Chapter 6
Chapter 6
6.1. Introduction
The excessive use of synthetic fertilizers, which disturbs soil microbial ecosystems
vital to sustainable agriculture, makes it difficult to meet the world's food needs (Turk
et al. 2016; Zhang et al. 2020). Intensive farming practices and climate change
highlight the necessity of microbiological systems to improve agricultural
productivity (Kent et al. 2002; Rahman et al. 2018). In order to meet current demands
while preserving resources for future generations, sustainable agriculture strikes a
balance between environmental preservation and productivity (Shah et al. 2019;
Kremsa et al. 2021). Soil is essential for agricultural productivity because it promotes
nutrient cycling, organic matter decomposition, and the growth of microbial
populations that are critical to sustainability (Raj et al. 2019; Koshila Ravi et al. 2022;
Ouf et al. 2023). Microorganisms serve as natural soil engineers, improving soil
integrity and promoting healthier agricultural systems (Khatoon et al. 2020; Saccá et
al. 2017; Chethan Kumar et al. 2021). Plant-microbe interactions promote biodiversity
and crop resilience, which contributes to more sustainable agricultural methods and
productivity (Van Der Heijden et al. 2008; Prashar et al. 2014; Aislabie et al. 2013).
Soil biodiversity promotes nutrient cycling, disease resistance, and crop fitness, all of
which benefit ecological services and agricultural outputs (Shah et al. 2019; Schimel
et al. 2012; Jiang et al. 2022). Microorganisms in plants improve nutrient intake,
disease resistance, and environmental adaptation (Vishwakarma et al., 2020; Chauhan
et al. 2023). Plant growth is influenced by symbiotic connections, such as those
between arbuscular mycorrhizal fungi and nitrogen-fixing bacteria (Sarsaiya et al.
2020; Chauhan et al. 2021). Plant Growth-Promoting Bacteria (PGPB) provide
environmentally friendly treatments that improve soil health and agricultural output
(Kiruba N and Saeid, 2022; Morrissey et al., 2004; da Silva et al., 2021). They
promote complex microbial communities in the rhizosphere, which aids soil processes
and sustainable agriculture (Hawkes et al., 2007; Trivedi et al., 2020; and Arora et al.,
2013). Root exudates, which contain diverse nutrients and secondary metabolites,
nourish the rhizosphere, promoting microbial activity and soil stability (Afridi et al.,
2023; Odelade et al., 2019). Plant roots influence the rhizosphere environment by
attracting beneficial bacteria and increasing microbial populations (Di Benedetto et al.
2017).
proliferating colonies were carefully chosen and subsequently streaked onto fresh
plates. The strains were evaluated for their Plant growth-promoting (PGP)
characteristics and subsequently preserved at a temperature of -20°C using glycerol
stocks for potential future utilization.
subsequently analyzed under oil immersion utilizing a Nikon E200 microscope. The
utilization of this extensive staining procedure facilitated the evaluation of the Gram
features of the bacterial isolates. The procedure encompassed a series of sequential
steps, which entailed the elimination of surplus stain, rinsing with water, and
subsequent counter-staining utilizing safranin.
The study used Aleksandrov agar medium with insoluble potassium alumino silicate
to test the ability of bacterial isolates to dissolve potassium. The bacterial culture
droplets were deposited onto the medium and subjected to incubation at a temperature
of 28±2 °C for a duration of three days. A distinct area devoid of bacterial growth was
detected surrounding the bacterial culture on the third, fifth, and seventh days
subsequent to injection. The calculation of the Potassium Solubilization Index (KSI)
involved the measurement of the combined horizontal and vertical diameters of both
the colony and the halo zone. This measurement allowed for a quantitative assessment
of the potassium solubilization effectiveness of the isolates. The observation of a
distinct area devoid of bacterial growth surrounding the culture site indicated the
possibility of potassium solubilization.
Using Chrome Azurol S (CAS) agar medium plates and the methodology described by
Schwyn and Neilands (1987), the study investigated the potential of bacterial isolates
for siderophore synthesis. The bacterial isolates were subjected to cultivation in a
nutrient broth medium for a duration of 24 hours, employing an orbital shaker set at a
temperature of 28±2 °C. Subsequently, a volume of 5 μL of a bacterial suspension was
applied onto the plates, followed by incubation at a temperature of 28±2 °C for a
duration of 7 days. The examination conducted toward the conclusion of the
incubation period unveiled the existence of a yellow-orange halo region encircling the
bacterial spot, thereby signifying the synthesis of siderophores. The halo zone
exhibited by the bacterial isolates acted as a visual indicator for the generation of
siderophores. This study offers significant insights into the potential of bacterial
isolates in the production of siderophores.
inside the tank, and the sealing tape and comb were taken out. For additional
investigation, the gel was subsequently put within a buffer tank filled with recently
made 1X TAE buffer.
Table 6.1. The reaction mixture employed for the amplification of the 16s rRNA gene.
The annealing temperature was varied between the range of 50°C to 60°C for a
duration of 30 seconds, after which an extension phase was conducted at a constant
temperature of 72°C for a period of 2 minutes. The temperature of the final
polymerization process was held at 72°C for a duration of 8 minutes. The detailed
description of reaction mixture mentation in Table 6.1.
for two minutes at 11,000 rpm. Subsequently, the column was transferred into a new
Eppendorf tube and supplemented with 15-50 µL of SEB buffer. The mixture was
allowed to incubate for a duration of 1 minute, followed by centrifugation at a speed
of 11,000 revolutions per minute for a period of 10 minutes. The procedure facilitated
the thorough elution of the amplified DNA from the column, effectively gathering it
within the Eppendorf tube for subsequent utilization.
approach as proposed by Saitou and Nei (1987) and implemented through MEGA 4.0
software. The tree file was subjected to analysis using the treeview software.
Table 6.2. Cultural and morphological characteristic of isolates microorganism from Banana Based cropping system.
Serial Culture Shape Size Margin Elevation Consistency Color Surface Opacity Odour Gram’s Arrangement
no name reaction
1 BBC1 Irregular Medium Entire Raised Moist Creamy Smooth Opaque No GPR Singular, Chain
2 BBC 2 Round Big Entire Raised Moist White Slimy Opaque No GPR Singular, Chain
3 BBC 3 Round Medium Entire Flat Moist White Smooth Opaque No GPR Singular, Chain
4 BBC 4 Round Medium Entire Raised Moist Off-white glistening Opaque No GPR Singular, Chain
5 BBC 5 Round Big Entire Raised Creamy White Smooth Opaque No GPR Singular, Chain
6 BBC 6 Round Medium Regular Undulate Moist White Smooth Translucent No GPR Singular, Chain
7 BBC 7 Round Medium Entire Raised Moist Creamy Slimy Opaque No GPR Singular, Chain
8 BBC 8 Round Big Entire Convex Moist White Smooth Opaque No GPR Singular, Chain
9 BBC 9 Round Medium Entire Raised Moist Yellow Smooth Opaque No GNR Singular, Chain
10 BBC 10 Round Medium Regular Raised Moist White glistening Opaque No GPR Singular, Chain
11 BBC 11 Round Big Entire Raised Sticky White Smooth Opaque No GPR Singular, Chain
12 BBC 12 Round Medium Entire Convex Moist Creamy Slimy Opaque YES GPR Singular, Chain
13 BBC 13 Round Medium Entire Raised Moist White Smooth Opaque No GPR Singular, Chain
14 BBC 14 Round Big Entire Raised Moist White Smooth Translucent No GPR Singular, Chain
15 BBC 15 Round Medium Entire Flat Moist Brown Slimy Opaque No GNR Singular, Chain
16 BBC 16 Round Medium Entire Raised Moist White Smooth Opaque No GPR Singular, Chain
17 BBC 17 Round Big Regular Convex Dry White Smooth Opaque No GPR Singular, Chain
18 BBC 18 Round Medium Entire Raised Moist Off-white Slimy Opaque No GPR Singular, Chain
19 BBC 19 Round Medium Entire Raised Moist Yellow Smooth Translucent No GPR Singular, Chain
20 BBC 20 Round Big Entire Raised Moist White Smooth Opaque No GNR Singular, Chain
21 BBC 21 Round Big Entire Convex Dry White Slimy Opaque No GPR Singular, Chain
22 BBC 22 Round Medium Entire Raised Moist Yellow Smooth Opaque No GNR Singular, Chain
23 BBC 23 Round Medium Entire Raised Moist White glistening Opaque No GPR Singular, Chain
24 BBC 24 Round Big Regular Raised Sticky White Smooth Translucent No GPR Singular, Chain
25 BBC 25 Round Medium Entire Flat Dry White Smooth Opaque No GNR Singular, Chain
26 BBC 26 Round Medium Entire Raised Moist Off-white glistening Opaque YES GPR Singular, Chain
27 BBC 27 Round Big Regular Raised Creamy White Smooth Opaque No GNR Singular, Chain
28 BBC 28 Round Medium Entire Raised Moist White Slimy Translucent No GPR Singular, Chain
29 BBC 29 Round Big Entire Raised Moist White Smooth Opaque No GPR Singular, Chain
Table 6.3. Colonial and morphological characteristics of selected microorganism from the citrus-based cropping system.
