Mathematics for Computing (GE3B-04)
Unit 2: Trigonometry - Model Questions
(Based on Last 10 Years of Exam Patterns)
Section A: Short Answer Questions (2 Marks Each)
   1. Define radian and degree measure.
   2. Convert 60° into radians.
   3. Define trigonometric functions with examples.
   4. Find the value of sin 45° and cos 30°.
   5. State and prove sin²θ + cos²θ = 1.
   6. Find the value of tan 90°.
   7. What are allied angles? Give an example.
   8. Define compound angles and give one example.
   9. Find the sine and cosine of 180° + θ.
   10. State and prove the formula for sin(A + B).
Section B: Medium Answer Questions (5 Marks Each)
   11. Prove that cos(A + B) = cos A cos B – sin A sin B.
   12. Show that tan(A + B) = (tan A + tan B) / (1 – tan A tan B).
   13. Find sin 75° using the compound angle formula.
   14. Derive the formulas for multiple angles.
   15. Express sin 3θ and cos 3θ in terms of sinθ and cosθ.
   16. Prove that sin 2θ = 2 sinθ cosθ.
   17. If sin A = 3/5, find the value of cos A and tan A.
   18. Find the values of trigonometric functions for θ = 225°.
   19. Prove that cot(A + B) = (cot A cot B – 1) / (cot B + cot A).
   20. Find sin 15° using trigonometric identities.
Section C: Long Answer Questions (10 Marks Each)
   21. Prove that cos 2θ = cos²θ – sin²θ and derive its alternative forms.
   22. Derive the formula for sin(A – B) and cos(A – B).
   23. Prove that sec²θ – tan²θ = 1 using trigonometric identities.
   24. Derive and prove the formulas for half-angle identities.
   25. Prove that tan(45° + θ) = (1 + tanθ) / (1 – tanθ).
   26. Show that sin 5θ = 5 sinθ – 20 sin³θ + 16 sin⁵θ.
   27. Prove that sin²(A/2) = (1 – cos A) / 2.
   28. Derive expressions for sin(A + B + C) in terms of individual sine and cosine values.
   29. Solve the equation 2 sin x cos x = 1 for 0 ≤ x ≤ 360°.
   30. If tan A = 4/3 and tan B = 3/4, find the value of tan(A + B).
End of Document