 2 θ
2 2
σx − σy
τx′y′ = − sin 2 θ + τxy cos 2 θ
2
COMPLETE SOM FORMULA REVISION
σx + σy σx − σy 2 σ1 + σ2
2
σ1 /σ2 = ± + τxy a=
2 2 2
Radius of Mohr's circle
σx − σy 2 σ1 − σ2
r= + τ2xy =
2 2
COMPLETE SOM FORMULA REVISION
σx + σy σx − σy
σx′ = + cos 2 θ + τxy sin 2 θ
2 2
σx + σy σx − σy
σy′ = − cos 2 θ − τxy sin 2 θ
2 2
σx − σy
τx′y′ = − sin 2 θ + τxy cos 2 θ
2
COMPLETE SOM FORMULA REVISION
σx + σy σx − σy 2 σ1 + σ2
2
σ1 /σ2 = ± + τxy a=
2 2 2
Radius of Mohr's circle
σx − σy 2 σ1 − σ2
r= + τ2xy =
2 2
COMPLETE SOM FORMULA REVISION
(1) STRESS & STRAIN (4) TRANSFORMATION & (7) PRESSURE VESSELS
1.1 Stress Strain Curve STRESS 7.1 Thin shell
1.2 Stress Tensor Matrix 7.2 Thick shell
4.1 Analytical Method
1.3 Properties OF Materials 4.2 Mohr Circle
1.4 Thermal Stress 4.3 Mohr Circle for Strain
1.5 Elastic Constant & Deformation 4.4 Strain Rossette
1.6 Poisson Ratio
1.7 Impact Loading (8) DEFLECTION
8.1 Various Method
(2) SFD & BMD (5) TORSION 8.2 Strain Energy Method
2.1 Significance 5.1 Pure Torsion
2.2 Numerical 5.2 Power Transmitted by SHAFT
5.3 Torsion Of bars in Series & Parallel
Torsion
COMPLETE SOM FORMULA REVISION
COMPLETE SOM FORMULA REVISION
Torsional Formula
τ T Gϕ
= =
r Ip L
COMPLETE SOM FORMULA REVISION
(1) STRESS & STRAIN (4) TRANSFORMATION & (7) PRESSURE VESSELS
1.1 Stress Strain Curve STRESS 7.1 Thin shell
1.2 Stress Tensor Matrix 7.2 Thick shell
4.1 Analytical Method
1.3 Properties OF Materials 4.2 Mohr Circle
1.4 Thermal Stress 4.3 Mohr Circle for Strain
1.5 Elastic Constant & Deformation 4.4 Strain Rossette
1.6 Poisson Ratio
1.7 Impact Loading (8) DEFLECTION
8.1 Various Method
(2) SFD & BMD (5) TORSION 8.2 Strain Energy Method
2.1 Significance 5.1 Pure Torsion
2.2 Numerical 5.2 Power Transmitted by SHAFT
5.3 Torsion Of bars in Series & Parallel
MI MI2
EI 2EI
WI2 WI3
2EI 3EI
WI3 WI4
6EI 8EI
COMPLETE SOM FORMULA REVISION
WI3 WI4
24EI 30EI
WI2 WI3
16EI 48EI
WI3 5WI4
24EI 384EI
COMPLETE SOM FORMULA REVISION
pd
• Longitudinal Stress L =
4t
pd
• Hoop Stress h =
2t pd
•
Longitudinal Strain L = (1 − 2)
4t E
pd
• Hoop Strain L = (2 − )
4t E
COMPLETE SOM FORMULA REVISION
pd
• Hoop stress/longitudinal stress; L = h =
4t
pd
• Hoop strain/longitudinal strain; L =h = (1 − )
4t E
3pd
• Volumetric strain of sphere; v = (1 − )
4t E
COMPLETE SOM FORMULA REVISION
Analysis of Thick Cylinder/Lame’s Theorem
• Lame’s Assumption
(i) Material of shell is homeogeneous, isotropic and
line elastic.
(ii) Plane section of cylinder, perpendicular to
longitudinal axis remains. Plane under pressure.
• Lame’s equaitons
B
(i) Hoop stress : x = + A(tensile)
2
x
B
(ii) Radial stress Px = 2
− A(Compressive)
x
Where, B and A are Lame’s constant
COMPLETE SOM FORMULA REVISION
• Lame’s equations:
2B 2B
x = 3
+ A (Tensile) Px = 3
− A (Compressive)
x x
COMPLETE SOM FORMULA REVISION
32 P2R 3 n
U=
Gd4
COMPLETE SOM FORMULA REVISION
Remember
2
Pe = Buckling load
EImin
Pe = Imin = Min. Moment of inertia about centroidal axis
l2e
le = Effective lenglh
COMPLETE SOM FORMULA REVISION
Remembers
Column Fails in
1. Short column Crushing
2. Long column Buckling
3. Intermediate column Combined Crushing and
Buckling
COMPLETE SOM FORMULA REVISION
One end
One end
End fixed
Both end fixed Both end
conditio and
hinged other fixed
n other
free
hinged
Effective L L
length L 2L
2 2
𝑙e
1 1 1 1
• In Series: k = k + k + ⋯k
eq 1 2 n
• In parallel: k eq = k1 + k 2 + ⋯ k n
Join my Telegram Group
https://t.me/civil by
Abhinav Sir