Sl.No. Culture shape size Margin Elevation Consistency Color Surface Opacity Odour Gram’s Arrangement
name reaction
1 CBC1 Round Small Regular Raised Moist White Smooth Opaque No GNR Singular
2 CBC2 Round Small Regular Raised Moist White Smooth Opaque No GNR Singular
3 CBC3 Round Large Regular Flat Creamy Off-white Slimy Opaque No GNR Singular, Chain
4 CBC4 Round Medium Entire Raised Moist White Smooth Translucent No GPR Singular, Chain
5 CBC5 Round Small Regular Raised Moist Creamy Smooth Translucent YES GNR Singular
6 CBC6 Round Small Entire Convex Dry White glistening Translucent No GPR Singular
7 CBC7 Round Small Regular Raised Moist White Smooth Opaque No GNR Singular
8 CBC8 Round Medium Regular Undulate Moist Yellow Smooth Opaque No GPR Singular, Chain
9 CBC9 Round Medium Regular Raised Moist White Slimy Translucent No GNR Singular
10 CBC10 Round Large Regular Flat Sticky Creamy Smooth Translucent No GPR Singular
11 CBC11 Round Small Entire Raised Dry White Smooth Opaque No GNR Singular
12 CBC12 Round Small Regular Raised Moist White Smooth Opaque No GPR Singular, Chain
13 CBC13 Round Small Regular Convex Moist yellow glistening Opaque No GNR Singular
14 CBC14 Round Small Regular Raised Dry White Slimy Translucent No GNR Singular, Chain
15 CBC15 Round Small Regular Raised Moist White Smooth Opaque No GNR Singular, Chain
16 CBC16 Round Small Regular Raised Moist White Smooth Opaque YES GNR Singular, Chain
17 CBC17 Round Large Regular Flat creamy Off-white Slimy Opaque No GNR Singular, Chain
18 CBC18 Round Medium Entire Raised Moist White Smooth Translucent No GPR Singular
19 CBC19 Round Small Regular Raised Moist Creamy Smooth Translucent No GNR Singular
20 CBC20 Round Small Entire Raised Moist White Smooth Opaque No GNR Singular
21 CBC21 Round Small Regular Raised Dry White Smooth Opaque No GPR Singular
22 CBC22 Round Small Regular Convex Moist yellow glistening Opaque No GNR Singular, Chain
23 CBC23 Round Small Regular Raised Dry White Slimy Translucent YES GPR Singular
24 CBC24 Round Small Regular Raised Moist Creamy Smooth Translucent No GNR Singular, Chain
25 CBC25 Round Small Entire Convex Moist White glistening Translucent No GPR Singular
26 CBC26 Round Small Regular Raised Dry White Smooth Opaque No GNR Singular
Table 6.4. Colonial and morphological characteristics of selected microorganism from the Guava -based cropping system
Sl. Culture shape size Margin Elevation Consistency Color Surface Opacity Odour Gram’s Arrangement
No. name reaction
1 GBC1 Round Pinpoint Rhizoid Raised Moist White Smooth Translucent No GPR Singular, Chain
2 GBC2 Round Small Irregular Flat Creamy White Smooth Opaque No GPR Singular
3 GBC3 Round Small Regular Raised Moist Creamy Smooth Opaque No GPR Singular
4 GBC4 Round Small Regular Raised Moist Creamy Slimy Opaque No GNR Singular
5 GBC5 Round Large Irregular Flat Moist White glistening Translucent No GPR Singular, Chain
6 GBC6 Round Small Regular Raised Sticky White Smooth Opaque No GNR Singular, Chain
7 GBC7 Round Small Rhizoid Convex Moist Yellow Smooth Opaque No GPR Singular, Chain
8 GBC8 Round Medium Regular Raised Moist White Smooth Opaque No GPR Singular, Chain
9 GBC9 Round Small Regular Raised Moist Brown Slimy Translucent No GPR Singular
10 GBC10 Round Large Rhizoid Convex Dry White Smooth Translucent No GNR Singular
11 GBC11 Round Small Regular Raised Moist White Smooth Opaque No GNR Singular
12 GBC12 Round Pinpoint Irregular Raised Moist Creamy glistening Opaque No GNR Singular
13 GBC13 Round Small Regular Flat Sticky White Smooth Opaque No GPR Singular
14 GBC14 Round Small Regular Raised Sticky White Smooth Translucent No GPR Singular, Chain
15 GBC15 Round Medium Regular Undulate Moist White Slimy Opaque No GNR Singular, Chain
16 GBC16 Round Small Irregular Flat Moist Creamy Smooth Translucent No GPR Singular, Chain
17 GBC17 Round Large Irregular Flat Moist Creamy glistening Opaque No GNR Chain
18 GBC18 Round Small Irregular Convex Dry White Smooth Opaque No GPR Singular
19 GBC19 Round Small Regular Flat Sticky White Smooth Opaque No GPR Singular
20 GBC20 Round Small Regular Raised Sticky White Smooth Translucent No GPR Singular, Chain
21 GBC21 Round Medium Regular Undulate Moist White Slimy Opaque No GNR Singular, Chain
22 GBC22 Round Small Regular Raised Moist Creamy Slimy Opaque No GNR Singular
23 GBC23 Round Large Irregular Flat Moist White glistening Translucent No GPR Singular, Chain
24 GBC24 Round Small Regular Raised Sticky White Smooth Opaque No GNR Singular, Chain
25 GBC25 Round Large Rhizoid Convex Dry White Smooth Translucent No GPR Singular
26 GBC26 Round Small Regular Raised Moist White Smooth Opaque No GNR Singular
27 GBC27 Round Small Rhizoid Convex Moist Yellow Smooth Opaque No GPR Singular, Chain
Table 6.5. Colonial and morphological characteristics of selected microorganism from the Dragon fruits -based cropping system
Sl. Culture shape size Margin Elevation Consistency Color Surface Opacity Odour Gram’s Arrangement
No. name reaction
1 DBC1 Round Large Rhizoid Flat Moist Off-white Smooth Translucent No GNR Singular, Chain
2 DBC2 Round Medium Irregular Flat Creamy White glistening Translucent No GNR Singular, Chain
3 DBC3 Round Small Irregular Raised Moist Creamy Smooth Opaque No GPR Singular
4 DBC4 Round Small Irregular Raised Moist Creamy Smooth Opaque No GNR Singular
5 DBC5 Round Small Irregular Flat Creamy Yellow Smooth Translucent No GPR Singular, Chain
6 DBC6 Round Small Regular Raised Sticky White glistening Opaque No GNR Singular, Chain
7 DBC7 Round Medium Rhizoid Convex Moist Yellow Smooth Opaque No GPR Singular, Chain
8 DBC8 Round Medium Regular Flat Creamy White Slimy Opaque No GNR Singular, Chain
9 DBC9 Round Small Regular Flat Moist Creamy Smooth Opaque No GNR Singular
10 DBC10 Round Large Rhizoid Raised Dry White Smooth Translucent No GNR Singular
11 DBC11 Round Small Rhizoid Flat Moist White Smooth Opaque No GNR Singular, Chain
12 DBC12 Round Pinpoint Irregular Undulate Moist Creamy Smooth Translucent No GNR Singular
13 DBC13 Round Pinpoint Regular Flat Sticky White Slimy Translucent No GPR Singular
14 DBC14 Round Medium Entire Raised Moist Off-white glistening Opaque No GPR Singular, Chain
15 DBC15 Round Big Entire Raised Moist White Smooth Opaque No GPR Singular, Chain
16 DBC16 Round Medium Entire Convex Moist White Smooth Opaque No GPR Singular, Chain
17 DBC17 Round Medium Rhizoid Convex Moist Yellow Smooth Opaque No GPR Singular, Chain
18 DBC18 Round Medium Regular Flat Creamy White Slimy Opaque No GNR Singular, Chain
19 DBC19 Round Small Regular Flat Moist Creamy Smooth Opaque No GNR Singular
20 DBC20 Round Pinpoint Irregular Undulate Moist Creamy Smooth Translucent No GNR Singular, Chain
21 DBC21 Round Pinpoint Regular Flat Sticky White Slimy Translucent No GPR Singular
22 DBC22 Round Medium Entire Raised Moist Off-white glistening Opaque No GPR Singular, Chain
23 DBC23 Round Small Irregular Raised Moist Creamy Smooth Opaque No GPR Singular
24 DBC24 Round Small Irregular Raised Moist Creamy Smooth Opaque No GNR Singular
25 DBC25 Round Small Irregular Flat Creamy Yellow Smooth Translucent No GPR Singular, Chain
Figure 6.1.Plant Growth-Promoting Rhizobacteria (PGPR) are isolated from different agricultural
settings using selective medium.
Figure 6.2. Gram staining procedure distinguishes bacteria: Gram-positive (purple) have thick
peptidoglycan; Gram-negative (pink) have thin peptidoglycan with outer membrane.
Table 6.6. Plant growth promoting activities of isolated rhizobacterial strain of banana-based cropping system. In this table plus and minus sign denote the presence and
absence PGPR activities. (+) Luxuriant Growth (O.D. ≥ 0.5), (-) Scanty/No Growth (O.D. < 0.5)
Table 6.7. Plant growth promoting activities of selected microorganism of citrus-based cropping system. In this table plus and minus sign denote the presence and absence
PGPR activities. (+) Luxuriant Growth (O.D. ≥ 0.5), (-) Scanty/No Growth (O.D. < 0.5)
Table 6.8. Plant growth promoting activities of selected microorganism of Guava-based cropping system. In this table plus and minus sign denote the presence and absence
PGPR activities. (+) Luxuriant Growth (O.D. ≥ 0.5), (-) Scanty/No Growth (O.D. < 0.5)
Table 6.9. Plant growth promoting activities of selected microorganism of Dragon fruits-based cropping system. In this table plus and minus sign denote the presence and
absence PGPR activities. (+) Luxuriant Growth (O.D. ≥ 0.5), (-) Scanty/No Growth (O.D. < 0.5)
6.3.6.1.IAA production
Bacteria that produce indole-3-acetic acid (IAA) are essential for varied cropping systems
because they enhance plant vigor, vigorous development, and nutrient absorption. They
support microbial activity, preserve soil health, and assist plants in fending off
environmental challenges. Bacteria that produce IAA help plants become more adaptable,
which encourages sustainable farming methods and resilience in a variety of crop
situations (Hakim et al. 2021). The PGPR isolates from the banana-based cropping
system were assessed for their in vitro capacity to produce indole acetic acid (IAA). The
findings are shown in Table 6.6. and Figure 6.3 Out of the twenty-nine bacterial isolates
used in the banana-based cropping system, 25 were found to produce indole acetic acid.
The isolates BBC 2, BBC 7, BBC 10, BBC 15, and BBC 18 generated the most IAA. On
the other hand, 16 bacterial strains out of 26 were discovered to produce IAA in the
citrus-based cropping system. Table 6.7. displays the highest quantity of IAA production
in the CBC 1, CBC 3, CBC6, CBC7, CBC12, CBC13, and CBC24. Additionally, Table
6.8 depicts the cropping system based on guavas. The results indicate that, of the twenty-
seven bacterial strains tested, 21 of them produced IAA. The GBC1, GBC3, GBC12, and
GBC 14 had the highest levels of IAA production (Table 6.8.). On the other hand, 17
rhizobacterial isolates in the cropping system based on dragon fruits demonstrate the
successful generation of IAA. Bacterial strains DBC5, DBC7, DBC11, and DBC14 have
the highest levels of IAA generation (Table 6.9.).
9, BBC 10, BBC 13, BBC 15, BBC 18, BBC 20, BBC 23, BBC 25, and BBC 27 exhibit
the ability to dissolve a significant amount of insoluble mineral phosphate. In contrast,
the citrus-based cropping system exhibited the largest amount of solubilized insoluble
mineral phosphate in CBC 2, CBC 4, CBC 5, CBC 7, CBC 10, CBC 21, and CBC 22
(Table 6.7.). Furthermore, Table 6.8. presents the guava-based cropping system. The
findings demonstrate that bacteria strains GBC1, GBC2, GBC4, GBC7, GBC8, and
GBC11 exhibited the most significant capacity to dissolve mineral phosphate, as
indicated in Table 6.8. Rhizobacterial isolates in the dragon fruit farming system
effectively solubilize phosphate minerals. The bacterial strains DBC6, DBC7, DBC10,
DBC15, and DBC19 have the greatest capacity for solubilizing mineral phosphate.
The findings are shown in Table 6.6 and Figure 6.3 The isolates from banana-based
cropping system BBC 3, BBC 7, BBC 9, BBC 10, BBC 13, BBC 14 and BBC 18
generated the most ammonia. On the other hand, citrus based cropping system, Table 6.7
displays the highest quantity of ammonia production in the CBC 3, CBC9, CBC13,
CBC14, and CBC20. Additionally, Table 6.8. displays the cropping system based on
guavas. The results indicate that bacterial strain such as GBC1, GBC3, GBC9, GBC13,
GBC14, GBC19and GBC 20 had the highest levels of ammonia production (Table 6.8.).
On the other hand, rhizobacterial isolates in the dragon fruits-based cropping system
based such as DBC 9, DBC14, DBC,18, DBC 20 and DBC 25 produced ammonia.
The isolates' ability to break down insoluble phosphates and release phosphorus (P) was
evaluated using both qualitative and quantitative approaches. The qualitative examination
entailed examining changes in phosphate compounds, whilst the quantitative evaluation
examined the amount of phosphorus released, determining the phosphorus solubilization
capability of the isolates. Both approaches were used to assess the isolates' ability to
transform unavailable phosphorus into a form that plants can use.
The study evaluated PGPR isolates' ability to solubilize insoluble mineral phosphate in
different cropping systems (Deepa et al. 2015) determining the Phosphate Solubilizing
Activity Index (PSI) at 3, 5, and 7 days after inoculation (DAI). For the banana-based
system (Table 6.10), PSI values ranged from 3.02 to 4.06, with BBC 18 exhibiting the
highest PSI at 3DAI (3.57). In the citrus system (Table 6.11), PSI ranged from 3.00 to
4.20, with CBC 5 showing the highest PSI at 5DAI (4.18). For the guava system (Table
6.12), PSI ranged from 2.98 to 3.62, with GBC 11 having the highest PSI at 3DAI (3.44).
In the dragon fruit system (Table 6.13), PSI ranged from 2.96 to 3.60, with DBC 10
showing the highest PSI at 5DAI (3.49). These results demonstrate the varying phosphate
solubilization capabilities of rhizobacterial strains across different crops and time points.
