Newton - S Law of Motion Solution
Newton - S Law of Motion Solution
HINT – SHEET
1. Ans ( 4 ) 3. Ans ( 1 )
R 3
sin θ = =
250
2 × 1000 × 10 ℓ+R 2+3
Δp 2mv 3
F= = = = 500N sin θ =
Δt Δt 0.01 5
2. Ans ( 3 )
∣ → ∣ = m ∣V
P →∣
∣ ∣ ∣ ∣
θ = 37°
Tcos θ = ω
P = 10 (
√
22 + 12 + 22 )
Tcos37° = ω
4
T= =ω
5
P = 10 × 3 = 30 kg m/s 5ω
T=
4
ADPLNEPH21547 HS-1/10
4. Ans ( 3 ) 10. Ans ( 1 )
Telegram: @NEETxNOAH
Fnet F
asystem = =
Msystem 4M
3F
T1 = (3M) × asystem ⇒
4
F
T2 = (2M) × asystem ⇒
2
F
T3 = (M) × asystem ⇒
4 Net driving force on the block is
5. Ans ( 3 )
T1 = 0.5 × 8g; mBg = 2T1 mg 3
= mg – = mg
⇒ mB = 8
4 4
3
⇒ (1 + ms ) = 8
∴ μ × 2mg = mg
4
⇒ ms = 7 kg 3
⇒μ=
6. Ans ( 1 ) 11. Ans ( 3 )
8
FL = µS mg
200 = µs × 500
µs = 0.4
fk = µk mg
150 = µk × 500
µk = 0.3 To keep the block stationary
7. Ans ( 1 ) ma cos θ = mg sin θ
⇒ a = g tan θ = g tan 37°
For equilibrium of system, F1 = √ F22 + F32 . As θ 3g
⇒ a=
4
= 90° 12. Ans ( 2 )
In the absence of force F1, N – Mg = Ma
Net force
Acceleration = 3Mg
Mass ⇒ − Mg = Ma
2
√ F22 + F32 g
F1 ⇒a=
= = 2
8. Ans ( 2 )
m m
13. Ans ( 2 )
By Newton's first law
14. Ans ( 1 )
fr = μ mg geff = g + a = 10 m/s2
= 0.6 × 10 × 10 ∴ TP = (M + m) geff
= 60N 0.2
9. Ans ( 3 ) = (4.9 +
2
) × 10 = 50N
Favg =
Δp 2mv cos 30o
= 15. Ans ( 3 )
Δt t Apparent weight = actual weight
2 × 40 × 10−3 × 20 √3
= × = 80√3 N When acceleration / retardation is zero.
10−2 2
HS-2/10
16. Ans ( 4 ) 22. Ans ( 2 )
Telegram: @NEETxNOAH
S=
u2
=
u2 → = d→p = m d→v
F where →v = d→r ^ ^ ^
= 8ti + 2j − 6k So
2a 2μg dt dt dt
same for both → = 2 [8i^] = 16i^
F
17. Ans ( 2 ) 23. Ans ( 1 )
F = slope of p – t curve Initial reading N1 = (mb + mc)g
at t = 3, Here mb = mass of bird,
slope = – 1. mc = mass of cage, if bird flying upward with
18. Ans ( 3 ) acceleration, let it is a, then new reading.
(A) Definition of force - Newton's first law N2 = mb(g + a) + mcg
(B) Measure of force - Newton's second law ⇒ N2 > N1
(C) Effect of force - change in momentum =
impulse 24. Ans ( 2 )
2mg − mg
(D) Recoiling of gun ⇒ Newton's third law. a1 = =g
m
19. Ans ( 2 ) a2 =
2mg − mg
=
g
In both F = 3ma 3m 3
2g
a= F So, a1 − a2 = ( )
3
3m
(1) N1 = 2ma (2) N2 = ma
2
25. Ans ( 1 )
N1
= For system, 2T = (50 + 30)g ⇒ T = 400 N
N2 1
20. Ans ( 3 )
F=
Δp
= Mg
26. Ans ( 1 )
Δt According to law of inertia (Newton's first law),
⇒ 2mnv = Mg
1 × 9.8 when cloth is pulled from a table, the cloth come in
⇒ v= = 9.8 m/s
2(0.05)(10)
21. Ans ( 3 ) state of motion but dishes remains stationary due to
N = 100 cos 60° = 50 N inertia. Therefore when we pull the cloth suddenly
∴ (fs)max = 0.5 × 50 = 25 N
fk = 0.3 × 50 = 15 N from table the dishes remains stationary.
