Welcome
by ( n)
-
5
fl-u) f(
+
= n .
2) :
f (n) f) u)
+
-
=
k /H + n2 -
42)
:
eg(1) :a s
O
aen
:
=
e
odd -
-
=
f( -
u) = Sin ( -n) + Gs( u)
-
=
-
Sinn + Gr
Neither even Nor
odd
(NENO)
f-n) USEa) (a)
-
-
:
- -
: -
n Sin(n) + u3
: -
In sini - u3)
add
-
f( -
u) = Smin) -
as( -n)
-sinn-us(u)
=
(Sun + coul NEXO
a
-
-
-
Hl-u) :
1an
~
flu) =
[usu I
En (I(1
fl-u) =
f()
·"·
f(-u) (In-pay
3
((a - 12]* +
(2n + 132] even
-
-
~
let n +
+ = t
22 : A 2
+
te
f(a) = 122
f(n) : 22-2
-
P = I
2
~
2 T
-
T
-
a
= 2
4 4
LCm = 4
~
I ,
I
T
CM =
X
# T
f( f(x))
+ = 4 +()7(2 f(z)) 4 f(5)
+ =
4) 4x47(8 16) + : 4x16
f(1
=
+
feel) = 64
f(5) = 16 Ang
E as #flas) 2
f(aixa)
= 25X62
(f(s0)2 = 25 + 36
EXC
f (50) :
= 30 try
f( p) 10 + 2
+ =
102
f(100 + 0) =
100 + f(0)
-
-
= 10 + 2
:
100
by
2π
-
n = 3
1 +
4 + 9 +
-
n
?
by
-
ent
2 + 6x7 : (n)(n+1)(2n 1)
+
3) x4X7 = () (n 1) lent)
+
Y)0
10% : 10-10
24
102)
=
1 + Y
(10
%:
by
-
x = Y u) O
Domain : 10-10h > o J : n us O
<10.
I
con Y < 24
O
y=
x( (
-
0
, 1) n -
y - If
n = 37
① gofen Fogas-Si
fogar Range of (tanl
g((mm)
f(ga) Sin (-0 0)
,
= ( -1 17
,
fem(bun)
f Ifann) (sin)
P2 2π gofen = fan
sin(tana) ~ fan 1-1 17 ,
p : T & tans ,
fen !
]