Table 6.10. Qualitative estimation of phosphate solubilization of five promising bacteria of banana-based
cropping system on Pikovskaya agarmedium at 3 DAI, 5DAI, 7DAI
Phosphate solubilization
Bacteria 3DAI 5DAI 7DAI
isolate P halo zone Colony PSI P halo zone Colony PSI P halo Colony PSI
(mm) diameter (mm) diameter zone diameter
(mm) (mm) (mm) (mm)
BBC1 2.65±0.22 2.23±0.08 2.18±0.01 4.21±0.12 5.45±0.04 1.77±0.02 5.12±0.12 6.21±0.08 1.82±0.01
BBC2 5.26±0.11 4.56±0.05 2.15±0.05 7.24±0.25 6.45±0.25 2.12±0.03 7.28±0.13 6.74±0.14 2.08±0.02
BBC3 3.25±0.15 4.36±0.01 1.74±0.06 5.63±0.31 4.58±0.14 2.23±0.04 5.86±0.25 4.62±0.16 2.27±0.05
BBC4 10.5±0.21 5.26±0.05 3.02±0.01 14.25±0.14 6.56±0.13 3.17±0.05 14.8±0.14 6.85±0.31 3.17±0.04
BBC8 6.58±0.14 3.25±0.06 1.49±0.36 8.56±0.36 6.45±0.16 2.32±0.01 8.7±0.32 6.56±0.85 2.33±0.06
BBC9 4.56±0.13 4.26±0.01 2.07±0.21 6.25±0.01 5.40±0.18 2.15±0.01 6.85±0.14 5.87±0.12 2.17±0.04
BBC7 7.23±0.25 4.25±0.15 2.70±0.05 8.15±0.05 6.25±0.13 2.30±0.03 8.16±0.13 6.36±0.14 2.28±0.11
BBC8 2.26±0.14 3.25±0.05 1.69±0.05 3.85±0.42 4.25±0.16 1.90±0.05 4.2±0.15 4.52±0.14 1.93±0.04
BBC9 16.2±0.11 6.45±0.06 3.51±0.14 18.26±0.05 6.25±0.11 3.92±0.05 19.2±0.02 6.35±0.36 4.03±0.01
BBC10 3.56±0.13 5.58±0.08 1.63±0.25 5.26±0.10 3.45±0.13 2.52±0.04 5.35±0.05 4.15±0.75 2.29±0.03
BBC11 12.3±0.21 4.86±0.04 3.54±0.36 14.26±0.02 5.15±0.23 3.76±0.12 16.2±0.08 5.48±0.12 3.97±0.05
BBC12 8.26±0.25 5.25±0.02 2.57±0.02 10.2±0.06 5.46±0.25 2.86±0.21 10.5±0.75 5.96±0.18 2.76±0.02
2BBC13 2.25±0.31 2.26±0.32 1.99±0.05 5.24±0.04 6.12±0.36 1.85±0.05 7.25±0.08 6.34±0.13 2.14±0.04
BBC14 4.26±0.14 3.45±0.14 2.23±0.01 6.24±0.02 4.25±0.12 2.46±0.15 6.85±0.11 4.60±0.05 2.49±0.06
BBC15 10.56±0.12 4.16±0.15 3.53±0.36 12.3±0.07 4.18±0.02 3.95±0.06 13.2±0.04 4.85±0.16 3.73±0.05
BBC16 3.25±0.25 4.63±0.63 1.70±0.15 4.56±0.05 4.25±0.52 2.07±0.08 5.21±0.13 4.65±0.41 2.12±0.04
BBC17 4.36±0.31 4.15±0.85 2.05±0.24 5.56±0.32 3.56±0.14 2.56±0.31 6.21±0.07 4.2±0.03 2.48±0.14
BBC18 13.25±0.01 5.15±0.04 3.57±0.36 16.2±0.04 5.48±0.12 3.96±0.04 17.2±0.08 5.64±0.02 4.06±0.05
BBC19 3.56±0.05 3.85±0.05 1.92±0.14 5.26±0.12 4.25±0.4 2.23±0.02 6.21±0.07 4.87±0.05 2.28±0.12
BBC20 8.5±0.08 5.19±0.31 2.63±0.25 9.45±0.11 4.62±0.23 3.04±0.36 9.82±0.12 4.98±0.15 2.97±0.11
Table 6.11. Qualitative estimation of phosphate solubilization of five promising bacteria of Citrus-based
cropping system on Pikovskaya agar medium at 3 DAI, 5DAI, 7DAI
Phosphate solubilization
Bacteria 3DAI 5DAI 7DAI
isolate
P halo Colony PSI P halo Colony PSI P halo Colony PSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
CBC1 3.21± 0.25 2.25±0.25 2.43±0.45 4.12±0.25 3.25±0.16 2.27±0.85 4.28±0.75 4.25±0.31 2.01±0.12
CBC2 2.45±0.58 3.14±0.85 1.78±0.15 3.25±0.14 3.85±0.15 1.84±0.45 3.85±0.45 5.21±0.32 1.74±0.11
CBC3 4.25±0.56 2.15±0.42 2.98±0.26 5.12±0.14 3.15±0.32 2.63±0.24 6.25±0.12 4.85±0.35 2.29±0.08
CBC4 9.12±0.14 4.56±0.26 3.00±0.25 10.52±0.25 4.95±0.14 3.13±0.16 12.35±0.12 5.24±0.62 3.36±0.08
CBC5 12.25±0.75 4.56±0.14 3.68±0.25 15.25±0.16 4.8±0.78 4.18±0.31 16.25±0.11 5.12±0.14 4.20±0.06
CBC6 5.64±0.25 4.25±0.26 2.33±0.14 6.25±0.15 5.42±0.98 2.15±0.15 7.25±0.15 6.21±0.25 2.17±0.04
CBC7 11.25±0.45 5.26±0.75 3.14±0.16 13.25±0.26 4.68±0.85 3.83±0.48 14.23±0.13 5.23±0.34 3.72±0.03
CBC8 6.25±00.48 3.85±0.85 2.62±0.14 6.85±0.16 4.26±0.56 2.61±0.64 7.25±0.14 4.89±0.15 2.48±0.04
CBC9 4.25±0.74 3.75±0.26 2.13±0.18 5.21±0.18 4.26±0.25 2.22±0.25 6.25±0.45 4.7±0.23 2.33±0.08
CBC10 10.85±0.15 5.21±0.25 3.13±0.25 12.45±0.17 5.84±0.36 3.13±0.85 13.25±0.32 6.25±0.15 3.12±0.15
CBC11 2.69±0.14 3.25±0.84 1.83±0.63 3.25±0.96 4.26±0.14 1.76±0.64 3.58±0.23 5.12±014 1.70±0.12
CBC12 3.58±0.36 2.58±0.96 2.39±0.85 4.25±0.15 3.89±0.63 2.09±0.34 4.89±0.15 4.26±0.36 2.15±0.13
CBC13 4.2±0.28 4.12±0.52 2.02±0.63 4.85±0.28 4.89±0.85 1.99±0.85 5.25±0.41 5.21±0.15 2.01±0.12
CBC14 1.55±0.25 2.31±0.74 1.71±0.45 2.56±0.26 3.25±0.56 1.79±0.74 3.18±0.13 4.23±0.31 1.73±0.14
CBC15 10.45±0.14 3.15±0.15 3.31±0.42 11.5±0.18 4.15±0.36 3.80±0.46 12.41±0.35 4.85±0.25 3.56±0.11
Table 6.12. Qualitative estimation of phosphate solubilization of bacteria of Guava-based cropping system
on Pikovskaya agar medium at 3 DAI, 5DAI, 7DAI
Phosphate solubilization
Bacteria 3DAI 5DAI 7DAI
isolate P halo Colony PSI P halo zone Colony PSI P halo zone Colony PSI
zone (mm) diameter (mm) diameter (mm) diameter
(mm) (mm) (mm)
GBC1 12.25±0.25 5.64±0.45 3.17±0.15 14.23±0.85 6.25±0.12 3.28±0.12 15.23±0.21 6.85±0.35 3.22±0.11
GBC2 2.25±0.23 3.56±0.75 1.63±0.05 3.25±0.45 4.26±0.13 1.76±0.08 4.52±0.31 5.26±0.85 1.86±0.12
GBC3 3.56±0.56 4.25±0.46 1.84±0.06 4.25±0.96 4.85±0.32 1.88±0.09 5.26±0.15 5.24±0.87 2.00±0.12
GBC4 13.56±0.45 6.12±0.15 3.22±0.15 15.26±0.45 6.89±0.52 3.21±0.15 16.25±0.36 7.25±0.54 3.24±0.18
GBC5 4.58±0.36 3.89±0.85 2.18±0.16 4.89±0.23 4.25±0.31 2.15±0.11 5.87±0.45 5.26±0.64 2.12±0.08
GBC6 3.42±0.75 3.45±0.36 1.99±0.25 3.75±0.25 4.56±0.85 1.82±0.12 4.56±0.63 5.43±0.56 1.84±0.09
GBC7 9.89±0.85 4.58±0.23 3.16±0.36 11.25±0.12 5.26±0.12 3.14±0.13 13.52±0.74 5.98±0.15 3.26±0.06
GBC8 11.25±0.15 5.25±0.58 3.14±0.52 12.35±0.13 6.25±0.41 2.98±0.01 15.47±0.15 7.25±0.15 3.13±0.14
GBC9 6.52±0.23 4.26±0.15 2.53±0.34 7.25±0.31 5.24±0.12 2.38±0.02 8.56±0.25 6.25±0.41 2.37±0.12
GBC10 8.25±0.36 4.36±0.16 2.89±0.16 9.25±0.42 5.84±0.56 2.58±0.02 10.56±0.63 6.28±0.63 2.68±0.21
GBC11 13.85±0.75 5.29±0.45 3.62±0.12 15.26±0.31 5.89±0.31 3.59±0.13 16.52±0.15 6.78±0.15 3.44±0.22
GBC12 4.26±0.15 3.56±0.16 2.20±0.15 5.26±0.26 4.89±0.15 2.08±0.15 7.52±0.52 5.89±0.85 2.28±0.21
GBC13 5.26±0.36 4.26±0.15 2.23±0.15 5.89±0.13 5.78±0.12 2.02±0.03 6.58±0.96 6.89±0.74 1.96±0.14
GBC14 6.54±0.15 3.56±0.85 2.84±0.36 7.25±0.15 4.59±0.35 2.58±0.15 8.56±0.63 7.25±0.26 2.18±0.09
GBC15 7.25±0.85 4.25±0.36 2.71±0.15 8.25±0.13 5.21±0.25 2.58±0.04 9.25±0.85 6.78±0.12 2.36±0.07
GBC16 6.35±0.45 3.56±0.12 2.78±0.15 7.26±0.12 4.68±0.85 2.55±0.11 8.56±0.25 6.89±0.14 2.24±0.09
GBC17 4.26±0.36 3.65±0.85 2.17±0.16 5.26±0.31 4.32±0.13 2.22±0.13 6.25±0.45 7.25±0.56 1.86±0.15
GBC18 5.23±0.15 4.25±0.15 2.23±0.09 6.23±0.52 5.28±0.15 2.18±0.12 7.26±0.31 7.56±0.42 1.96±0.13
Table 6.13. Qualitative estimation of phosphate solubilization of five promising bacteria of Dragon fruits-
based cropping system on Pikovskaya agar medium at 3 DAI, 5DAI, 7DAI
Phosphate solubilization
Bacteria 3DAI 5DAI 7DAI
isolate P halo Colony PSI P halo Colony PSI P halo Colony PSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
DBC1 3.25±0.25 3.25±0.52 2.00±0.15 4.42±0.09 4.25±0.15 2.04±0.23 5.52±0.45 5.42±0.11 2.02±0.31
DBC2 5.26±0.15 4.25±0.63 2.24±0.63 6.23±0.06 5.26±0.52 2.18±0.15 6.89±0.75 5.89±0.23 2.17±0.11
DBC3 6.56±0.45 4.26±0.14 2.54±0.12 7.25±0.01 5.46±0.15 2.33±0.14 8.15±0.45 6.25±0.12 2.30±0.10
DBC4 3.25±0.78 3.85±0.34 1.84±0.14 4.26±0.05 4.85±032 1.88±0.08 6.25±0.36 5.24±0.14 2.19±0.08
DBC5 13.25±0.15 5.63±0.52 3.35±0.36 15.26±0.06 6.25±0.18 3.44±0.09 17.25±0.23 7.25±0.13 3.38±0.07
DBC6 15.23±0.15 6.23±0.45 3.44±0.56 17.21±0.12 7.28±0.45 3.36±0.08 18.25±0.15 7.84±0.32 3.33±0.06
DBC7 12.45±0.16 5.49±0.32 3.27±0.15 13.25±0.13 6.45±0.16 3.05±0.15 14.26±0.85 7.26±0.52 2.96±0.12
DBC8 4.52±0.25 4.25±0.45 2.06±0.14 5.26±0.11 5.26±0.15 2.00±0.14 6.23±0.12 6.25±0.14 2.00±0.14
DBC9 6.32±0.45 3.56±0.74 2.78±0.15 7.26±0.14 4.85±0.32 2.50±0.14 8.25±0.15 5.63±0.11 2.47±0.14
DBC10 10.52±0.52 5.28±0.85 2.99±0.12 12.35±0.08 4.96±0.52 3.49±0.01 14.26±0.36 5.48±0.31 3.60±0.31
DBC11 4.59±0.36 3.21±0.32 2.43±0.36 5.26±0.05 4.86±0.25 2.08±0.02 6.25±0.45 5.96±0.14 2.05±0.14
DBC12 10.85±0.25 4.85±0.11 3.24±0.45 12.35±0.12 5.26±0.14 3.35±0.03 14.23±0.45 6.35±0.25 3.24±0.12
DBC13 2.36±0.45 3.25±0.13 1.73±0.12 3.25±0.13 4.65±0.85 1.70±0.52 4.23±0.32 5.48±0.85 1.77±0.15
DBC14 3.25±0.36 4.21±0.36 1.77±0.15 4.26±0.15 5.85±0.36 1.73±0.15 5.23±0.15 6.25±0.36 1.84±0.12
DBC15 4.26±0.85 3.56±0.15 2.20±0.36 5.26±0.16 4.85±0.14 2.08±0.14 6.23±0.12 5.84±0.14 2.07±0.08
DBC16 3.25±0.41 3.45±0.36 1.94±0.15 4.26±0.14 6.8±0.25 1.63±0.31 5.26±0.31 7.25±0.14 1.73±0.13
The research delved into the role of Plant Growth-Promoting Rhizobacteria (PGPR)
in enhancing potassium availability, crucial for optimal plant growth ‘(Bahadur et al.