27. Ans ( 4 )
The time of action of the force is very short,
therefore one can assume that there is no
appreciable change in the position of the body
during the action of the impulsive force.
Net external force, F11 = 100 × 3 − 60
2
√
28. Ans ( 3 )
= 50 3 − 60 ≈ 26.6 N > 25 N
√
T= m1g
∴ The block will move upward , so kinetic friction 7T = m2g
acts on it downward 7m1g = m2g
m2 = 7m1
HS-3/10
29. Ans ( 2 ) 34. Ans ( 2 )
Telegram: @NEETxNOAH
N = ma
Tx = Mg +
m
(ℓ − x) = Mg + m (
ℓ−x
)
f ≥ mg
ℓ ℓ
μ N ≥ mg
30. Ans ( 1 )
μ ma ≥ mg
N =mg g
a⩾
μ
10
a⩾ ⇒ a ≥ 20 m/s2
0.5
35. Ans ( 2 )
50 − 30
For 10 kg :- a = = 2m/s2
Net force by earth on block 10
For 4 kg :- T – F = 4a
= N→ + −→
mg
F = T – 4a = 30 – 4 × 2 = 22 N
= mg ^j + mg(−j^) 36. Ans ( 2 )
=0 v = u + at ⇒ 1000 = 0 + a × 10
33. Ans ( 3 ) m1 =
m
L
(L − x)
Impulse = Area under F-t curve enclosed with time
axis. m F F (L − x)
T = m1 a = (L − x) =
L m L
HS-4/10
40. Ans ( 1 ) 46. Ans ( 3 )
Telegram: @NEETxNOAH
W1 mg 3 Δp
= = ⇒ 2g = 3g − 3a F= = 2mnv
W2 m (g − a) 2 Δt
⇒ a=
g
3
47. Ans ( 4 )
41. Ans ( 4 ) F=
dp
dt
≡
d
dt
(a + bt2 ) = 2bt ∴ F ∝ t
The system, as a whole, will fall towards ground
under gravity. The spring will neither be
48. Ans ( 4 )
2
m (u2 − v2 ) 30 × 10−3 × (120)
compressed nor stretched regardless of the values F = = = 1800N
2S 2 × 12 × 10−2
of m1 and m2.
49. Ans ( 3 )
42. Ans ( 2 ) Initially due to upward acceleration apparent
(10 + 5)g − 5g weight of the body increases but then it decreases
a=
20 due to decrease in gravity.
10g g
a=
20
=
2 50. Ans ( 2 )
43. Ans ( 2 ) Force on particle at 20 cm away F = kx
F F F = 15 × 0.2 = 3 N
a= =
m+m 2m
As k = 15 N/m
[ ]
Force 3
Acceleration = = = 10 m/s2
Mass 0.3
m F 3F
Tension at mid point = ( m+
2
) ×
2m
=
4 51. Ans ( 1 )
44. Ans ( 1 ) We know that
n mv n 35
|F| = ⇒ 93.3 = ( ) × ×v
t t 1000
n
On solving ( ) = 400/ min ute
t
52. Ans ( 1 )
The water jet striking the block at the rate of 1 kg/s
∴ NA =
2
× 50 × 10 F = v dm = 5 × 1 = 5 N
dt
√ 3
1000
∴ NA = N Under the action of this force of 5 N, the block of
√ 3
NA 500
∴ NB = = N mass 2 kg will move with an acceleration given by
2 √3
45. Ans ( 3 ) F 5
a= = = 2.5 m/s2
Action Reaction m 2
HS-5/10
53. Ans ( 3 ) 59. Ans ( 1 )
Telegram: @NEETxNOAH
F = ma = 6 × 6 × t
at t = 4, F = 36 × 4 = 144 newton
62. Ans ( 2 )
57. Ans ( 3 )
T cos θ = T1 = 10 × g .....(i)
T sin θ = 98 .....(ii) 63. Ans ( 3 )
98 since normal force is zero, thus friction force will
∴ tan θ = = 1 or θ = 45°
10 × 9.8 also be zero.
