Indefinite Integral
Indefinite Integral
14
Indefinite Integra
a
I Definition (iv) a'd= log, a-+C= a log, e+c
to
-o(ar b). in
that
write
+b) interal. case
iniegral
298 CHAPTER Indefinite Integral
:
dt
=+ -2r+c= 2Wtanr tc J-ior va'
Example 9 +e
dr equals I=atan 9 or
I=asinhA
Solution Let e'+e=t
. - a or
’ (e'-e")dr = dt
dt
I=| =logt +c log(e' te ') +c or
Vatx
dx
(vIntegral of the JOrm a sin x+b cos x Vrta+) or Vxlat)
a-x
Put a=rcos0 and b=rsin 0. then r= Va+b and or =asin 9
Va-x
=tan -Ib
a
Vrta-x) or
dx 1
r sin (x+0) Scosec (x +0) dr |-a
Vr-a V
dx
Example 10 in+ cos x
equals
VB-x
or
A= acos'0+Bsin'
Solution Let l=r cos, 3=rsin e. then
Vr-axB-) (B>a)
r=v3' + =2 and tan =
Example 12 s
1- sinx
d equals
3
Solution I= rl+1- sinsinxA d
cos(x/2) + sin (x/2)
d
cos(x/2) - sin(x/2)
- [tan+
Example 11
dx
Vl+ sinx
equals -Jise-4 =2tan
Solution
d Example 13 dx
Vxta- equals
sin x/2+ cos a/2
Solution Letx = asin 0, hen
dx = 2asin cos 0 de
2asin -cos
=y2 logtan+ vasin 0- acos de =2|de =29 +c =2sin
CHAPTER Indefinite Integral 299
Solution
Example 14 Evaluate r'e'dr equals
Solution / = r'e'd =re-f2r:e'á=re -2|xe'-f1e'd) Example 18 J dequals
On taking x as first function, we get 2x
=te'-2.xe' +2e' +c Solution x+ Da +2) dx
(b) If the integral is of the form e[f«)+ f'()] du , then dr = 4log (x + 2) - 2log (x + I) +c
by breaking this integral into two integrals, integrate one integral (r+2)°
= 2log
by parts and keep other integral as it is, by doing so, we get
[e'f()+f)]dr=e'f)+e (b) When denominator cannot be factorized
In this case integral may be in the form
dx pxtq dx
Example 15 Evaluatee' (sin x+cosx)dx, ar + bx +c ax' + bx +c
Solution /=|e' (sin.x+ cosx)dr For first integral we express its denominator in the
This is of the fornn form (x+ a)±ß and use the previous results.
fe'f()+ f' )]dr =e'f(a) + c=e'f() +c For second integral we express its numerator inthe
form Nr =A(derivative of Dr) + B and then we
Here, f(x) = sin r.. l= esinx+ c integrate it easily.
(c) If the integral is of the form |[x f'()+ f(r)] dx , then d
secxdx
Solution 2
secx+3 tanx
(dividing Nr and Dr by cos
Example 22 du equals
secx dx
dx + 1/x)
Solutiond= J,(r+l/-2 Ltan-'(2tan x) +c
=4tan'x
-log +/)-5 dx
dx dx
2/2+l/) + 2 (b) asin x +b cos r
a sin x +b a cos x+b
-V2r+1 +c
242 log '+V2r+1 dx
asin x+b cos Xtc
(x) Integration of irrational functions
If any one term in Nr and Dr is irrational, then it is made For such types of integration first we express them in tems
rational by suitable substitution. Also, if integral is of the form of tan x/2 by replacing
dx
Nar' +bx +c du, then we integrate it by 2 tan x/2 1- tan x/2
Nax +bx+c Sin x= and cOS X =
1+ tan /2 1+ tan x/2
expressing ax +bx+c=(1+a) +B.
and then put tan x/2 =t.
Also, for integrals of the fornm
dx
a'r' + b' Example 26 5+4cosx equals
Vax +bx+c
= dr, Ja'r+b)War' +bx +c dx
Solution - dx seex/2 dx
firstwe express a'x+b in the form
d
5+4 1- tan /2) 9+ tanx/2
a'x +b' = A (ax 1+ tan x/2 )
dx
and then proceed as usual with standard forms. =2.-tan -i/tan x/2 |+c
3 3
dx
Example 23 equals
(c) [P Sin xtq cos xd Psinx
J'+2x asin x+b cos x a sin x+b cos x
dx,
dx
Solution =cosh'(x + I) +c q cos x
asin x+b cos x dx,
Example 24 (Nr'+2x dr equals For their integration we first express Nr as folloWs
Solution N(x+I' -1 du Nr=A(Dr) + B(derivative of Dr)
Then, integral = Ax+Blog (Dr) + C
CHAPTER Indefinite Integral 301
sin x + cOS X
Example 2 2sin x+ 3cosx-dx equals Example 28 dx equals
Solution Let sinx + cos X= A(2sinx+3cos x) + B
(2cos-3sin x)
Solution Here, dx
2A-3B =1 1
3A +2B=1
A=,B=
13 13
J=log(1-e")+c
51 (2sin x+ 3cos x) +c
:l=-log
13
Example 29 (Ve'-1d1 equals
3. + bx +c dx
(vii) dx (integrand = coth x) Make the coefficient of is unity. After making perfect
-1 square.
1
pxtq
(vifi)
(e'+ej2
dx (integrand =sech'x) 4.
+ bx+c
dx
1
(x) d (integrand=cosechx) 5.
pxtq dx
Vax+bx +c
1
dx
6. (px+ q)var² +bx +c dr
(multiply and divide by e and put e =) d
Put (px tq) = A(-(ax? +bx+c)+B
dx
(xi) -dx (multiply and divide by e ) p(x)
7. dx
ax +bI+c
(xiü) dx (multiply and divide by V2e-2) pr) is a polynomial of second or higher degree in
x(n 2 2)
W2e*-1 Dividing Nr by Dr, the expression is expressed as
(integrand =(|te')/ite') p) f)
follows
ax'. + bx+c + bx+c
(xiv) jve'-i dr (integrand =(e'-1)/Ne-1)
where f ) is linear.
+1
(xv) le+a dx (integrand =(e' +a)/e-a) 8. -dx
J+kx +1
302 CHAPTER Indefinite Integral
-dr
17. bsin
dr
(k ’ constant) and Nr and Dr dividing by x. 18. a+bcosx
r 1
10. dr
(asinx+ bcosx)²
19.
1
*= + I) +(r -1)) 20.
(asinr+ bsin r COSNt C- Cosx)
dr
Psinx
25. dx
15. dr a sin x+b cos x
(ar' +bx +cpx+ q q sin x
26. dx
Put (2x + q) =r asinx+bcos x
16. 27.
Psin x+qcos x+ r dx
dx
(Ar+ B)ycr +D asin x+bcosx+c
Put (r = 1/) d
Nr= A(Dr) + B (Dr) +C
dx