2017). Key bacterial isolates exhibited significant potassium solubilization activity
across various cropping systems. For instance, strains BBC 18, CBC 13, GBC 10, and
DBC 9 demonstrated notable efficacy in solubilizing potassium in banana, citrus,
guava, and dragon fruit systems, respectively. The potassium solubilization activity
index (KSI) values ranged between 2.95 to 4.78, 3.32 to 4.39, 3.03 to 4.09, and 3.27
to 4.36 across different systems at various time points (Tables 6.14 to 6.17). These
findings underscore the potential of specific PGPR strains to improve potassium
availability, thereby contributing to enhanced plant growth and agricultural
productivity in diverse cropping environments.
Table 6.14. Qualitative estimation of Potassium solubilization by selected isolates from Banana based
cropping system on Aleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Potassium solubilization
Bacteria 3DAI 5DAI 7DAI
isolate K halo Colony KSI K halo Colony KSI K halo Colony KSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
BBC1 4.26±0.25 4.26±0.21 2.00±0.08 5.23±0.15 5.26±0.31 1.99±0.06 6.25±0.42 6.23±0.41 2.00±0.11
BBC2 10.25±0.35 5.26±0.15 2.95±0.08 13.25±0.14 6.23±0.52 3.13±0.14 14.26±0.63 6.45±0.52 3.21±0.09
BBC3 3.56±0.45 3.25±0.34 2.10±0.06 5.26±0.78 4.25±0.42 2.24±0.63 6.23±0.54 5.28±0.31 2.18±0.07
BBC4 8.26±0.14 6.24±0.36 2.32±0.07 9.56±0.96 6.89±0.63 2.39±0.14 10.26±0.63 7.25±0.15 2.42±0.08
BBC5 5.26±0.16 4.26±0.15 2.23±0.05 6.58±0.45 5.28±0.74 2.25±0.04 7.21±0.24 6.25±0.31 2.15±0.06
BBC6 6.34±0.14 4.58±0.14 2.38±0.15 7.26±0.63 5.96±0.12 2.22±0.03 7.62±0.12 6.32±0.52 2.21±0.14
BBC7 8.26±0.16 5.35±0.35 2.54±0.16 9.25±0.45 6.23±0.16 2.48±0.01 10.25±0.34 7.25±0.12 2.41±0.11
BBC8 12.35±0.11 4.29±0.85 3.88±0.14 14.63±0.15 5.78±0.12 3.53±0.05 16.23±0.15 6.25±0.11 3.60±0.01
BBC9 2.36±0.41 3.25±0.16 1.73±0.74 3.56±0.14 6.25±0.15 1.57±0.15 4.23±0.14 7.23±0.63 1.59±0.26
BBC10 6.24±0.63 6.25±0.11 2.00±0.16 7.26±0.75 6.78±0.36 2.07±0.42 8.32±0.11 7.21±0.15 2.15±0.31
BBC11 4.36±0.78 4.26±0.15 2.02±0.11 5.96±0.16 4.89±0.18 2.22±0.31 6.85±0.15 5.26±0.74 2.30±0.05
BBC12 5.12±0.16 5.28±0.36 1.97±0.01 6.89±0.35 6.87±0.34 2.00±0.74 7.25±0.34 7.32±0.52 1.99±0.14
BBC13 13.25±0.85 4.63±0.14 3.86±0.12 15.26±0.26 5.26±0.62 3.90±0.14 17.25±0.41 6.23±0.16 3.77±0.03
BBC14 3.25±0.45 5.26±0.85 1.62±0.15 4.25±0.85 6.89±0.85 1.62±0.11 5.23±0.35 7.15±0.42 1.73±0.04
BBC15 4.26±0.63 3.56±0.15 2.20±0.33 5.96±0.85 5.26±0.32 2.13±0.32 6.35±0.25 6.23±0.31 2.02±0.05
BBC16 5.26±0.33 4.26±0.36 2.23±0.14 6.35±0.24 6.25±0.16 2.02±0.24 7.26±0.74 6.89±0.25 2.05±0.06
BBC17 3.56±0.15 3.85±0.11 1.92±0.25 6.25±0.36 4.85±0.45 2.29±0.34 7.25±0.31 5.26±0.41 2.38±0.05
BBC18 14.56±0.31 3.85±0.25 4.78±0.14 16.85±0.26 4.89±0.32 4.45±0.11 17.25±0.41 6.23±0.21 3.77±0.45
BBC19 10.56±0.15 4.29±0.12 3.46±0.13 13.52±0.48 5.89±0.33 3.30±0.21 14.26±0.12 6.21±0.31 3.30±0.41
BBC20 7.59±0.22 3.78±0.47 3.01±0.18 8.56±0.15 6.25±0.85 2.37±0.31 9.25±0.42 7.15±0.56 2.29±0.63
Table 6.15. Qualitative estimation of Potassium solubilization by selected isolates from Citrus based
cropping system on Aleksandrov agar medium at 3DAI, 5DAI, 7DAI
Potassium solubilization
Bacteria 3DAI 5DAI 7DAI
isolate
K halo Colony KSI K halo Colony KSI K halo Colony KSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
CBC1 5.26±0.15 5.26±0.12 2.00±0.08 6.25±0.15 5.89±0.24 2.06±0.11 6.85±0.12 6.23±0.21 2.10±0.11
CBC2 4.26±0.41 4.85±0.41 1.88±0.04 5.26±0.24 5.21±0.25 2.01±0.15 5.89±0.45 5.89±0.45 2.00±0.12
CBC3 12.25±0.46 5.26±0.52 3.33±0.05 16.25±0.32 5.89±0.34 3.76±0.31 18.26±0.13 6.25±0.63 3.92±0.12
CBC4 5.21±0.74 4.65±0.63 2.12±0.12 6.23±0.24 5.21±0.15 2.20±0.08 6.87±0.52 5.84±0.41 2.18±0.12
CBC5 6.58±0.15 5.84±0.15 2.13±0.11 7.21±0.15 6.24±0.46 2.16±0.01 7.65±0.63 6.25±0.25 2.22±0.14
CBC6 11.26±0.35 4.85±0.42 3.32±0.13 14.23±0.34 5.12±0.32 3.78±0.18 16.32±0.15 5.89±0.74 3.77±0.13
CBC7 6.58±0.15 5.26±0.51 2.25±0.45 7.32±0.15 6.23±0.85 2.17±0.12 7.59±0.15 6.24±0.85 2.22±0.15
CBC8 7.58±0.41 4.28±0.41 2.77±0.12 8.21±0.75 5.24±0.45 2.57±0.14 8.94±0.42 5.87±0.12 2.52±0.08
CBC9 6.89±0.31 4.63±0.32 2.49±0.25 7.23±0.64 4.89±0.32 2.48±0.05 7.98±0.32 5.85±0.25 2.36±0.09
CBC10 5.28±0.42 5.28±0.15 2.00±0.31 6.23±0.25 5.98±0.15 2.04±0.01 6.87±0.45 6.32±0.31 2.09±0.14
CBC11 10.26±0.36 4.34±0.13 3.36±0.21 13.5±0.45 4.89±0.45 3.76±0.04 15.26±0.42 5.78±0.56 3.64±0.21
CBC12 7.56±0.45 3.89±0.41 2.94±0.11 8.23±0.36 4.63±0.12 2.78±0.11 8.94±0.85 5.89±0.15 2.52±0.01
CBC13 14.26±0.12 4.26±0.25 4.35±0.14 16.25±0.15 4.79±0.75 4.39±0.12 18.25±0.45 5.64±0.16 4.24±0.04
CBC14 8.56±0.44 4.98±0.12 2.72±0.15 8.98±0.45 5.34±0.15 2.68±0.31 9.23±0.52 6.23±0.21 2.48±0.08
CBC15 15.29±0.12 5.1±0.44 4.00±0.31 18.26±0.12 5.84±0.16 4.13±0.15 19.25±0.21 6.28±0.85 4.07±0.04
Table 6.16. Qualitative estimation of Potassium solubilization by selected isolates from Guava based
cropping system on Aleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Potassium solubilization
Bacteria 3DAI 5DAI 7DAI
isolate
K halo Colony KSI K halo Colony KSI K halo Colony KSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
GBC1 5.26±0.21 5.24±0.21 2.00±0.11 5.89±0.42 5.98±0.21 1.98±0.11 6.23±0.24 6.25±0.45 2.00±0.11
GBC2 13.25±0.35 4.56±0.11 3.91±0.08 15.26±0.15 5.24±0.31 3.91±0.12 16.52±0.52 5.89±0.52 3.80±0.12
GBC3 5.26±0.14 5.28±0.11 2.00±0.05 6.25±0.16 5.89±0.45 2.06±0.13 7.25±0.26 6.25±0.63 2.16±0.13
GBC4 4.58±0.16 6.25±0.13 1.73±0.04 5.54±0.46 6.84±0.61 1.81±0.08 6.25±0.14 7.26±0.85 1.86±0.15
GBC5 5.64±0.15 4.85±0.12 2.16±0.01 6.25±0.14 5.26±0.48 2.19±0.08 7.26±0.35 6.48±0.45 2.12±0.14
GBC6 4.26±0.85 5.69±0.21 1.75±0.15 5.45±0.74 6.25±0.46 1.87±0.12 6.85±0.85 7.26±0.24 1.94±0.13
GBC7 7.56±0.15 4.89±0.24 2.55±0.12 8.25±0.85 5.48±0.12 2.51±0.11 9.25±0.25 5.89±0.63 2.57±0.11
GBC8 10.56±0.14 5.21±0.31 3.03±0.16 13.25±0.64 5.64±0.14 3.35±0.14 16.25±0.14 6.25±0.41 3.60±0.08
GBC9 2.56±0.63 3.54±0.25 1.72±0.13 3.48±0.63 5.26±0.08 1.66±0.12 4.58±0.31 6.45±0.85 1.71±0.09
GBC10 14.26±0.36 4.68±0.15 4.05±0.15 16.25±0.52 5.26±0.12 4.09±0.13 18.26±0.16 5.98±0.16 4.05±0.07
GBC11 5.96±0.85 5.26±0.81 2.13±0.14 6.23±0.25 6.25±0.31 2.00±0.17 7.26±0.42 6.89±0.31 2.05±0.12
GBC12 12.56±0.74 4.87±0.19 3.58±0.13 14.56±0.36 5.26±0.15 3.77±0.12 18.26±0.31 6.24±0.41 3.93±0.11
GBC13 5.28±0.16 4.63±0.16 2.14±0.15 6.23±0.48 4.98±0.14 2.25±0.15 7.26±0.52 6.14±0.25 2.18±0.07
GBC14 7.28±0.15 6.84±0.10 2.06±0.12 8.56±0.49 7.25±0.63 2.18±0.16 9.56±0.85 8.25±0.12 2.16±0.05
GBC15 9.56±0.16 5.46±0.16 2.75±0.21 10.25±0.32 6.25±0.12 2.64±0.21 13.25±.47 7.25±0.31 2.83±0.06
GBC16 5.84±0.25 4.85±0.12 2.20±0.13 6.25±0.11 5.85±0.15 2.07±0.11 7.26±0.16 6.32±0.74 2.15±0.11
GBC17 14.85±0.61 5.12±0.13 3.90±0.51 16.25±0.12 5.89±0.24 3.76±0.31 19.25±0.32 6.45±0.25 3.98±0.12
GBC18 4.85±0.84 4.63±0.14 2.05±0.12 5.26±0.31 5.47±0.32 1.96±0.14 7.26±0.48 6.25±0.12 2.16±0.14
Table 6.17. Qualitative estimation of Potassium solubilization by selected isolates from Dragon fruits-
based cropping system on Aleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Potassium solubilization
Bacteria 3DAI 5DAI 7DAI
isolate K halo Colony KSI K halo Colony KSI K halo Colony KSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
DBC1 6.25±0.41 4.26±0.24 2.47±0.11 7.25±0.12 5.25±0.12 2.38±0.11 8.21±0.21 6.25±0.42 2.31±0.32