58. Ans ( 1 ) N+50 sin37° = mg
F – Mg = Ma N + 30 = 30
8000 = 2000 a N = 0 (Normal is zero)
∴ Acceleration is 4 ms – 2 upwards fk = μN = 0N
HS-6/10
64. Ans ( 4 ) 71. Ans ( 3 )
Telegram: @NEETxNOAH
a=
10
= 1 m/s2
75. Ans ( 2 )
10
Net force acting on 2 Kg block = 2(1) = 2 N
69. Ans ( 2 )
N1 (2m)a 2
= =
N2 (3m)a 3 N = 500 N
fℓ = μN
70. Ans ( 2 ) f ℓ = 0.2 × 500
36 f ℓ = 100 N
acceleration of system = = 2m/s2
18 5g > f ℓ
∴ f ℓ = 50 N
76. Ans ( 1 )
T1 = 4 × 2 = 8 N 36 – T2 = 6 × 2 900 – 600 = 60 amax
T2 = 24 N ⇒ amax = 5 m/s2
HS-7/10
77. Ans ( 2 ) 82. Ans ( 4 )
Telegram: @NEETxNOAH
fnet 100
a= = = 10m/s2
Σm 10
T = (1+5) (g+a)
T = 6(10+10) ⇒ 120 N
78. Ans ( 1 ) P = (M + m)a ⇒ a =
P
M +m
By impulse momentum theorem →
I = ΔP
F Δ t = m(v2 – v1)
1 3 −3 500
(10 × 10 ) (20 × 10 ) = (v2 − 0)
2 1000
v2= 200 m/sec PM
T = Ma =
M +m
79. Ans ( 1 ) 83. Ans ( 1 )
Force on B = m2a2 ∴ Force on A = m1a1 Since springs are massless, their reading will be
same.
m 2 a2
Acceleration A =
m1 84. Ans ( 2 )
80. Ans ( 4 ) 6g = Mg sin θ (in equilibrium)
dp θ = 30°
As F =
dt
85. Ans ( 2 )
2g + 2g − 2g g
dp = ∫ F dt Acceleration, a = = ; for ‘C’,
∫
2+2+2 3
g
2g – Tc = 2 ( )
3
Δ p = Area under F-t graph 4g
⇒ Tc =
3
1 86. Ans ( 4 )
Δp = × 8 × 1 – 2 × 0.5 = 3 kg m/s As is clear from figure
2
81. Ans ( 3 )
At just sliding condition limiting friction is acting.
F – 50 = 20a ....(i)
f = 10a ....(ii)
50 = 10a T1 = 3g
T2 – T1 = 2g
∴ a = 5 ms – 2
∴ T2 = 2g + T1 = 2g + 3g = 5g
Hence, F = 50+20×5 = 150 N Also, T3 – T2 = 1g
∴ Fmin = 150 N ∴ T3 = 1g + T2 = 1g + 5g = 6g
HS-8/10
87. Ans ( 1 ) 94. Ans ( 1 )
Telegram: @NEETxNOAH
Here, m1 = 40 kg
m2 = 30 kg
θ = 30º
89. Ans ( 2 )
FA tan 30∘ 1
F = slope ⇒ = ∘
=
FB tan 45 √3
90. Ans ( 1 )
Freq = mg sin θ + μ mg cos θ ⇒ N = 100
positive i.e. slope of v-t graph is positive. continuously changing. As the position-time graph
is a straight line, the motion of the particle is
93. Ans ( 4 ) uniform, so acceleration, a = 0. Hence no force act
Both static and kinetic friction are independent on
on the particle during this interval also.
the area of contact. Coefficient of static friction
98. Ans ( 4 )
depends on the surfaces in contact. When the lift is accelerating upwards with
acceleration a, then reading on the scale
µk < µs
R = m(g + a) = 80 (10 + 5) N = 1200 N.
HS-9/10
99. Ans ( 2 ) 100. Ans ( 3 )
Telegram: @NEETxNOAH
F – 70 = (2 + 5) a = 7 × 2
F = 84 N = T
2m1 m3 2×2×2
T= ×g= × 9.8 = 13 N
m1 + m2 + m3 2+2+2
T' – 50 = 5a = 5 × 2 = 10
T' = 60 N
HS-10/10