# **Lecture Notes: AC Motors**
**Course:** Electrical Machines
**Topic:** Construction, Working Principle, Torque-Speed Characteristics, and Applications
---
## **1. Introduction**
An **AC motor** converts **alternating current (AC)** into **mechanical energy** (rotation). Unlike DC motors, they operate without
brushes, making them more reliable for industrial use.
### **Key Principle:**
- **Rotating Magnetic Field (RMF)**: Generated by stator windings, causing the rotor to turn.
- **Slip**: Difference between synchronous speed (\( N_s \)) and actual rotor speed (\( N \)).
---
## **2. Types of AC Motors**
### **A. Induction Motors (Asynchronous)**
- **Most common** type (90% industrial use).
- **No electrical connection** to rotor (current induced by RMF).
- **Slip** required for torque production.
### **B. Synchronous Motors**
- Runs **exactly at synchronous speed** (\( N = N_s \)).
- Requires **DC excitation** for rotor.
- Used for **precision speed control** (e.g., clocks, robotics).
---
## **3. Construction of a 3-Phase Induction Motor**
### **Main Components:**
1. **Stator**
- 3-phase windings (120° apart) to produce RMF.
2. **Rotor**
- **Squirrel Cage**: Copper/aluminum bars (cheap, robust).
- **Wound Rotor**: Slip rings for external resistance (high starting torque).
3. **Enclosure**
- Protects from dust/cooling (TEFC, ODP types).
### **Diagram (ASCII Representation):**
```
+---------------------+
| STATOR |
| (3-Phase Windings) |
+----------+----------+
+----------v----------+
| ROTOR |
| (Squirrel Cage / |
| Wound Rotor) |
+----------+----------+
|
+----------v----------+
| FAN & BEARINGS |
+---------------------+
```
---
## **4. Working Principle**
1. **Stator windings** energized by 3-phase AC **RMF** rotates at \( N_s \).
2. **RMF induces currents** in rotor (Faraday’s Law).
3. **Rotor currents** create a magnetic field **torque** via Lorentz force.
4. **Slip (\( s \))** ensures continuous torque:
\[
s = \frac{N_s - N}{N_s} \times 100\%
\]
---
## **5. Key Equations**
### **Synchronous Speed (\( N_s \)):**
\[
N_s = \frac{120 \cdot f}{P} \quad \text{(RPM)}
\]
- \( f \) = Supply frequency (Hz)
- \( P \) = Number of poles
### **Torque Equation:**
\[
T = \frac{k \cdot V^2 \cdot R_2}{R_2^2 + (s \cdot X_2)^2}
\]
- \( V \) = Stator voltage
- \( R_2 \) = Rotor resistance
- \( X_2 \) = Rotor reactance
### **Slip at Maximum Torque:**
\[
s_{max} = \frac{R_2}{X_2}
\]
---
## **6. Solved Examples**
### **Example 1: Calculating Synchronous Speed**
**Problem:**
A 4-pole induction motor runs on 60 Hz supply. Find \( N_s \).
**Solution:**
\[
N_s = \frac{120 \times 60}{4} = 1800 \, \text{RPM}
\]
---
### **Example 2: Determining Slip**
**Problem:**