DBC2 8.56±0.32 3.58±0.36 3.39±0.15 9.25±0.14 4.25±0.13 3.18±0.02 10.24±0.31 5.48±0.24 2.87±0.85
DBC3 13.54±0.15 5.21±0.85 3.60±0.12 15.36±0.15 5.64±0.15 3.72±0.01 16.35±0.15 5.89±0.34 3.78±0.41
DBC4 16.45±0.16 4.89±0.51 4.36±0.13 17.26±0.13 5.48±0.14 4.15±0.15 18.25±0.14 5.98±0.15 4.05±0.34
DBC5 8.25±0.12 4.68±0.16 2.76±0.14 9.25±0.15 5.26±0.16 2.76±0.11 10.31±0.74 6.25±0.16 2.65±0.42
DBC6 3.45±0.15 5.26±0.75 1.66±0.11 4.25±0.15 6.24±0.12 1.68±0.13 5.26±0.85 6.89±0.14 1.76±0.34
DBC7 4.68±0.45 4.87±0.48 1.96±0.14 5.63±0.85 5.24±0.15 2.07±0.04 6.35±0.65 5.89±0.13 2.08±0.34
DBC8 10.85±0.85 4.26±0.46 3.55±0.11 12.65±0.15 4.89±0.14 3.59±0.05 16.35±0.14 5.26±0.14 4.11±0.45
DBC9 12.56±0.75 4.98±0.15 3.52±0.08 16.85±0.16 5.36±0.13 4.14±0.11 18.25±0.52 5.84±0.74 4.13±0.35
DBC10 8.56±0.63 5.26±0.12 2.63±0.09 10.25±0.85 5.84±0.14 2.76±0.13 10.98±0.31 6.11±0.16 2.80±0.85
DBC11 7.25±0.15 5.41±0.25 2.34±0.01 8.25±0.74 6.25±0.15 2.32±0.14 9.25±0.45 6.85±0.35 2.35±0.31
DBC12 6.58±0.45 4.82±0.63 2.37±0.12 7.56±0.65 6.25±0.11 2.21±0.16 8.25±0.36 7.2±0.25 2.15±0.34
DBC13 8.56±0.64 4.68±0.25 2.83±0.13 9.25±0.45 6.78±0.08 2.36±0.01 10.24±0.15 7.21±0.16 2.42±0.16
DBC14 11.56±0.15 5.1±0.85 3.27±0.14 13.54±0.26 5.26±0.09 3.57±0.06 16.25±0.15 5.89±0.14 3.76±0.25
DBC15 4.58±0.75 3.84±0.15 2.19±0.15 5.26±0.12 4.26±0.11 2.23±0.04 6.32±0.16 5.21±0.74 2.21±0.48
DBC16 6.54±0.15 4.26±0.23 2.54±0.13 7.25±0.85 5.36±0.12 2.35±0.01 8.24±0.85 6.21±0.16 2.33±0.12
Table 6.18. Qualitative estimation of Zink solubilization by selected isolates from Banana based
cropping system on Aleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Zink solubilization
Bacteria 3DAI 5DAI 7DAI
isolate Zn halo Colony ZSI Zn halo Colony ZSI Zn halo Colony ZSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
BBC1 10.2±0.25 3.26±0.32 4.13±0.11 10.5±0.45 3.89±0.14 3.70±0.12 10.8±0.25 4.21±0.13 3.57±0.08
BBC2 8.26±0.36 4.26±0.45 2.94±0.21 9.25±0.16 5.21±0.12 2.78±0.11 10.35±0.65 5.34±0.25 2.94±0.09
BBC3 16.25±0.45 4.28±0.48 4.80±0.13 20.5±0.15 5.12±0.32 5.00±0.13 22.35±0.34 5.31±0.42 5.21±0.11
BBC4 10.26±0.63 3.32±0.36 4.09±0.15 12.3±0.78 3.78±0.15 4.25±0.31 13.2±048 4.21±0.32 4.14±0.12
BBC5 6.25±0.14 4.25±0.52 2.47±0.14 7.25±0.48 5.21±0.14 2.39±0.11 8.61±0.74 5.62±0.52 2.53±0.05
BBC6 5.26±0.25 4.85±0.45 2.08±0.31 6.25±0.65 5.32±0.85 2.17±0.12 7.21±0.46 5.42±0.63 2.33±0.06
BBC7 9.25±0.15 5.25±0.48 2.76±0.12 10.25±0.52 6.21±0.32 2.65±0.21 12.34±0.15 6.56±0.15 2.88±0.10
BBC8 13.52±0.75 4.23±0.11 4.20±0.14 16.35±0.41 4.39±0.15 4.72±0.11 19.23±0.45 4.89±0.14 4.93±0.05
BBC9 7.89±0.85 5.29±0.12 2.49±0.47 8.21±0.32 6.21±0.41 2.32±10 8.94±0.36 6.84±0.52 2.31±0.06
BBC10 10.25±0.45 3.25±0.15 4.15±0.25 12.34±0.15 4.25±0.52 3.90±0.12 13.2±0.15 5.24±0.35 3.52±0.11
BBC11 12.25±0.63 4.36±0.40 3.81±0.13 16.25±0.63 5.1±0.32 4.19±0.22 18.26±0.85 5.16±0.74 4.54±0.12
BBC12 18.26±0.15 4.89±0.16 4.73±0.15 24.25±0.41 5.13±0.14 5.73±0.24 24.85±0.45 5.42±0.85 5.58±0.02
BBC13 16.25±0.41 5.26±0.41 4.09±0.12 20.45±0.85 5.61±0.74 4.65±0.31 21.5±0.31 5.67±0.96 4.79±0.12
BBC14 8.56±0.52 4.63±0.25 2.85±0.15 9.26±0.32 5.32±0.15 2.74±0.25 10.3±0.34 5.34±0.63 2.93±0.21
BBC15 6.25±0.25 4.63±0.74 2.35±0.31 7.25±0.12 5.21±0.35 2.39±0.14 8.24±0.15 5.42±0.52 2.52±0.31
BBC16 7.29±0.63 3.25±0.25 3.24±0.15 8.26±0.15 4.23±0.15 2.95±0.15 8.65±0.32 4.65±0.42 2.86±0.21
BBC17 10.24±0.45 4.62±0.63 3.22±0.16 11.2±0.14 4.85±0.14 3.31±0.16 12.3±0.51 4.88±0.36 3.52±0.31
BBC18 13.25±0.52 5.21±0.89 3.54±0.32 15.3±0.32 5.38±0.36 3.84±0.11 16.2±0.16 5.27±0.41 4.07±0.14
BBC19 5.26±0.45 4.63±0.21 2.14±0.15 6.32±0.15 5.23±0.85 2.21±0.21 7.25±0.14 5.64±0.25 2.29±0.11
BBC20 8.26±0.48 4.56±0.12 2.81±0.14 9.25±0.11 4.89±0.63 2.89±0.14 10.2±0.85 5.84±0.31 2.75±0.10
Table 6.19. Qualitative estimation of Zink solubilization by selected isolates from Citrus based
cropping system on Aleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Zink solubilization
Bacteria 3DAI 5DAI 7DAI
isolate Zn halo Colony ZSI Zn halo Colony ZSI Zn halo Colony ZSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
CBC1 15.23±0.25 5.26±0.63 3.90±0.11 17.23±0.35 5.36±0.21 4.21±0.11 17.89±0.31 5.48±0.12 4.26±0.11
CBC2 18.23±0.36 4.85±0.41 4.76±0.12 20.15±0.36 5.21±0.14 4.87±0.12 21.23±0.15 5.62±0.11 4.78±0.12
CBC3 20.14±0.45 4.58±0.25 5.40±0.11 24.26±0.85 4.89±0.13 5.96±0.13 26.25±0.34 4.98±0.16 6.27±0.13
CBC4 14.25±0.21 5.26±0.12 3.71±0.08 15.23±0.45 5.38±0.14 3.83±0.14 17.2±0.62 5.89±0.13 3.92±0.14
CBC5 11.23±0.35 4.36±0.52 3.58±0.06 13.25±0.63 4.89±0.16 3.71±0.15 13.25±0.14 5.21±0.14 3.54±0.08
CBC6 5.56±0.15 3.25±0.32 2.71±0.04 6.35±0.48 3.89±0.18 2.63±0.11 6.89±0.52 4.21±0.13 2.64±0.07
CBC7 8.56±0.41 4.26±0.14 3.01±0.01 10.25±0.45 4.98±0.11 3.06±0.32 11.2±0.15 5.12±0.14 3.19±0.09
CBC8 22.35±0.63 4.89±0.15 5.57±0.05 30.25±0.16 5.26±0.13 6.75±0.14 31.2±0.74 5.32±0.13 6.86±0.04
CBC9 24.26±0.85 5.21±0.25 5.66±0.11 28.25±0.12 5.64±0.15 6.01±0.17 29.2±0.65 5.72±0.14 6.10±0.05
CBC10 10.56±0.24 4.36±0.12 3.42±0.12 2.32±0.25 4.89±0.32 3.52±0.08 13.2±0.41 5.1±0.17 3.59±0.04
CBC11 13.56±0.63 3.85±0.13 4.52±0.12 14.25±0.14 4.67±0.15 4.05±0.09 15.32±0.25 4.72±0.35 4.25±0.07
CBC12 12.56±0.15 4.68±0.14 3.68±0.17 16.32±0.25 5.26±0.15 4.10±0.11 17.26±0.15 5.61±0.12 4.08±0.11
CBC13 9.85±0.32 5.36±0.41 2.84±0.11 10.45±0.15 5.84±0.32 2.79±0.02 12.3±0.14 6.2±0.31 2.98±0.12
CBC14 11.25±0.25 3.89±0.12 3.89±0.13 12.34±0.32 4.26±0.14 3.90±0.15 12.89±0.32 5.46±0.15 3.36±0.16
CBC15 16.25±0.63 4.25±0.13 4.82±0.15 19.35±0.85 4.87±0.11 4.97±0.13 21.3±0.15 5.74±.08 4.71±0.15
Table 6.20. Qualitative estimation of Zink solubilization by selected isolates from Guava based
cropping system onAleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Zink solubilization
Bacteria 3DAI 5DAI 7DAI
isolate Zn halo Colony ZSI Zn halo Colony ZSI Zn halo Colony ZSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
GBC1 8.6±0.85 3.25±0.21 3.65±0.11 10.2±0.21 4.32±0.32 3.36±0.11 11.23±0.14 4.51±0.11 3.49±0.32
GBC2 12.25±0.41 4.25±0.15 3.88±0.09 13.25±0.14 4.89±0.14 3.71±0.18 15.26±0.25 5.32±0.12 3.87±0.52
GBC3 15.3±0.63 3.85±0.13 4.98±0.05 21.0±0.42 4.26±0.12 5.93±0.09 25.23±0.26 4.89±0.25 6.16±0.08
GBC4 7.26±0.41 4.21±0.14 2.72±0.05 8.21±0.52 5.21±0.13 2.58±0.08 9.25±0.23 5.89±0.31 2.57±0.07
GBC5 9.25±0.75 4.36±0.16 3.12±0.07 10.2±0.63 5.31±0.32 2.92±0.11 11.23±0.85 5.64±0.14 2.99±0.11
GBC6 11.2±0.65 3.85±0.13 3.91±0.07 12.34±0.74 4.26±0.15 3.90±0.12 14.22±0.45 5.89±0.32 3.41±0.12
GBC7 10.36±0.42 5.34±0.15 2.94±0.11 13.25±0.16 5.64±0.32 3.35±0.13 14.25±0.41 5.78±0.15 3.47±0.32
GBC8 16.25±0.12 3.89±0.17 5.18±0.02 23.35±0.85 4.32±0.14 6.41±0.18 25.63±0.52 4.89±0.45 6.24±0.11
GBC9 18.24±0.63 4.21±0.85 5.33±0.31 25.36±0.41 4.89±0.45 6.19±0.08 28.24±0.32 5.21±0.15 6.42±0.15
GBC10 20.36±0.41 3.75±0.96 6.43±0.01 23.52±0.32 4.35±0.63 6.41±0.07 26.34±0.15 5.12±0.32 6.14±0.11
GBC11 19.54±0.85 5.12±0.15 4.82±0.21 26.24±0.14 5.42±0.17 5.84±0.14 27.89±0.63 5.64±0.15 5.95±0.12
GBC12 6.35±0.32 4.23±0.16 2.50±0.14 8.26±0.52 5.32±0.85 2.55±0.15 9.24±0.41 5.35±0.11 2.73±0.01
GBC13 5.24±0.15 3.85±0.15 2.36±0.13 6.45±0.13 3.89±0.25 2.66±0.14 8.2±0.85 4.26±0.12 2.92±0.08
GBC14 8.6±0.42 4.26±0.32 3.02±0.19 10.26±0.12 5.24±0.12 2.96±0.35 12.23±0.15 5.64±0.13 3.17±0.06
GBC15 10.56±0.32 3.75±0.15 3.82±0.14 12.35±0.14 4.23±0.32 3.92±0.15 13.52±032 5.26±0.14 3.57±0.12
GBC16 11.34±0.15 4.16±0.12 3.73±0.32 13.25±0.85 4.26±0.15 4.11±0.11 14.62±0.14 5.34±0.14 3.74±0.05
GBC17 9.84±0.85 3.48±0.21 3.83±0.15 10.52±0.41 4.85±0.12 3.17±0.11 11.25±0.35 5.63±0.04 3.00±0.56
GBC18 10.5±0.12 4.23±0.14 3.48±0.32 11.25±0.12 5.21±0.11 3.16±0.07 13.25±0.41 6.2±0.08 3.14±0.45
Table 6.21. Qualitative estimation of Zink solubilization by selected isolates from Dragon fruits-based
cropping system onAleksandrov agar medium at 3 DAI, 5DAI, 7DAI
Zink solubilization
Bacteria 3DAI 5DAI 7DAI
isolate Zn halo Colony ZSI Zn halo Colony ZSI Zn halo Colony ZSI
zone (mm) diameter zone (mm) diameter zone (mm) diameter
(mm) (mm) (mm)
DBC1 10.25±0.24 5.21±0.21 2.97±0.11 11.25±0.24 5.31±0.32 3.12±0.11 12.31±0.42 5.35±0.14 3.30±0.11
DBC2 8.26±0.45 4.28±0.63 2.93±0.12 9.26±0.26 4.89±0.32 2.89±0.05 10.25±0.63 4.98±0.31 3.06±0.15
DBC3 5.26±0.26 4.36±0.75 2.21±0.13 6.25±0.23 4.67±0.42 2.34±0.08 6.89±0.15 4.87±0.12 2.41±0.08
DBC4 6.85±0.25 5.12±0.56 2.34±0.14 7.25±0.52 5.31±0.23 2.37±0.11 8.25±0.15 5.89±0.15 2.40±0.09
DBC5 10.34±0.32 3.25±0.45 4.18±0.11 11.24±0.41 4.32±0.15 3.60±0.11 13.25±0.16 5.21±0.13 3.54±0.11
DBC6 13.25±0.85 4.25±0.32 4.12±0.08 16.25±0.25 4.58±0.16 4.55±0.5 20.14±0.14 5.14±0.14 4.92±0.12
DBC7 8.65±0.14 5.15±0.52 2.68±0.11 10.25±0.85 5.65±0.14 2.81±0.14 12.35±0.32 6.2±0.13 2.99±0.13
DBC8 9.45±0.25 4.85±0.41 2.95±0.09 12.24±0.63 4.89±0.36 3.50±0.01 14.25±0.25 5.12±0.15 3.78±0.05
DBC9 7.26±0.14 5.23±0.63 2.39±0.05 8.56±0.14 5.7±0.58 2.50±0.05 9.56±0.16 6.23±0.14 2.53±0.08
DBC10 15.26±0.36 4.85±0.74 4.15±0.12 19.25±0.15 5.21±0.15 4.69±0.05 23.25±0.19 5.42±0.21 5.29±0.11
DBC11 17.25±0.36 4.96±0.25 4.48±0.20 21.25±0.14 5.31±0.16 5.00±0.11 25.21±0.12 5.61±0.16 5.49±0.14
DBC12 12.52±0.74 4.57±0.32 3.74±0.15 15.35±0.74 5.12±0.32 4.00±0.12 19.25±0.13 5.32±0.18 4.62±0.32
DBC13 16.25±0.85 3.89±0.14 5.18±0.14 20.36±0.85 4.23±0.14 5.81±0.12 24.23±0.15 5.12±0.13 5.73±0.12
DBC14 10.5±0.96 5.21±0.16 3.02±0.12 12.32±0.36 5.64±0.15 3.18±0.04 14.25±0.18 5.84±0.12 3.44±0.11
DBC15 3.25±0.41 4.26±0.63 1.76±0.13 4.25±0.84 5.24±0.85 1.81±0.12 5.56±0.32 5.34±0.15 2.04±0.12
DBC16 4.25±0.52 5.12±0.14 1.83±0.10 6.5±0.63 5.86±0.15 2.11±0.13 8.2±0.25 6.23±0.16 2.32±0.13
help select beneficial strains, improve soil fertility, and reduce agricultural chemical
fertilizer use. This study subjects five bacteria to varied levels of tricalcium phosphate
(TCP) for five days to determine their phosphate solubilization ability in a diverse
agricultural environment. The bacteria are cultivated with different levels of
tricalcium phosphate (TCP) to test their ability to convert insoluble phosphate into
plant-usable forms. Plants in the diversified cropping system affect bacterial activity.
Assessing soluble phosphate production reveals bacteria efficiency. The research
seeks bacterium strains that dissolve phosphate well in diverse agricultural systems,
even when phosphate levels alter. This helps improve agriculture and plant nutrition
through microbial interactions.
the phosphate solubilization efficiency shown rising trends over time, with values
ranging from 210 to 410 μg/mL, 310 to 510 μg/mL, and 420 to 640 μg/mL,
respectively, after 24 hours, and reaching higher ranges after 120 hours of incubation.
Table 6.22. Phosphate solubilization efficiency of Five promising bacteria of banana-based cropping system with different TCP concentrations (Incubation for 5 days).
*Values are Mean ±SD of triplicate values, *TCP - Tricalcium Phosphate
Table 6.23. Phosphate solubilization efficiency of Five promising bacteria of Citrus-based cropping system with different TCP concentrations (Incubation for 5 days) *Values
are Mean ±SD of triplicate values, *TCP - Tricalcium Phosphate
Bacterial isolate Conc. of TCP g/L *PO4 2- Solubilized (in μg/mL) *Change of pH
(Initial pH of media 6.8)
24hrs 48hrs 72hrs 96hrs 120hrs 24hrs 48hrs 72hrs 96hrs 120hrs
CBC4 2.5 150±10.12 220±11.35 260±16.35 260±14.45 415±15.85 5.23±0.12 5.25±0.13 5.27±0.18 5.30±0.21 5.31±0.14
5.0 250±11.52 350±16.25 420±10.25 450±8.96 510±11.25 5.25±0.15 5.27±0.15 5.28±0.16 5.32±0.23 5.34±0.16
7.5 310±17.15 360±12.25 410±11.25 450±10.2 620±9.56 5.26±0.14 5.28±0.18 5.31±0.16 5.25±0.25 5.34±0.15
10.0 450±13.25 468±10.26 510±13.35 560±10.28 640±11.28 5.31±0.23 5.32±0.17 5.34±0.14 5.36±0.14 5.32±0.18
CBC5 2.5 230±7.08 240±17.25 280±10.56 310±9.58 410±6.58 4.62±0.15 4.60±0.15 4.61±0.12 4.63±0.23 4.65±0.35
5.0 310±10.24 350±12.25 410±16.32 480±14.26 520±10.25 4.63±0.11 4.62±0.12 4.65±0.14 4.64±0.21 4.67±0.15
7.5 450±11.25 470±13.56 520±18.56 590±14.26 630±12.23 4.65±0.16 4.67±0.13 4.68±0.16 4.67±0.31 4.62±0.12
10.0 520±17.26 540±12.26 620±10.25 650±9.25 710±15.23 4.63±0.14 4.62±0.13 4.60±0.15 4.58±0.45 4.57±0.36
CBC7 2.5 350±20.13 370±25.23 410±21.23 480±15.26 520±16.23 6.31±0.13 6.32±0.25 6.34±0.20 6.33±0.56 6.30±0.45
5.0 410±17.26 450±15.26 480±18.26 560±20.23 570±19.26 6.36±0.12 6.34±0.14 6.33±0.21 6.31±0.12 6.30±0.42
7.5 510±15.23 540±14.26 570±12.23 642±14.25 710±16.23 6.33±0.10 6.32±0.15 6.31±0.56 6.30±0.14 6.28±0.14
10.0 640±23.12 670±21.31 750±12.03 780±15.26 810±12.30 6.30±0.13 6.29±0.13 6.29±0.14 6.30±0.16 6.31±0.12
CBC10 2.5 180±6.89 210±10.25 240±7.89 270±10.26 310±11.23 4.31±0.07 4.32±0.15 4.34±0.63 4.33±0.12 4.30±0.31
5.0 210±16.23 245±14.25 286±12.23 345±10.25 380±16.23 4.32±0.62 4.36±0.17 4.32±0.32 4.31±0.31 4.32±0.36
7.5 345±15.23 372±14.26 410±12.23 490±18.26 520±21.25 4.30±0.12 4.31±0.16 4.29±0.12 4.28±0.12 4.27±0.14
10.0 440±17.25 480±14.25 580±12.23 650±11.23 710±10.26 4.36±0.16 4.35±0.11 4.33±0.14 4.36±0.32 4.32±0.12
CBC15 2.5 240±10.25 260±13.26 345±12.25 362±16.52 380±18.25 4.12±0.12 4.15±0.18 4.17±0.07 4.18±0.21 4.21±0.35
5.0 280±16.23 310±14.25 345±18.26 380±17.26 410±16.23 4.14±0.26 4.16±0.23 4.17±0.32 4.17±0.31 4.19±0.14
7.5 350±10.25 380±10.25 420±11.26 510±14.25 580±13.25 4.16±0.35 4.18±0.86 4.21±0.63 4.22±0.12 4.23±0.36
10.0 420±11.25 485±18.25 580±16.35 620±14.36 680±13.26 4.20±0.48 4.23±0.15 4.24±0.31 4.21±0.15 4.19±0.14
Table 6.24. Phosphate solubilization efficiency of Five promising bacteria of Guava-based cropping system with different TCP concentrations (Incubation for 5 days)
*Values are Mean ±SD of triplicate values, *TCP - Tricalcium Phosphate
Table 6.25. Phosphate solubilization efficiency of Five promising bacteria of Dragon fruits -based cropping system with different TCP concentrations (Incubation for 5 days)
*Values are Mean ±SD of triplicate values, *TCP - Tricalcium Phosphate
6.3.9.6. Broth assay of IAA production of PGPR isolate from Banana based
cropping system
The study looked at how different tryptophan concentrations (from 0.0 to 1 g/L)
affected Indole-3-acetic acid (IAA) synthesis in bacteria that are essential for plant
growth. Higher tryptophan concentrations significantly boosted IAA synthesis, with
an ideal level for maximum efficiency. Table 6.26. reported that Bacterial strains
BBC7, BBC15, and BBC5 showed considerable IAA production at 0.0 g/L
tryptophan, ranging from 16.2 to 28.9 (μg/mL) over 24–96 hours. With 0.3 g/L
tryptophan, IAA synthesis ranged from 17.5 to 30.1 (μg/mL) throughout the same
period. At 0.7 g/L and 1 g/L tryptophan, IAA production efficiency ranged from 18.2
to 30.6 (μg/mL) and 17.8 to 29.9 (μg/mL), respectively, over the incubation durations.
The study also revealed dynamic pH fluctuations over time caused by bacterial
metabolism, emphasizing the complex interplay between tryptophan concentration,
bacterial activity, and IAA production, crucial for optimizing agricultural practices
and enhancing crop yield.
6.3.9.7. Broth assay of IAA production of PGPR isolate from Citrus based
cropping system
The study looked at how tryptophan affected bacterial Indole-3-acetic acid (IAA)
synthesis during a 24-96-hour period. The Table 6.27. reported that at 0.0 g/L
tryptophan, IAA levels ranged from 19.6 to 26.5 (μg/mL), with CBC12 demonstrating
the highest synthesis, followed by CBC13 and CBC3. At 0.3 g/L, IAA levels varied
from 19.8 to 29.2 (μg/mL). 0.7 g/L ranged from 19.3 to 28.1 (μg/mL), whereas 1 g/L
ranged from 18.2 to 27.8 (μg/mL). Initial tryptophan breakdown caused minor pH
reductions, which were exacerbated by bacterial growth within 48 hours. By 72 hours,
considerable bacterial activity had created noticeable pH changes, which were
influenced by organic acid buildup and resource depletion.
6.3.9.8. Broth assay of IAA production of PGPR isolate from Guava based
cropping system
The study looked at IAA synthesis in bacteria at various tryptophan doses for 24 to 96
hours. The Table 6.28. find that at 0.0 g/L tryptophan, IAA levels ranged from 15.2 to
36.32 (μg/mL), with GBC12 demonstrating the highest synthesis, followed by GBC3
and GBC16. At 0.3 g/L tryptophan, IAA ranged from 16.2 to 35.25 (μg/mL), while at
0.7 g/L it ranged from 18.2 to 33.4 (μg/mL). With 1 g/L tryptophan, IAA synthesis
ranged from 18.1 to 33.7 (μg/mL). Initial tryptophan breakdown resulted in minor pH
decreases, which were exacerbated within 48 hours by enhanced bacterial
proliferation, influencing subsequent pH values and stability.
6.3.9.9. Broth assay of IAA production of PGPR isolate from Dragon fruits-based
cropping system
Over the course of 24 to 96 hours, the researchers detected IAA synthesis in bacteria
at various tryptophan concentration levels. The Table 6.29. find that at 0.0 g/L
tryptophan, IAA levels ranged from 11.25 to 23.5 (μg/mL), with DBC14 showing the
highest synthesis, followed by DBC11 and DBC6. At 0.3 g/L tryptophan, IAA ranged
from 13.85 to 24.2 (μg/mL), while at 0.7 g/L it ranged from 14.36 to 25.6 (μg/mL).
With 1 g/L tryptophan, IAA synthesis ranged from 15.2 to 25.3 (μg/mL). Initial
tryptophan breakdown resulted in minor pH decreases, which were exacerbated
within 48 hours by enhanced bacterial proliferation, influencing subsequent pH values
and stability.
Table 6.26. Amount of IAA produced in μg/mL by Five promising bacteria of Banana-based cropping
system with different concentration of Tryptophan.
Conc. of *Amount of IAA Produced in μg /mL *Change of pH
Bacterial Tryptophan 24hrs 48hrs 72hrs 96hrs 24hrs 48hrs 72hrs 96hrs
isolate g/L
BBC2 0 16.2±0.85 18.2±0.15 16.3±2.1 12.2±0.45 6.7±0.25 6.4±0.74 5.2±0.74 4.8±0.14
0.3 19.2±0.15 19.3±0.25 19.6±0.85 19.9±0.26 6.6±0.85 5.8±0.41 5.4±0.31 4.9±0.25
0.7 21.2±0.86 21.3±0.78 21.5±0.56 22.1±0.74 6.7±0.45 6.2±0.63 5.8±0.32 4.4±0.34
1 18.4±0.14 19.2±0.89 20.1±0.42 20.4±0.63 6.7±0.14 6.3±0.18 5.4±0.14 4.6±0.14
BBC7 0 28.3±1.2 28.5±0.25 28.6±0.12 28.9±0.45 6.8±0.15 6.2±0.15 5.9±0.16 4.8±0.74
0.3 29.4±2.1 29.6±0.85 29.7±0.36 30.1±0.25 6.7±0.26 5.9±0.09 5.3±0.85 4.4±0.52
0.7 30.1±3.5 29.8±0.56 30.5±0.25 30.4±0.14 6.7±0.42 6.2±0.10 6.4±0.12 6.6±0.31
1 28.2±0.25 28.9±0.47 29.6±0.45 29.9±1.25 6.8±0.31 6.4±0.63 5.8±0.31 4.8±0.15
BBC10 0 17.2±0.15 17.6±0.16 17.9±1.25 18.1±0.85 6.9±0.74 6.6±0.01 6.2±0.12 6.1±0.16
0.3 17.5±0.56 17.8±1.2 18.2±1.65 18.4±1.36 6.8±0.21 6.7±0.5 6.1±0.12 5.8±0.14
0.7 18.2±0.75 18.6±4.6 18.9±2.13 19.2±1.85 6.6±0.15 6.1±0.06 5.8±0.70 5.1±0.12
1 17.8±0.56 17.9±6.5 19.2±0.25 19.5±1.45 6.7±0.36 6.5±0.13 6.6±0.13 6.2±0.62
BBC15 0 21.2±0.85 21.5±2.3 21.4±0.34 21.7±1.36 6.9±0.17 6.7±0.13 6.8±0.16 6.6±0.13
0.3 21.6±0.36 21.8±4.2 21.9±0.85 22.4±2.15 6.8±0.96 6.1±0.7 5.9±0.11 5.7±0.85
0.7 22.2±0.56 22.3±6.3 22.5±0.96 22.7±1.4 6.7±0.12 6.4±0.31 6.3±0.08 6.1±0.21
1 21.8±1.25 22.1±5.2 22.6±0.34 22.4±1.35 6.7±0.31 6.6±0.18 6.3±0.06 5.9±0.24
BBC18 0 18.2±2.2 18.4±7.5 18.6±0.45 18.7±2.14 6.7±0.25 6.1±0.25 5.8±0.12 5.7±0.16
0.3 18.4±4.5 18.6±1.2 18.8±0.75 19.1±1.23 6.8±0.18 6.6±0.7 6.2±0.11 6.0±0.41
0.7 18.6±3.6 18.9±3.2 18.5±0.26 19.3±3.15 6.7±0.09 6.4±0.25 6.5±0.14 6.6±0.74
1 19.1±0.25 19.3±4.5 19.5±0.14 19.4±2.15 6.6±0.63 6.6±0.14 6.3±0.06 6.1±0.21
Table 6.27. Amount of IAA produced in μg/mL by Five promising bacteria of Citrus-based cropping
system with different concentration of Tryptophan.
Bacterial Conc. of *Amount of IAA Produced in μg /mL *Change of pH
isolate Tryptophan 24hrs 48hrs 72hrs 96hrs 24hrs 48hrs 72hrs 96hrs
g/L
CBC1 0 19.6±1.25 20.1±0.14 20.5±0.75 21.2±1.25 6.9±1.31 6.2±1.25 5.8±0.25 5.7±0.02
0.3 19.8±0.85 20.5±0.45 21.2±1.25 22.0±0.78 6.8±.1.21 6.5±2.36 6.1±0.36 5.3±0.14
0.7 20.9±0.75 21.6±0.32 21.7±1.56 22.5±0.85 6.9±1.25 6.2±2.44 5.8±0.11 5.1±0.36
1 18.6±0.83 18.5±0.41 18.2±0.85 18.3±1.24 6.7±1.45 5.8±0.46 5.6±0.14 5.1±0.14
CBC3 0 20.8±1.12 20.4±0.15 20.1±0.79 19.8±1.26 6.7±1.36 6.1±0.85 5.7±0.25 4.9±0.25
0.3 21.6±2.14 21.8±0.36 22.5±0.14 21.9±1.75 6.8±1.25 6.4±0.79 6.1±0.18 5.4±0.14
0.7 22.1±3.41 21.6±1.51 22.1±1.26 21.8±1.85 6.7±1.03 6.2±0.46 5.9±0.09 5.7±0.36
1 23.3±4.52 19.3±1.72 18.6±1.34 18.7±1.11 6.8±1.05 6.1±0.84 5.7±0.15 5.4±0.15
CBC6 0 22.2±0.85 22.1±1.36 21.8±2.34 21.6±0.84 6.9±1.25 6.3±0.36 5.8±0.11 5.1±0.39
0.3 23.6±1.64 24.4±1.8 24.7±3.15 23.8±0.75 6.8±0.98 6.1±0.14 5.8±0.32 5.3±0.25
0.7 22.2±1.35 20.1±1.25 19.6±4.26 19.3±0.65 6.7±0.45 6.2±0.15 5.6±0.18 5.1±0.85
1 20.1±1.35 19.5±0.89 19.4±1.28 19.1±0.47 6.8±0.35 6.4±0.32 6.1±0.17 5.3±0.74
CBC12 0 28.2±1.43 27.6±0.75 27.4±1.25 26.5±0.15 6.7±0.48 6.4±1.25 5.4±0.32 5.1±0.36
0.3 29.2±2.1 28.8±0.65 27.6±0.45 27.8±0.36 6.8±1.23 6.1±1.36 5.1±0.25 4.8±0.11
0.7 28.1±1.63 27.9±0.73 27.6±0.85 27.5±1.23 6.7±1.36 5.9±2.14 5.2±0.14 4.7±0.43
1 27.8±1.42 27.7±0.14 26.5±0.46 26.3±1.56 6.7±1.25 5.4±2.36 5.1±0.06 4.8±0.74
CBC13 0 24.4±1.31 24.8±1.28 24.8±1.74 23.7±0.18 6.6±0.48 6.2±0.85 5.7±0.08 5.2±0.23
0.3 23.5±0.85 23.6±2.14 24.9±1.56 24.4±1.84 6.6±0.46 6.3±0.46 6.4±0.45 6.1±0.85
0.7 26.3±0.79 24.1±2.14 23.8±2.11 23.6±1.46 6.7±0.36 6.4±0.14 5.8±0.63 5.3±0.45
1 25.2±0.71 24.8±1.25 23.2±2.36 22.8±1.32 6.8±0.85 6.1±0.17 5.7±0.87 4.9±0.36
Table 6.28. Amount of IAA produced in μg/mLby Five promising bacteria of Guava-based cropping
system with different concentration of Tryptophan
Table 6.29. Amount of IAA produced in μg/mLby Five promising bacteria of Dragon fruits-based
cropping system with different concentration of Tryptophan.
Table 6.30. Detailed genomic description of bacterial DNA isolation, including the process of PCR amplification and the diverse agricultural system.
Table 6.31. List of potential PGPR strains, selected from the diversified cropping system including their strain and similarity isolate names, Percentage Identification,NCBI
Serial No Name of Bacterial Species Accession Percentage Max Total Query Accession
Number Identification score score cover Length
Banana Based Cropping Bacillus bingmayongensis strain PCA86 OK087331 98.56% 1354 1354 97% 1443
System
Bacillus sp. strain PCA101 OK090423 97.22% 1158 1158 100% 1472
Fredinandcohnia onubensis strain PCA23 OK090421 97% 1267 1267 97% 1429
Staphylococcus saprophyticus strain PCA76 OK090433 99% 1690 1690 98.44% 1553
Citrus Based Cropping Rossellomorea vietnamensis strain PCA6 OK090424 82.01% 817 817 98% 1388
System
Bacillus mojavensis strain PCA7 OK090420 99.13% 1853 1853 98% 1526
Fredinandcohnia humi strain PCA11 OK090419 99.61% 1869 1869 99% 1429
Bacillus subtilis strain PCA55 OK090422 99.71% 1249 1249 100% 1550
Staphylococcus equorum subsp. linens strain OK090432 99% 1000 1000 98.93% 1535
PCA28
Guava Based Cropping Bacillus sp. strain PCA37 OK087329 97.85% 1279 1279 99% 1465
System
Staphylococcus succinus strain PCA4 OK090434 95.36% 1844 1844 90% 1548
Staphylococcus equorum strain PCA15 OK090428 97% 1201 1201 97.33% 1494
Staphylococcus succinus subsp. succinus OK090435 97.89% 99% 1548
902 902
strain PCA31
Drogan fruits Priestia aryabhattai strain PCA 51 OK087330 98.37% 1938 1938 99% 1533
Based Cropping System
Brachybacterium ginsengisoli strain PCA69 OK090425 99.88% 1513 1513 97% 1416
Staphylococcus cohnii strain PCA72 OK090427 97.95% 1092 1092 97% 1535
Bacillus halotolerans strain PCA75 OK090418 97.43% 1714 1714 96% 1468
Brevibacterium frigoritolerans strain PCA78 OK090426 99.27% 1234 1234 99.27% 1503
accession number in details.
Table 6.32. NCBI based BLAST Sequence similarity of all PGPR strain from diversified cropping system.
Bacillus bingmayongensis NR_148248.1 Bacillus bingmayongensis strain FJAT-13831 98.65%
PCA 31 NR_113991.1 Bacillus pseudomycoides strain NBRC 101232 98.07%
NR_115526.1 Bacillus cereus strain IAM 12605 97.92%
NR_157736.1 Bacillus tropicus strain MCCC 1A01406 97.92%
NR_157732.1 Bacillus nitratireducens strain MCCC 1A00732 97.92%
Bacillus humi PCA19 NR_025626.1 Bacillus humi strain LMG 22167 99.61%
NR_125590.1 Bacillus massiliosenegalensis strain JC6 98.41%
NR_135903.1 Bacillus wuyishanensis strain FJAT-17212 97.55%
NR_042286.1 Bacillus herbersteinensis strain D-1,5 97.79%
NR_149252.1 Bacillus onubensis strain 0911MAR22V3 97.88%
Bacillus megaterium NR_164882.1 Bacillus zanthoxyli strain 1433 100%
PCA23 NR_112636.1 Bacillus megaterium NBRC 1530 99.70%
NR_133978.1 Bacillus qingshengii strain G19 99.10%
NR_118382.1 Bacillus flexus strain SBMP3 98.64%
Bacillus onubensis PCA11 NR_149252.1 Bacillus onubensis strain 0911MAR22V3 99.64%
NR_133024.1 Bacillus timonensis strain 10403023 97.11%
NR_025626.1 Bacillus humi strain LMG 22167 97.11
NR_147383.1 Bacillus sinesaloumensis strain Marseille-P3516 96.76%
Bacillus onubensis PCA17 NR_149252.1 Bacillus onubensis strain 0911MAR22V3 99.86%
NR_133024.1 Bacillus timonensis strain 10403023 97.9%
NR_025626.1 Bacillus humi strain LMG 22167 97.9%
NR_147383.1 Bacillus sinesaloumensis strain Marseille-P3516 97.63%
Bacillus simplex PCA25 NR_042136.1 Bacillus simplex NBRC 15720 = DSM 1321 99.83%
NR_117474.1 Brevibacterium frigoritolerans strain DSM 8801 99.83%
NR_042083.1 Bacillus muralis strain LMG 20238 99.66%
NR_044170.1 Bacillus butanolivorans strain K9 98.82%
Bacillus subtilis PCA 27 NR_112116.2 Bacillus subtilis strain IAM 12118 99.71%
NR_104873.1 Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 99.56%
NR_024693.1 Bacillus mojavensis strain IFO15718 99.42%
NR_115931.1 Bacillus halotolerans strain LMG 22477 99.27%
NR_104919.1 Bacillus tequilensis strain 10b 99.42%
Bacillus subtilis PCA13 NR_024931.1 Bacillus subtilis subsp. spizizenii strain NRRL B-23049 99.88%
NR_104873.1 Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 99.77%
NR_115931.1 Bacillus halotolerans strain LMG 22477 16S 99.77%
NR_112116.2 Bacillus subtilis strain IAM 12118 99.65%
NR_024693.1 Bacillus mojavensis strain IFO15718 99.65%
Bacillus subtilis subsp. NR_104873.1 Bacillus subtilis subsp. inaquosorum 99.84%
Inaquosorum PCA21 NR_024931.1 Bacillus subtilis subsp. spizizenii strain NRRL B-23049 99.68%
NR_115931.1 Bacillus halotolerans strain LMG 22477 99.52%
NR_151897.1 Bacillus nakamurai strain NRRL B-41091 16S 99.36
Brachybacterium sp. NR_133984.1 Brachybacterium ginsengisoli strain DCY80 99.61
PCA29 NR_169311.1 Brachybacterium vulturis strain VM2412 98.35%
NR_169313.1 Brachybacterium avium strain VR2415 97.86%
Pseudarthrobacter NR_108849.1 Pseudarthrobacter siccitolerans strain 4J27 98.84%
siccitolerans NR_026191.1 Arthrobacter pascens strain DSM 20545 98.26
PCA33 NR_041545.1 Arthrobacter oryzae strain KV-651 98.26%
NR_042573.1 Pseudarthrobacter defluvii strain 4C1-a 97.96%
NR_041400.1 Pseudarthrobacter niigatensis strain LC4 97.82%
Staphylococcus arlettae NR_041926.1 Staphylococcus equorum subsp. linens strain RP29 99.58%
PCA 35 NR_156818.1 Staphylococcus edaphicus strain CCM 8730 97.50%
NR_024664.1 Staphylococcus arlettae strain ATCC 43957 97.29%
Staphylococcus NR_041926 Staphylococcus equorum subsp. linens strain RP29 99.11%
equorumPCA2 NR_027520.1 Staphylococcus equorum strain PA 231 99.11%
NR_113350.1 Staphylococcus xylosus strain JCM 2418 97.32%
NR_037046.1 Staphylococcus cohnii subsp. urealyticus strain CK27 97.32%
Staphylococcus equorum NR_041926.1 Staphylococcus equorum subsp. linens strain RP29 99.13%
subsp. Linens PCA5 NR_027520.1 Staphylococcus equorum strain PA 231 16S 99.13%
NR_037046.1 Staphylococcus cohnii subsp. urealyticus strain CK27 96.94%
Staphylococcus NR_074999.2 Staphylococcus saprophyticus subsp. ATCC 15305 97.95%
saprophyticus PCA15 NR_036902.1 Staphylococcus cohnii strain GH 137 97.55%
NR_156818.1 Staphylococcus edaphicus strain CCM 8730 97.98%
Staphylococcus Sp. NR_027520 Staphylococcus equorum strain PA 231 100%
PCA7 NR_113350.1:29-618 Staphylococcus xylosus strain JCM 2418 98.31%
NR_028667.1 Staphylococcus succinus subsp. succinus strain AMG-D1 98.31%
NR_036902.1 Staphylococcus cohnii strain GH 137 98.14
evaluating their ability to build biofilms using scanning electron microscopy (SEM),
as shown in Figures 4 and 5. This technique offers precise visualization of biofilm
formations, allowing for the observation of bacterial organization, extracellular
chemicals, and interconnections. This knowledge facilitates comprehension of the
activity of PGPR in the rhizosphere, hence augmenting their utilization for promoting
plant development and health in agriculture. Scanning electron microscopy (SEM)
examination offers in-depth understanding of the process of biofilm formation by
PGPR strains, shedding light on their ability to colonize and promote plant
development in agricultural environments. Gaining insight into the architecture of
biofilms facilitates the formulation of tactics to combat biofilm-associated infections,
enhance efficiency in industrial operations, and use advantageous biofilms for
medical, agricultural, and environmental purposes.
Figure 6.6. The study investigated the 16S rDNA sequences from potential PGPR strains from
diversified cropping systems using MEGA X, a phylogenetic analysis tool. A tree was built using
bootstrap percentages from 1,000 replications.
Figure 6.7. Comparing 16S rDNA sequences of PGPR isolates with relatives generated a phylogenetic
tree using neighbor-joining, with bootstrap values. Substitution rates indicate genetic differences.
.
Figure 6.8. Phylogenetic tree of banana-based PGPR isolates and relatives made with neighbor-joining
algorithm, showing branch support and nucleotide substitution rates.
Figure 6.9. A phylogenetic tree compares 16S rDNA sequences of Citrus-based PGPR isolates and
relatives, with branch support and nucleotide substitution rates.
Figure 6.10. Comparing 16S rDNA sequences of Guava-based PGPR isolates and relatives created
a phylogenetic tree, displaying branch support and nucleotide substitutions.
Figure 6.11. A phylogenetic tree, comparing 16S rDNA of Dragon-fruit-based PGPR isolates with
relatives, depicts branch support and nucleotide substitution rates.
6.4. Conclusion
The study identified variations in the reactivity of rhizobacteria based on their
morphology and pH levels across different agricultural systems. This study
demonstrates the alterations in microbial behavior under agricultural conditions.
Comprehending the complex interplay between rhizobacteria and the environment is
essential for sustainable farming. An understanding of how these bacteria respond to
pH levels enables researchers to enhance crop growth and improve soil quality. By
utilizing this knowledge, farmers may effectively utilize microbial dynamics to
enhance the availability of nutrients in an environmentally friendly way and promote
the overall health of the ecosystem. The research emphasizes the need to consider
microbial interactions in various agricultural settings to promote knowledgeable,
adaptable, and environmentally aware farming practices. The study revealed that
rhizobacteria exhibit a high degree of tolerance towards salt and diverse temperature
conditions. These isolates exhibited the production of indole-3-acetic acid (IAA),
enzymes that solubilize phosphate, hydrogen cyanide (HCN), and siderophores. These
compounds enhance soil quality, promote plant growth, and facilitate nutrient
absorption. Isolates of PGPR obtained from farms enhanced nutritional quality. The
high generation of siderophores in multiple systems demonstrated the potential of 13-
15 isolates in diverse cropping system. Certain varieties of bananas and citrus fruits